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1 Introduction

Homogeneous functions frequently appear in Economic Theory models. For example, in consumption
theory the indirect utility function is homogeneous of degree zero in prices and income and the expendi-
ture function is homogeneous of degree one in prices; in general equilibrium, the excess demand function
is homogeneous of degree zero.

The properties of homogeneous functions have been exploited by Malueg and Yates (2006) to show
sufficient conditions for the existence of a unique symmetric pure-strategy Nash equilibrium in rent-
seeking contests. More specifically, in their setting, the players’ revenue (utility net of cost) is described
by a unique homogeneous function of degree zero. Ferrarese (2021) generalizes those results by allowing
such a function to exhibit any degree of homogeneity. This allowed the author to extend the set of pos-
sible applications beyond the games considered by Malueg and Yates (2006). For instance, the results in
Ferrarese (2021) can be applied to contests with an endogenous prize valuation or to Cournot games with
a non-linear inverse demand.

This paper aims to extend the characterization of symmetric pure-strategy Nash equilibria (hence-
forth, SPNE) to a wider set of games. Specifically, we show that the properties of homogeneous func-
tions can also be exploited to characterize the SPNE in games where the players’ revenue function is
not (necessarily) homogeneous but it can be decomposed into the sum of homogeneous functions with
(possibly) different degrees of homogeneity.1 A simple example may help the reader. Let us consider
a linear, symmetric, homogeneous-good Cournot game between two firms i and j. The inverse demand
is pi(qi,q j) = α − qi− q j ,α > 0 and qi and q j represent the firms’ quantities. Thus, firm i’s revenue
is Ri(qi,q j) = (α−qi−q j)qi. Notice that Ri is not homogeneous. However, one can decompose it as
Ri(qi,q j) = αqi−

(
qiq j−q2

i
)

where the first term is a homogeneous function of degree one, and the
second term is a homogeneous function of degree two.

Hence, the results presented in this paper apply not only to the games covered by Ferrarese (2021)
and Malueg and Yates (2006) but to others, as well. In particular, we show how our results can be used
to characterize the equilibria of games classified within several families of games such as, public good,
contests, and imperfect competition games.

The extra generality of our setting comes at a cost: The set of symmetric equilibrium candidates
cannot be reduced to a singleton and there is not a closed form solution for them. However, because
of homogeneity, (i) we characterize the equilibrium candidates as the roots of a generalized polynomial
whose real coefficients are represented by the partial derivatives of the component functions of a player’s
payoff evaluated at a specific point. This contributes a shortcut for economic theory researchers to iden-
tify the maximum number of interior equilibrium candidates, as they can use the mathematical results
for counting the positive zeros of generalized polynomials (Jameson, 2006). Moreover, (ii) we provide
sufficient conditions for each of these candidates to be a SPNE, and (iii) we show under which conditions
SPNE (if any) must be interior. Finally, we apply results (i)-(iii) to characterize the equilibria of three
examples pertaining to the families of games commented above.

The paper is structured as follows: in Section 2, we briefly present some useful properties of homo-
geneous functions; in Section 3, we present the model; Section 4 is devoted to the equilibrium analysis;
in Section 5, we present applications and Section 6 concludes. All proofs are in the Appendix.

2 Preliminaries: Some results on homogeneous functions

Throughout the paper, we will make use of some properties of homogeneous functions. A real valued
function f : RI → R is homogeneous of degree α in x ≡ (x1,x2, ...,xI) if f (tx) = tα f (x), ∀t > 0. This

1The sum of homogeneous functions is not homogeneous unless all the addends share the same degree of homogeneity.
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Exploiting homogeneity in games with non-homogeneous revenue functions 3

implies that, given a vector with I identical entries x̌ ≡ (x,x, ...,x), f (x̌) = xα f (1), where 1 is an I-
dimensional vector of ones. Furthermore, the two following remarks will be useful:

Remark 1 Let f : RI → R be differentiable and homogeneous of degree α . Then the n-th derivative is
homogeneous of degree α−n.

Proof Omitted

It follows that for the n-th partial derivative, ∂ n f
∂xn

i
(x) = xα−n ∂ n f

∂xn
i
(1). The last remark is the following:

Remark 2 The set of homogeneous functions is closed with respect to the operation of multiplication and
is not (in general) closed with respect to the operation of sum. The sum of homogeneous functions is
itself homogeneous if all terms in the sum exhibit the same degree of homogeneity.

Proof Omitted

3 The Model

Let I = {1,2, ..., I} be the index set of players, each selecting an xi ∈ [0,+∞) simultaneously and non-
cooperatively. Let x ≡ (x1, ..,xI) be an I-dimensional vector of strategies selected by all players. Player
i’s payoff is given by:

ui(x) = Ri(x)−Ci(x).

Let the cost function Ci : RI
+ → R+ be a homogeneous function of degree s ∈ R++ with Ci(0,x−i) =

0 ∀ x−i ∈ RI−1
+ , ∂Ci

∂xi
> 0 and ∂ 2Ci

∂x2
i
≥ 0.2 The revenue function is Ri(x) = ∑h∈H fi,h(x), where each fi,h

is a homogeneous function of degree αh ∈ R, with fh(0) ≥ 0, ∀h ∈H , and H = {h,h+ 1, ...,h} is
the index set of these functions holding the following order: αh < αh+1 < ... < αh. Furthermore, Ci and
fi,h ∀ h ∈H are continuous and differentiable over RI

++ and possibly over RI
+.3 Hence, this setting

allows for the payoff function to have a point of discontinuity at the origin.4 Let Hd ⊆H be the index
set of functions with a discontinuity at the origin. Additionally, let H−d ⊆H and H−d0 ⊆H be the
index set of continuous functions over RI

+ such that fh(0)> 0 and fh(0) = 0, respectively.
Let G denote the family of games with the above features. Notice that the set of games covered by

Ferrarese (2021) is a subset of G , as it considers cases in which H has a unique element h, hence the
revenue function is homogeneous of degree αh ∈ R. The set of games analyzed by Malueg and Yates
(2006) is even more restricted as the revenue function is homogeneous of degree zero, hence H has a
unique element h such that αh = 0.

A SPNE of g ∈ G is a strategy profile x∗ = (x∗1,x
∗
2, ...,x

∗
I ) ∈ RI

+ with x∗i = x∗j ,∀i 6= j, such that:

∑
h∈H

(
fi,h(x∗)− fi,h(xi,x∗−i)

)
−
(
Ci(x∗)−Ci(xi,x∗−i)

)
≥ 0,∀xi 6= x∗i and ∀i ∈I .

4 Equilibrium Analysis

We now exploit the properties of homogeneous functions to (i) characterize the interior SPNE candidates,
(ii) show sufficient conditions for each candidate to be a SPNE, and (iii) determine the conditions that
exclude the null vector as a SPNE. The first result is the following:

2R+ = {x ∈ R : x≥ 0} and R++ = {x ∈ R : x > 0}.
30 is an I-dimensional vector of zeros.
4A contest success function typically satisfies this feature.
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Proposition 1 If an interior SPNE of g∈G exists then the equilibrium strategy is a zero of the generalized
polynomial:

P(x) = ∑
h∈H

∂ fi,h

∂xi
(1) xαh−1− ∂Ci

∂xi
(1) xs−1,

with deg(P) = max{αh−1,s−1}.

When #H = 1, a common feature in Malueg and Yates (2006) and Ferrarese (2021), a closed form
characterization of a unique symmetric equilibrium candidate can be obtained as a zero of P(x).5 How-
ever, for those g∈G for which #H > 1, this is no longer the case. Instead, the properties of homogeneous
functions allow us to characterize the equilibrium candidates as the zeros of the generalized polynomial
P(x), whose coefficients are the partial derivatives of the family of functions fi,h and Ci with respect to
xi, evaluated at a vector of ones.

Due to the characterization of the SPNE candidates presented in the previous Proposition, we can
take advantage of the results regarding the number of positive zeros of polynomials to offer a shortcut to
identify the maximum number of interior SPNE candidates. A known property regarding the number of
positive roots of a polynomial is the Descartes’ rule of sign, stating that the number of positive roots is no
larger than the number of sign changes of its coefficients. As in our case the exponents of P(x) can be
non-integers, we should look at the generalization of the Descartes’ rule to generalized polynomials due
to Jameson (2006):

Theorem 1 Jameson (2006). Let

w(x) =
n

∑
j=1

a jxp j

with x ∈ R++, p j ∈ R, and p1 > p2 > ... > pn. Let z(w) be the number of zeros of w(x). Then z(w) is
no greater than the number of sign changes in w(x).

Applying this rule to our setting, we can easily know the maximum number of equilibrium candidates
by counting the number of sign changes in the ordered version of P(x), say P̂(x), in which the exponents
of x (s−1 and αh−1 for all h∈H ) appear in an ordered way.6 Hence, in order to compute the maximum
number of interior SPNE candidates, one just need to analyze the partial derivatives, evaluated at a vector
of ones, of the cost function and all the component functions of Ri(x). An immediate consequence of the
previous result is that in case of a unique sign change, there is at most one interior SPNE candidate.

At this point, let x̄ be a positive solution of P(x), so that x̄≡ (x̄, x̄, ..., x̄) is an interior SPNE candidate.
The following guarantees that x̄ is, indeed, a SPNE.

Proposition 2 x̄ is a SPNE of g ∈ G if the following two requirements are satisfied:

I) Ci(1)−1
∑h∈Hd∪H−d0

(
fi,h(1)− fi,h(0,1−i)

x̄s−αh

)
> 1;

II) ∑h∈Hd∪H−d0
x̄αh−s ∂ 2 fi,h

∂x2
i

( xi
x̄ ,1−i

)
− ∂ 2Ci

∂x2
i

( xi
x̄ ,1−i

)
> 0, ∀xi < x̃, for some x̃ ∈ [0, x̄), and negative oth-

erwise.

Requirement I) ensures that player i prefers x̄ to 0 when all the remaining contenders are selecting x̄ as
well. This condition is needed to exclude the possibility of x̄ being just a local maximum of ui

( xi
x̄ ,1−i

)
,

as 0 is at the corner of the players’ strategy set. Requirement II) implies that ui
( xi

x̄ ,1−i
)

is quasiconcave

5In this case, the unique symmetric candidate is x̄ =
(

∂Ci
∂xi

(1)/ ∂Ri
∂xi

(1)
)α−s

.
6Notice also that s−1 may coincide with αh−1 for at most one h ∈H .
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and that the equilibrium candidate x̄ lies on its concave region. These two conditions ensure that x̄ =
argmax

xi∈R+

ui
( xi

x̄ ,1−i
)
, i.e. x̄ is the best-response of player i to x̄−i.7

We can also exploit homogeneity to provide insights on whether a game g ∈ G admits the null vector
as a symmetric equilibrium. This might be a relevant analysis in some games (like public good games)
where the null vector is a potential equilibrium. In this regard, we have the following result:

Proposition 3 The null vector is not a SPNE of g ∈ G if and only if one of the following disjoint sets of
conditions holds

a) αh < 0 and fi,h(1,0−i)> 0 ;
b) αh = 0, and fi,h(1,0−i)− fi,h(0)> 0;
c) s > αh > 0, fi,h(0) = 0∀h ∈Hd , and fi,h(1,0−i)> 0;
d) s = αh > 0, fi,h(0) = 0∀h ∈Hd , and Ci(1,0−i)

−1 fi,h(1,0−i)> 1.

These conditions are necessary and sufficient for excluding the null vector from the set of SPNE, or
equivalently, for having an x̂> 0 such that ui(xi,0−i)> ui(0) for all xi ∈ (0, x̂). As it can be seen, functions’
homogeneity is exploited here to express these conditions in terms of the degree of homogeneity of the
cost function s and the lowest degree of homogeneity in H , αh. Notice that, in order to exclude 0 from
the set of SPNE, the smallest degree of homogeneity of a component function of Ri, αh, cannot be higher
than the degree of homogeneity of the cost function s.

Point b) nests Malueg and Yates (2006), where the unique component function in Ri is the product
between the Tullock’s contest success function and the exogenous value of the prize V . This function is
homogeneous of degree zero, discontinuous at the origin, takes the value V

I > 0 at such point and the
value V at (xi,x−i) = (1,0). However, condition b) also applies to other games with a non-homogenous
revenue function, as illustrated by our third example in the next section.

Point c) applies to the abatement game described below. Point d) applies to our second example, a
Cournot game with differentiated products.

5 Applications

We now provide three applications: the first one is a special public good (bad) game, the second one is a
standard game of firm competition, and the third example is a contest game.

Example 1: Abatement games

For this application we rely on Barrett (1994), where each i out of I countries emits a quantity of a
pollutant xi ∈ R+ damaging a shared natural resource. Country i’s revenue is:

Ri(xi,x−i) = ψ

(
I

∑
j=1

x j

)
−σ

(
I

∑
j=1

x j

)2

,

with ψ > 0 and σ > 0, which is not homogeneous. However, one can write that Ri = fi,1(xi,x−i) +

fi,2(xi,x−i), where fi,1(xi,x−i) = ψ

(
∑

I
j=1 x j

)
and fi,2(xi,x−i) =−σ

(
∑

I
j=1 x j

)2
are both homogeneous.

Since player i’s cost function is Ci(xi) = cx2
i with c > 0, then her payoff is:

ui(xi,x−i) = ψ

(
I

∑
j=1

x j

)
−σ

(
I

∑
j=1

x j

)2

− cx2
i ,

7When these conditions are not satisfied then each x̄ can be either a global or a local maximum/minimum of ui(xi, x̄−i). Hence,
checking that x̄ is a global maximum requires further analysis.
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and according to the notation of the paper α1 = αh = 1 and α2 = αh = 2 = s.8 By symmetry, we focus
on the problem of a representative player i only. As:

∂ fi,1

∂xi
(1) = ψ;

∂ fi,2

∂xi
(1) =−2σ I;

∂Ci

∂xi
(1) = 2c

then, if an interior SPNE exists, it is a root of the degree 1 polynomial:

P(x) = ψ− x(2σ I−2c).

Given that ψ > 0, we apply the Descartes’ rule of sign to conclude that the number of positive zeros
of the above polynomial is at most one when σ > c/I. This positive root is given by:

x̄ =
ψ

2(Iσ − c)
.

Hence, x̄ = (x̄, ..., x̄) is the unique interior SPNE candidate. Since:

fi,1(1) = ψI;

fi,2(1) =−σ I2;
fi,1(0,1−i) = ψ(I−1);

fi,2(0,1−i) =−σ(I−1)2;

condition I) in Proposition 2 is:

2(σ I− c)+σ (1−2I)> c,

which requires σ > 3c. Notice that, since I ≥ 2 and c> 0, max{3c,c/I}= 3c, this condition is more strin-
gent that the previous one. It only remains to check whether xi = x̄i is the best reply to x−i = (x̄, x̄, ..., x̄).
Since:

∂ 2 fi,1

∂x2
i
(xi) = 0;

∂ 2 fi,2

∂x2
i
(xi) =−2σ ;

∂ 2Ci

∂x2
i
(xi) = 2c,

condition II) in Proposition 2 needs to be check for −2(σ + c), which is negative. Hence the unique
interior SPNE is (x∗1,x

∗
2, ...,x

∗
I ) = (x̄, x̄, ..., x̄) if σ > 3c. Finally, since Hd = /0 and s > αh > 0, then the

null vector is not an equilibrium if fi,1(1,0−i)− fi,1(0) = ψ > 0, which is clearly true. Thus, the above
interior equilibrium is also the unique symmetric Nash equilibrium of the abatement game.

Example 2: A linear horizontally differentiated Cournot duopoly

8The abatement game is a special case of quadratic games as defined in Dokka et al. (2021), a class of n-player games in which
ui(xi,x−i) = ψ

(
∑

I
i=1 xi

)
+σ ∑

I
i=1 ∑

I
j=1 xix j + tx2

i .

https://orcid.org/0000-0003-4642-4522
https://orcid.org/0000-0002-5478-554X


Exploiting homogeneity in games with non-homogeneous revenue functions 7

Two firms i = {1,2} face the linear inverse demand pi = γ−β1qi−β2q j, where γ > 0 is a measure of
market extension, and β1 > 0 and β2 are two parameters capturing the degree of differentiation between
goods: when β2 > 0 the goods are substitutes, when β2 = 0 the goods are independent,when β2 < 0 the
goods are complements.9 We make the typical assumption that own effects dominate cross effects, namely
β1 >| β2 |. Each firm selects a quantity qi ∈ R+ and produces with the total cost function C (qi) = cqi,
where c > 0. Thus, firm i’s revenue is:

Ri(qi,q j) = (γ−β1qi−β2q j)qi,

which is not homogeneous. However, one can write that Ri = fi,1(qi)+ fi,2(qi,q j), where fi,1(qi) = γqi
and fi,2(qi,q j) =−β1q2

i −β2qiq j are both homogeneous. Since player i’s payoff is:

πi(qi,q j) = (γ−β1qi−β2q j)qi− cqi,

according to the notation of the paper α1 = αh = s = 1 and α2 = αh = 2. By symmetry, we focus on the
problem of firm 1 only. As:

∂ f1,1

∂q1
(1,1) = γ;

∂ f2,1

∂q1
(1,1) =−(2β1 +β2);

∂C1

∂q1
(1,1) = c

then, if a SPNE exists, it is a root of the degree 1 polynomial:

P(q1) = (γ− c)−q1(2β1 +β2).

Given that 2β1 +β2 > 0, we apply the Descartes’ rule of sign to conclude that the number of positive
zeros of the above polynomial is at most one when γ > c. This positive root is given by:

q̄ =
γ− c

2β1 +β2
.

Hence, q̄ = (q̄, ..., q̄) is the unique interior SPNE candidate. Since:

f1,1(1,1) = γ;
f2,1(1,1) =−(2β1 +β2);
f1,1(0,1) = f2,1(0,1) = 0,

condition I) in Proposition 2 is:

(γ− c)
(

β1

2β1 +β2

)
> 0,

which again requires γ > c.

9Although it is known that this game admits a unique symmetric equilibrium, this has not been shown through the use of
homogeneous functions. It is also worth noting that the paper incorporates less straightforward cases such as Cournot games with
non-linear inverse demand and non-constant returns to scale (Ferrarese, 2021).
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It only remains to check whether q1 = q̄ is the best reply to q2 = q̄. Since:

∂ 2 f1,1

∂q2
1

(q1,1) = 0;

∂ 2 f2,1

∂q2
1

(q1,1) =−2β1;

∂ 2C1

∂q2
1
(q1,1) = 0,

condition II) in Proposition 2 needs to be check for −2q̄β1, which is negative. Hence the unique interior
SPNE is (q∗1,q

∗
2) = (q̄, q̄) if γ > c.10 Finally, since Hd = /0 and s = αh > 0, then the null vector is not an

equilibrium if f1(1,0)/C (1,0) = γ/c > 1. So that, the same condition γ > c ensures that (q̄, q̄) is the only
SPNE of the game.11

Example 3: A generalized Tullock contest à la Chowdhury and Sheremeta (2011a,b)

Two risk-neutral players i = {1,2} exert an irreversible effort ei ∈ R+. Contingent upon winning or
losing, each player obtains a prize W > 0 and L ∈ R, with W > L, respectively. Player i’s revenue is:

Ri(ei,e j) = ϕi(e)(W +β1e j)+(1−ϕi(e))(L+β2e j),

where

ϕi(e) =

{
ei

ei+e j
if e 6= 0

1
2 if e = 0

is the contest success function which captures player i’s probability of winning the contest or her prize
share, β1 and β2 are two spillover parameters. Notice that Ri(ei,e j) is not homogeneous. However, one
can write that Ri(ei,e j) = fi,1(ei,e j)+ fi,2(ei,e j), where fi,1(ei,e j) = ϕi(e)(W −L)+L and fi,2(ei,e j) =
β2e j +e jϕi(e)(β1−β2), which are both homogeneous. Since player i’s cost function is Ci(ei,e j) = θ2ei+
ϕi(e)(θ1−θ2)ei, where in order to ensure that effort is costly, θ1 > 0, θ2 ≥ 0, then her utility is given by:

ui(e) = ϕi(e)(W +β1e j)+(1−ϕi(e))(L+β2e j)−θ2ei +ϕi(e)(θ1−θ2)ei.

Consistent with the notation of the paper α1 = αh = 0 and α2 = αh = s = 1. By symmetry, we focus
on the problem of contender 1 only. As:

∂ f1,1

∂e1
(1,1) =

W −L
4

;

∂ f2,1

∂e1
(1,1) =

β1−β2

4
;

∂C1

∂e1
(1,1) = θ2 +

3(θ1−θ2)

4
=

3θ1 +θ2

4
,

if a SPNE exists, it is a root of the degree 1 polynomial:

P(e1) =
W −L

4
+ e1

(
β1−β2

4
− 3θ1 +θ2

4

)
.

10This application can be easily extended to I > 2 players.
11Another important case is the one where firms adopt a decreasing return to scale technology as in Szidarovszky and Yakowitz

(1977). With quadratic costs, for instance, s > αh > 0, so that according to point c) and being Hd = /0, the weaker condition
fi,1(1,0−i) = γ > 0 applies.
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Given that W > L, we apply the Descartes’ rule of sign to conclude that the number of positive zeros
of the above polynomial is at most one when β1−β2 < 3θ1 +θ2. This positive root is given by:

ē =
W −L

(3θ1 +θ2)− (β1−β2)
.

Hence, ē = (ē, ..., ē) is the unique interior SPNE candidate.
As:

f1,1(1,1)− f1(0,1) =
W −L

2
;

f2,1(1,1)− f2(0,1) =
β1−β2

2
;

C1(1,1) =
θ1 +θ2

2
,

condition I) in Proposition 2 is:

(3θ1 +θ2)− (β1−β2)

2
+

β1−β2

2
>

θ1 +θ2

2
,

which is satisfied as θ1 > 0.12

It only remains to check whether e1 = ē is the best reply to e2 = ē. Since:

∂ 2 f1,1

∂e2
1

(e1,1) =
−2

(1+ e1)3 (W −L);

∂ 2 f2,1

∂e2
1

(e1,1) =
−2

(1+ e1)3 (β1−β2);

∂ 2C1

∂e2
1
(e1,1) =

2
(1+ e1)3 (θ1−θ2),

condition II) in Proposition 2 needs to be check for:

− 2
(1+ e1

ē )
3

(
W −L+ ē(β1−β2 +θ1−θ2)

ē

)
.

Substituting ē, we obtain that the previous condition simplifies to:

− 8θ1

(1+ e1
ē )

3 ,

which is negative, so that the unique interior SPNE is (e∗1,e
∗
2) = (ē, ē) if β1− β2 < 3θ1 + θ2. Finally,

as αh = 0 and f1,1(1,0)− f1,1(0,0) = W−L
2 > 0, according to point b) in Proposition 3, the null vector

cannot be an equilibrium, and the above interior equilibrium is the unique symmetric equilibrium of the
generalized Tullock contest.

12Chowdhury and Sheremeta (2011a,b) mistakenly compare the equilibrium payoffs with the payoff of loosing which, in this
case, is not equal to the payoff of deviating from the equilibrium by exerting a zero effort. This is the reason why our condition does
not coincide with theirs.
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6 Conclusions

We characterized the SPNE candidates of n-person games in which the players’ revenue takes the form
of a finite sum of homogeneous functions as the positives zeros of a generalized polynomial, whose
coefficients are represented by the partial derivatives of the component functions of a player’s payoff
evaluated at a vector of ones. This permits to use the mathematical results for counting the number of
positive zeros of this kind of polynomials to determine the maximum number of interior SPNE candidates.
We also provided sufficient conditions for each candidate to be a SPNE and show the conditions for
excluding the null vector as a SPNE. Since the set of homogeneous functions is not (generally) closed
with respect to the operation of sum, our results extend the set of applications of the previous literature.
We have shown three examples to illustrate some of these extra applications.
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Appendix

Proof (Proposition 1) First, by symmetry, we focus on the problem of a representative player i. In a symmetric vector of strategies
with positive entries x, player i’s payoff is:

∑
h∈H

fi,h(x)−Ci(x).

By homogeneity and Remark 1, we can write that
∂ fi,h
∂xi

(x) = xαh−1 ∂ fi,h
∂xi

(1) and ∂Ci
∂xi

(x) = xs−1 ∂Ci
∂xi

(1). Thus, the necessary first order

conditions for an interior equilibrium 0 = ∂ui
∂xi

can be rewritten as:

0 = ∑
h∈H

xαh−1 ∂ fi,h

∂xi
(1)− xs−1 ∂Ci

∂xi
(1).

Proof (Proposition 2) We first establish the following result:

Lemma 1 If a function f : Rn
+ → R is continuous, homogeneous of degree α with f (0) = C > 0 ⇒ f is the constant function

f (x) =C.

Proof By homogeneity f (t0) = tα f (0) ∀t > 0. Since f (t0) = f (0) =C > 0, then α = 0. Since f is homogeneous of degree 0, then
f (tx) = tα f (x) = f (x) ∀x ∈ Rn

+, namely for a given x ∈ Rn
+, f is constant along the line passing through (0, tx). By continuity at

the origin, then ∀ε > 0, ∃δ > 0 such that | f (x)−C |< ε ∀x ∈ Rn
+ with ||x||< δ . Assume that ∃x̃ ∈ Rn

+ such that f (x̃) 6= f (0) =C.
Given 0 < ε̄ :=| f (x̃)−C |, by the continuity of f at the origin ∃δ̄ such that | f (x)−C |< ε̄ ∀x ∈ Rn

+ with ||x||< δ̄ . Let t∗ be small
enough such that ||t∗x||< δ̄ . Hence | f (x̃)−C |=| f (t∗x̃)−C |< ε̄ =| f (x̃)−C |, a contradiction. Thus, f (x) =C ∀x ∈ Rn

+.13

13In Ferrarese (2021), when either the valuation or the impact function takes a positive value at the origin, the analysis is carried
out for cases in which there exists a discontinuity at such point: a constant valuation would violate monotonicity.

https://orcid.org/0000-0003-4642-4522
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We must show that x̄ is the best reply of player i to x̄−i. The first requirement is that any player i is strictly better off in x̄ rather
than after deviating from x̄ by selecting xi = 0 (the corner of the set of available strategies). Hence, we compare xi = x̄ and xi = 0,
given that x−i = x̄−i. If xi = x̄, player i’s payoff is:

∑
h∈H

fi,h(x̄)−Ci(x̄). (A-1)

By homogeneity, (A-1) becomes:
∑

h∈H
x̄αh fi,h(1)− x̄sCi(1).

If instead player i selects xi = 0 his payoff is:
∑

h∈H
fi,h(0, x̄−i)−Ci(0, x̄−i). (A-2)

By homogeneity, (A-2) becomes:
∑

h∈H
x̄αh fi,h(0,1−i),

since Ci(0,1−i) = 0. Thus, x̄ is a better option than 0 if and only if:

∑
h∈H

x̄αh fi,h(1)− x̄sCi(1)> ∑
h∈H

x̄αh fi,h(0,1−i). (A-3)

Dividing both sides of (A-3) by x̄s, and according to Lemma 1, yields:

1
Ci(1) ∑

h∈Hd∪H−d0

(
fi,h(1)− fi,h(0,1−i)

x̄s−αh

)
> 1,

namely condition (I).
The second condition imposes quasiconcavity of the function ui

( xi
x̄ ,1−i

)
and that the equilibrium candidate lies on its concave

region. By homogeneity, the second derivative of this function with respect to xi, given x−i = x̄−i, is:

∂ 2ui

∂x2
i
(xi,x−i)

∣∣∣∣
x−i=x̄−i

= ∑
h∈H

x̄αh−2 ∂ 2 fi,h

∂x2
i

( xi

x̄
,1−i

)
− x̄s−2 ∂ 2Ci

∂x2
i

( xi

x̄
,1−i

)
.

Using Lemma 1, condition (II) in the proposition is equivalent to ∂ 2ui
∂x2

i
(xi, x̄−i) being (possibly) initially positive and eventually

negative. This involves quasi-concavity of ui(xi, x̄−i).

Proof (Proposition 3) The null vector is not a SPNE if some player i has incentives to deviate by selecting an infinitesimal xi. This
deviation is profitable when there exists an x̂ > 0 such that ui(xi,0−i)> ui(0) for all xi ∈ (0, x̂). By homogeneity, this condition can
be written as:

∑
h∈H

xαh
i fi,h(1,0−i)− xs

i Ci(1,0−i)> ∑
h∈H

fi,h(0), for all xi ∈ (0, x̂).

Distinguishing the different types of functions fi,h, the previous condition can be rewritten as:

(A-4)

1
Ci(1,0−i)

 ∑
h∈H−d

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

)
+

∑
h∈Hd∪H−d0

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

) > 1, for all xi ∈ (0, x̂).

Since any positive constant function is homogeneous of degree zero,

∑
h∈H−d

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

)
= ∑

h∈H−d

(
fi,h(1,0−i)− fi,h(0)

xs
i

)
.

Notice also that Lemma 1 implies that ∑h∈H−d

(
fi,h(1,0−i)− fi,h(0)

xs
i

)
= 0. In consequence, (A-4) simplifies to:

1
Ci(1,0−i)

∑
h∈Hd∪H−d0

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

)
> 1, for all xi ∈ (0, x̂). (A-5)
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Notice that there will exist an x̂ such that (A-5) is satisfied if and only if

1
Ci(1,0−i)

× lim
xi→0+

∑
h∈Hd∪H−d0

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

)
> 1.

This will hold, for example, when the fraction with the denominator with the smallest exponent goes to infinity as xi approaches to
0. We now consider the following three cases:

αh < 0. (A-5) is satisfied if and only if fi,h(1,0−i)> 0.
αh = 0. (A-5) is satisfied if and only if fi,h(1,0−i)− fi,h(0)> 0.
αh > 0. Here, we need to analyze three subcases:

First, if αh > s then

lim
xi→0+

∑
h∈Hd∪H−d0

(
fi,h(1,0−i)

xs−αh
i

−
fi,h(0)

xs
i

)
= lim

xi→0+
∑

h∈Hd

−
fi,h(0)

xs
i

< 0,

as fi,h(0)≥ 0. Hence, (A-5) cannot hold.
Second, if αh = s then

lim
xi→0+

fi,h(1,0−i)

xs−αh
i

=

{
fi,h(1,0−i) , if h = h
0 , otherwise.

Thus, given that fi,h(0) = 0 for any h ∈H−d0 and fi,h(0)≥ 0, condition (A-5) holds if and only if

Ci(1,0−i)
−1 fi,h(1,0−i)> 1,

and
fi,h(0) = 0, ∀h ∈Hd .

Third, if αh < s and fi,h(0)> 0 for some h ∈Hd , then condition (A-5) cannot hold. Instead, if fi,h(0) = 0 for all h ∈Hd , then
condition (A-5) holds if and only if fi,h(1,0−i)> 0.

https://orcid.org/0000-0003-4642-4522
https://orcid.org/0000-0002-5478-554X

	Introduction
	Preliminaries: Some results on homogeneous functions
	The Model
	Equilibrium Analysis
	Applications
	Conclusions

