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Abstract

This paper proposes a novel Bayesian semi-parametric Stochastic Volatility model

with Markov switching regimes for modeling the dynamics of the financial returns.

The distribution of the error term of the returns is modeled as an infinite mixture

of Normals, meanwhile the intercept of the volatility equation is allowed to switch

between two regimes. The proposed model is estimated using a novel sequential

Monte Carlo method called Particle Learning that is especially well suited for state-

space models. The model is tested on simulated data and, using real financial times

series, compared to a model without the Markov switching regimes. The results

show that including a Markov switching specification provides higher predictive

power for the entire distribution, as well as in the tails of the distribution. Finally,

the estimate of the persistence parameter decreases significantly, a finding consistent

with previous empirical studies.

Keywords: Bayes Factor; Dirichlet Process Mixture; Particle Learning; Sequential

Monte Carlo.

∗Corresponding author
†Department of Applied Economics, Universitat de les Illes Balears (UIB), Cra. de Valldemossa, km

7.5, 07122, Palma de Mallorca, Spain, audrone.virbickaite@uib.es, Phone: 0034 971 17 2791
‡Insper Institute of Education and Research, Sao Paulo, Brazil, 04546-042, hedibertfl@insper.edu.br



1 Introduction

Volatility modeling has been of great interest in the last decades, especially after the re-

cent financial crisis when the standard models failed to explain and predict the events

that occurred in the financial markets. The two benchmark approaches to model volatil-

ity are based on the Autoregressive Conditional Heteroscedasticity (ARCH) type mod-

els, proposed by Engle (1982), and the Stochastic Volatility (SV) type models, proposed

by Taylor (1982). The models differ in the underlying assumptions of the observability

of the volatility: in ARCH-type models the volatility is deterministic and observable,

meanwhile in the SV type models the volatility states are latent and stochastic. By al-

lowing for the volatility states to be stochastic, SV models provide more flexibility than

the Generalized ARCH (GARCH, Bollerslev, 1986) specifications, see Broto and Ruiz

(2004) for example.

The SV model, as introduced by Taylor (1982), assumes the distribution of the error

term of the returns to be Normal. Normal distribution was also considered by Taylor

(1986, 1994), Jacquier et al. (1994), Kim et al. (1998), just to name a few. However, many

empirical studies have shown that the returns exhibit heavy-tailed behavior, see Chib

et al. (2002a), Jacquier et al. (2004), Abanto-Valle et al. (2010a), for example. One pos-

sibility, instead of Normal distribution, is to employ a distribution that allows for fat

tails. The Student-t distribution was used by Harvey et al. (1994), Gallant et al. (1997),

Sandmann and Koopman (1998), Chib et al. (2002b), Jacquier et al. (2004), Nakajima and

Omori (2009); the Normal-Inverse Gaussian - by Barndorff-Nielsen (1997); the Mixture

of Normals - by Mahieu and Schotman (1998); and the Generalized error distribution -

by Liesenfeld and Richard (2006), among many others. Another possibility is to aban-

don parametric assumptions for the distribution of the returns altogether and consider

a semi-parametric SV model1. In such model the volatility equation maintains the para-

metric form, meanwhile the distribution of the returns is modeled non-parametrically.

The Bayesian semi-parametric SV models have become rather popular in the last

decade, see Jensen and Maheu (2010, 2014) and Delatola and Griffin (2011, 2013) for

univariate SV models. Zaharieva et al. (2017) proposed a multivariate extension with

1In some papers such models are referred to as non-parametric SV models
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the non-parametric errors. In these works the authors assume that the distribution of

the returns follows an infinite mixture of Normals via Dirichlet Process Mixture (DPM)

models (see Ferguson, 1983 and Lo, 1984, among others). Such infinite mixtures turn out

to be a very flexible modeling approach, since they nest other parametric specifications

for the error term. The infinite mixture of Normals can approximate other distributions,

frequently used in financial time series context, see e.g. Tokdar (2006) and Mencı́a and

Sentana (2009), because of its ”universal approximation property” (Titterington et al.,

1985).

In the semi-parametric SV models, even when the distribution of the returns is mod-

eled in a flexible non-parametric manner, the volatility equation still maintains its sim-

ple AR(1) representation. Such model might have some limitations by not allowing for

structural changes in the volatility process. If these changes are not accounted for, the

persistence parameter in the volatility equation might be overestimated. Overestima-

tion of the persistence parameter leads to incorrect conclusions about the predictability

of the volatility (Vo, 2009). Therefore, in this paper we augment the semi-parametric

Stochastic Volatility model, similar to the one in Delatola and Griffin (2011), to include

Markov switching regimes in the volatility equation, resulting into a Bayesian semi-

parametric Markov switching SV (MSSV-DPM) model. Including shifts in the volatil-

ity regimes was first proposed by So et al. (1998). Since then, fully parametric MSSV

models have been rather popular in the financial time series context due to its supe-

rior performance as compared to the benchmark SV models. Kalimipalli and Susmel

(2004) consider two-factor SV model with regime switching and find that the estimated

high volatility persistence is reduced when the regimes are incorporated in the model.

Shibata and Watanabe (2005) also find that the persistence parameter estimates drop

as compared to those of the standard SV models. Moreover, for their data, the MSSV

model performs better than the benchmark SV models. Similar findings are also present

in Vo (2009) who models oil price movements. Carvalho and Lopes (2007) use an auxil-

iary particle filter (APF) to sequentially learn about states and parameters of the MSSV

model and show the predictive superiority of the MSSV model.

In general, the estimation of SV-type models is rather complex given the unobserv-

able nature of the volatility. The Markov Chain Monte Carlo (MCMC) is the stan-
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dard approach in Bayesian context, with the seminal work by Jacquier et al. (1994).

For a survey on Bayesian estimation of time-varying volatility models see Virbickaite

et al. (2015). Even though MCMC methods are considered to be the gold standard

among Bayesian estimation methods, they are computationally costly and inherently

non-sequential (Lopes and Polson, 2010). A cost-efficient alternative to MCMC is se-

quential Monte Carlo (SMC) methods, also known as particle filters, that allow for on-

line type inference by updating the posterior distribution as new observations arrive.

By construction, Stochastic Volatility models are state-space models, naturally suggest-

ing the use of particle filters for estimation. Moreover, the model proposed in this paper

belongs to a class o models that have the availability of sufficient statistics of the parame-

ters, see Storvik (2002). This permits to track a low-dimensional set of sufficient statistics

instead of a high-dimensional vector of parameters. The use of sufficient statistics has

been shown to increase the efficiency of the algorithm by reducing the variance of the

sampling weights, see Carvalho et al. (2010a). In this paper we make use of the Particle

Learning (PL) approach, which is a particle based method, firstly introduced by Car-

valho et al. (2010a). For general intoduction to PL and comparison with MCMC see Car-

valho et al. (2010a), Lopes and Polson (2010), among others. Warty et al. (2017) propose

a sequential estimation algorithm for the SV model with variance-gamma jumps in the

returns. The algorithm, a hybrid between the APF and PL, is compared to the MCMC

output and used for a real-data application. In a recent paper Virbickaite et al. (2018)

have designed a Particle Learning algorithm for a semi-parametric Stochastic Volatil-

ity model of Delatola and Griffin (2011). The authors conduct an extensive comparison

with the MCMC estimation output and show that both estimation methods present al-

most identical posterior distributions for model parameters, filtered volatility states and

the distribution of the error term. In this paper we construct a PL algoritm similar to the

one in Virbickaite et al. (2018) and augment it to include the Markov switching regimes.

The rest of the paper is structured as follows. Section 2 presents the linearized SV

model with non-parametric errors and introduces a new MSSV-DPM model. Section

3 designs a PL algorithm for inference and prediction and presents a simulated data

example. Section 4 evaluates the performance of the proposed model by using real data.

Finally, Section 5 concludes.
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2 MSSV-DPM Model

We start this section by reviewing a benchmark Stochastic Volatility model with Normal

errors. We then relax the Normality assumption and present the semi-parametric SV

model, similar to the one seen in Delatola and Griffin (2011). The innovation distribu-

tion is assumed to follow an infinite mixture of Gaussians via Dirichlet Process Mixture

models, giving rise to a SV-DPM model. Finally, we augment the semi-parametric SV

model with Markov Switching regimes in the volatility equation, resulting into a novel

MSSV-DPM model.

Denote yt as the de-meaned log returns. The standard discrete SV model has the

following form:

yt = exp {ht/2} vt, (1)

ht = α + βht−1 + τηt, (2)

where β is the volatility persistence parameter such that |β| < 1 for the stationarity of the

volatilities; vt and ηt are uncorrelated error terms, such that ηt ∼ N (0, 1). The distribu-

tion of the vt has zero mean and unit variance and can take many different forms: from

the standard Normal, to heavy-tailed Student-t and others (see Kim et al., 1998, Chib

et al., 2002b, Mahieu and Schotman, 1998, Liesenfeld and Richard, 2006, for example).

Kim et al. (1998) proposed a linearization of the standard SV model by defining rt =

log y2
t and εt = log v2

t , resulting into the following dynamic linear model:

rt = ht + εt, (3)

ht = α + βht−1 + τηt. (4)

The distribution of εt is log χ2
1 if vt in (1) is Normally distributed. Kim et al. (1998)

and Omori et al. (2007) use carefully tuned finite mixtures of Normals to approximate

the log χ2
1 distribution and use a data augmentation argument to design fast MCMC

schemes that jointly sample {h1, . . . , hT} based on the well-known forward filtering,

backward sampling (FFBS) algorithm of Carter and Kohn (1994) and Fruhwirth-Schnatter

(1994). However, if vt is not Normally distributed, then approximations of Kim et al.
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(1998) and Omori et al. (2007) are not appropriate anymore.

2.1 DPM errors

As mentioned in the Introduction, it has been shown in multiple empirical studies that

the distribution of the returns has heavier tails than permitted by the Normal distri-

bution. Is this is the case, the distribution of εt in (3) is not log χ2
1 anymore. Delatola

and Griffin (2011, 2013) propose to approximate the distribution of εt as an infinite mix-

ture of Normals by relying on DPM models. Dirichlet Process Mixture models, firstly

introduced by Lo (1984), have been widely used for modeling time-varying volatilities

with univariate and multivariate SV and GARCH-type models, see Jensen and Maheu

(2010, 2013, 2014), Delatola and Griffin (2011, 2013), Kalli et al. (2013), Ausı́n et al. (2014),

Virbickaite et al. (2016), Zaharieva et al. (2017).

As seen in Escobar and West (1995), the DPM model has the following representation:

f (εt; G) =
∫

k(εt; θt)dG(θt), (5)

where k is some density kernel with parameter vector θt and the mixing distribution G

has a Dirichlet Process prior, denoted here by G ∼ DP(c, G0(θ; $)). Each observation εt

comes from a kernel density k(·) with some parameters θt, following the mixing distri-

bution G. The parameter c is called the concentration parameter and G0(θ; $) is called

the base distribution with certain hyperparameters $. The concentration parameter c

can be seen as the prior belief about the number of clusters in the mixture. Small values

of c assume a priori an infinite mixture model with only few components that have large

weights. Meanwhile large values of c assume a priori an infinite mixture model with

many components and all the weights being very small. c is also called a precision pa-

rameter and indicates how close G is to the base distribution G0, where larger c indicates

that G is closer to G0.

Gaussian kernel and conjugate base prior. One of the most popular DPM model vari-

ants in the financial time series context assumes a Gaussian kernel for k(εt; θt) in (5),

i.e. εt ∼ N (µt, σ2
t ). Then, the conjugate base prior G0(µ, σ2; $) is a Normal - Inverse
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Gamma prior, denoted here by G0 ∼ NIG(µ, σ2; m0, V0, a0, a0σ2
0 ), such that µ|σ2 is Nor-

mal, N (µ; m0, V0σ2), and σ2 is Inverse Gamma, IG(σ2; a0/2, a0σ2
0 /2). Here m0, V0, a0

and a0σ2
0 are the hyper-parameters in $.

2.2 Markov switching volatility

As mentioned in the Introduction, the benchmark Stochastic Volatility model has certain

limitations. In particular, it does not account for structural changes in the volatility pro-

cess and if such regime shifts are ignored the persistence parameter is overestimated.

In other words, the β parameter in (4) is very close to one and the volatility equation

approaches the non-stationary process. In order to incorporate such changes in the

regimes, So et al. (1998) introduced the MSSV model, where the log volatility equation

is of the following form:

ht = αst + βht−1 + τηt, ηt ∼ N (0, 1). (6)

Here st are the regime variables following a two-state first order Markov process:

pij = P [st = j|st−1 = i] , for i, j = 0, 1.

As seen in Carvalho and Lopes (2007), it is necessary to introduce the following reparametriza-

tion for αst in order to avoid identification issues:

αst = γ0 + γ1I {st = 1} , γ0 ∈ < and γ1 > 0.

Here I{st = 1} is an indicator function that takes values equal to one if the volatility is

in the high state (st = 1) and zero in the low state (st = 0). The transition matrix between

the states 0 and 1 is defined as:

T =

 P(st = 0|st−1 = 0) P(st = 1|st−1 = 0)

P(st = 0|st−1 = 1) P(st = 1|st−1 = 1)

 =

 p 1− p

1− q q

 . (7)

There are quite a few papers that consider regime switching SV models in Bayesian
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context. Kalimipalli and Susmel (2004) have proposed a two-factor SV model with

regime switches and estimated it using Gibbs sampler. They find that the estimate of

high volatility persistence is reduced when the regimes are incorporated in the model.

Also, the authors compare the new model with other two alternative two-factor models,

simple SV and GARCH, and find that SV always outperforms GARCH, both in sample

and out of sample. Shibata and Watanabe (2005) design a MCMC scheme to estimate

the MSSV model and find that the persistence parameter estimates drop as compared to

those of the standard SV models. Moreover, the MSSV model performs better than the

benchmark SV models. Lopes and Carvalho (2007) extend the SV model to multivari-

ate case and present a Factor Stochastic Volatility (FSV) model with Markov switching

jumps. They construct a novel MCMC scheme for inference and find that the new model

can capture market crashes in an instantaneous way, as opposed to the traditional FSV

models. Carvalho and Lopes (2007) have constructed a sequential Monte Carlo filter

by combining auxiliary particle filter with the filter of Liu and West (2001) to estimate

a SV model with Markov switching regimes. They find that in terms of predictions the

Markov switching SV specification outperforms a simple SV model. Abanto-Valle et al.

(2010b) investigate the relationship between stock return volatility and trading volume

by using a MSSV specification, and also find that the persistence parameter drops sig-

nificantly after introducing the Markov switching jump.

Define Φ =
(
γ0, γ1, β, τ2, p, q

)
as a set of parameters associated with the volatility

equation, Ω = {(µ, σ2)(j)}∞
j=1 as a set of parameters associated with the distribution of

the error term, and Θ = (Φ, Ω) as a complete set of model parameters. Therefore, the

complete MSSV-DPM model is a linearlized SV model in (3)-(4) with DPM errors in (5)

that accommodates the regime-shifting structure in (6)-(7), and can be written as:

rt|ht, Θ ∼ 1
c + t− 1

L?
t−1

∑
j=0

nt−1,jN (rt; µj + ht, σ2
j ), (8)

ht|ht−1, λt, Θ ∼ N (ht; γ0 + γ1λt + βht−1, τ2), (9)

λt|Θ ∼ BER
(
(1− p)1−λt−1qλt−1

)
. (10)

Here nt,j is a number of observations assigned to the jth component at time t, n0 = c,
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L?
t is a number of non-empty components in the mixture at time t, i.e. L?

t is not fixed a

priori and grows if new components are observed. Given this missing information, the

mixture becomes finite, and the upper limit for the number of components is the number

of observations. In practice, data tends to cluster, meaning that some observations come

from the same component, thus L?
t ≤ t. Also, BER(π) denotes a Bernoulli distribution

with parameter π and λt is a Bernoulli distributed state variable that takes value 1 if the

volatility is in the high regime and zero otherwise. The newly proposed MSSV-DPM

model contains the SV-DPM model as a special case when there is only one regime, i.e.

p = 0. It also nests the benchmark SV and MSSV models with Normal innovations

when L?
t = 1∀t = 1, . . . , T.

3 Estimation and simulation study

In this section we present the algorithm to perform PL estimation for the novel MSSV-

DPM model. By using simulated data we show that the estimation algorithm is able to

precisely estimate the parameters, the density of the squared log returns, filter the latent

log volatilities and volatility regimes.

3.1 Particle Learning for the MSSV-DPM model

In this section we modify and augment the PL algorithm presented in Virbickaite et al.

(2018) to include the Markov switching specification. PL, as mentioned before, is one

of several particle filters that allow to perform sequential state filtering and parameter

learning. PL, which was firstly introduced by Carvalho et al. (2010a), allows for sequen-

tial filtering, smoothing and parameter learning by including state-sufficient statistics

in a set of particles. For a more detailed explanation of PL with illustrations refer to

Carvalho et al. (2010a) and Lopes et al. (2011), among others. For comparison between

PL and MCMC for the SV-DPM model refer to Virbickaite et al. (2018), and for compari-

son between APF+PL and MCMC for the SV model with variance-gamma jumps in the

returns refer to Warty et al. (2017).

The priors for model parameters and the initial states are chosen to be condition-

9



ally conjugate: h0 ∼ N (c0, C0), σ2 ∼ IG(a0/2, a0σ2
0 /2), µ|σ2 ∼ N (m0, V0σ2), τ2 ∼

IG(b0/2, b0τ2
0 /2), β|τ2 ∼ T N (−1,1)(mβ, Vβτ2), γ0 ∼ N (mγ0 , Vγ0), γ1 ∼ T N (0,+∞)(mγ1 , Vγ1),

p ∼ B(αp, βp) and q ∼ B(αq, βq). Here T N (a,b) represents a Normal distribution, trun-

cated at a and b, B is Beta distribution and c0, C0, a0, a0σ2
0 , m0, V0, b0, b0τ2

0 , mβ, Vβ, mγ0 ,

Vγ0 , mγ1 , Vγ1 , αp, βp, αq and βq are the fixed hyper-parameters.

Call St a set of sufficient statistics which contains all updated hyper-parameters, nec-

essary for the parameter simulation, as well as the three kinds of filtered state variables:

the latent log volatilities ht, the indicator variable kt, which tells us to which mixture

component the data point belongs to, and λt, the volatility regime indicator. The object

we call particle at time t contains St. All necessary parameters can be easily simulated

given the set of sufficient statistics. At each time t we have a collection of N particles

that provide approximations to the densities of interest. When this set of N particles

passes from one time to another, t to t + 1, some of the particles disappear (the ones that

are not representative with respect to the new data point), and some are repeated more

than once to take their place (see the ’Resampling’ step below). Then, this resampled

set of particles is modified to include the information from the new data point (see the

’Sampling’ and ’Propagating’ steps below).

In order to initiate the algorithm, initial parameter values are simulated from their

corresponding priors. The initial set of sufficient statistics S0 consists of: {h(i)0 }N
i=1 which

has been simulated from its prior, {k(i)t }N
i=1 which at t = 0 are all set equal to 1, since

when the first observation arrives, it will belong to the first and only component, initial

volatility regime {λ0}N
i=1 = 0, and initial hyper-parameters {a(i)0 }N

i=1, {a0σ
2(i)
0 }N

i=1, . . .,

which at time t = 0 are all the same across all particles. Then, for t = 1 . . . , T and for each

particle (i) the algorithm iterates through the following steps. For notation simplicity,

we do not include the indicator (i) that refers to a single particle, where (i) = 1, . . . , N.

1. Resampling.

Resample the (i) = 1, . . . , N particles with weights proportional to the predictive

density of the log squared returns rt = log y2
t :

w(i) ∝
1

c + t− 1

L?
t−1

∑
j=0

nj fN(rt; γ0 + γ1λt−1 + βht−1 + µj, τ2 + σ2
j ).
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Here Θ = (γ0, γ1, β, τ2, p, q, µ1, . . . , µL?
t−1

, σ2
1 , . . . , σ2

L?
t−1

) have been simulated at the

end of the previous period. The resampled particles are denoted by a tilde above

the particle, as in Θ̃.

2. Sampling.

(a) Sample new states of the log volatilities λt:

λt|λ̃t−1, h̃t−1, Θ̃, rt ∼ BER
(

z2

z1 + z2

)
,

where

z1 =

[
1

c + t− 1

L̃?
t−1

∑
j=1

ñj fN(rt; γ̃0 + β̃h̃t−1 + µ̃j, τ̃2 + σ̃2
j )+ (11)

c
c + t− 1

fN(rt; γ̃0 + β̃h̃t−1 + µ0, τ̃2 + σ2
0 )

]
× Pr(λt = 0|λ̃t−1, Θ̃),

z2 =

[
1

c + t− 1

L̃?
t−1

∑
j=1

ñj fN(rt; γ̃0 + γ̃1λ̃t−1 + β̃h̃t−1 + µ̃j, τ̃2 + σ̃2
j )+

c
c + t− 1

fN(rt; γ̃0 + γ̃1λ̃t−1 + β̃h̃t−1 + µ0, τ̃2 + σ2
0 )

]
× Pr(λt = 1|λ̃t−1, Θ̃).

Call α̃ = γ̃0 + γ̃1λt.

(b) Sample new log volatilities ht:

ht|h̃t−1, Θ̃, L̃?
t−1, λt, rt ∼

L̃?
t−1

∑
j=0

ñj

c + t− 1
N (ht; mhj, Vhj),

where

mhj =
τ̃2(rt − µ̃j) + σ̃2

j (α̃ + β̃h̃t−1)

τ̃2 + σ̃2
j

and Vhj =
σ̃2

j τ̃2

σ̃2
j + τ̃2

.

For each particle we sample ht from a mixture of L?
t−1 + 1 components with

the corresponding weights from the previous period.

(c) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional
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to:

ñj fN(rt; α̃ + β̃h̃t−1 + µ̃j, τ̃2 + σ̃2
j ), j = 1, . . . , L?

t−1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 . If kt ≤ L?
t−1, nkt = ñkt + 1 and L?

t = L?
t−1,

otherwise, L?
t = L?

t−1 + 1 and nkt = 1.

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample γ0 from N (γ0; m?
γ0

, V?
γ0
), where

m?
γ0

=
m̃γ0 τ̃2 + Ṽγ0(ht − (γ̃1λt + β̃h̃t−1))

τ̃2 + Ṽγ0

and V?
γ0

=
τ̃2Ṽγ0

τ̃2 + Ṽγ0

.

(c.2) Sample γ1 from T N (0,+∞)(γ1; m?
γ1

, V?
γ1
), where

m?
γ1

=
m̃γ1 τ̃2 + Ṽγ1λt(ht − (γ0 + β̃h̃t−1))

Ṽγ1λt + τ̃2
and V?

γ1
=

τ̃2Ṽγ1

τ̃2 + λtṼγ1

.

Call α = γ0 + γ1λt.

(c.3) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 +
(m̃βh̃t−1 − (ht − α))2

1 + Ṽβh̃2
t−1

.

(c.4) Sample β from T N (−1,1)(β; m?
β, V?

β τ2), where

m?
β =

m̃β + Ṽβh̃t−1(ht − α)

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβ

1 + Ṽβh̃2
t−1

.

(c.5) Sample p from B(p; α?p, β?
p), where

α?p = αp + 1 if λt = 0|λt−1 = 0 and β?
p = βp + 1 if λt = 1|λt−1 = 0.

(c.6) Sample q from B(q; α?q , β?
q), where

α?q = αq + 1 if λt = 1|λt−1 = 1 and β?
q = βq + 1 if λt = 0|λt−1 = 1.
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(c.7) Sample σkt=j only for that component j where the data point at time t is as-

signed to, i.e. kt = j, from IG(σ2
kt=j; a?0/2, a?0σ2?/2), where

a?0 = ã0 + 1 and a?0σ2?
0 = ã0σ̃2

0 +
(rt − ht − m̃0)

2

1 + Ṽ0
.

(c.8) Sample µkt=j only for that component j where the data point at time t is as-

signed to, i.e. kt = j, from N (µkt=j; m?
0 , V?

0 σ2
kt=j), where

m?
0 =

m̃0 + Ṽ0(rt − ht)

1 + Ṽ0
and V?

0 =
Ṽ0

1 + Ṽ0
.

Parts of the derivations of the equations are available in the Appendix at the end of

the manuscript, meanwhile the rest are available in Virbickaite et al. (2018).

3.2 Simulation study

In order to asses the estimation accuracy of the PL algorithm for the proposed model

we use a simulated data set of T = 3000 observations with the following parameters:

γ0 = −0.06, γ1 = 0.20, β = 0.92, τ2 = 0.05, p = 0.996, q = 0.996. The error term for the

returns follows a standard Normal distribution vt ∼ N (0, 1), thus the true DGP for the

linearlized model is εt ∼ log χ2
1. The hyper-parameters are c0 = 0, C0 = 0.1, mβ = 0.95,

Vβ = 0.1, b0 = 4, b0τ2
0 = 0.2, a0 = 5, a0σ2

0 = 15, m0 = −1.27 (this specific value is

chosen because the mean of the log χ2
1 distribution is equal to −1.27), V0 = 0.1, mγ0 = 0,

Vγ0 = 1, mγ1 = 0, Vγ1 = 0.1, αp = 3, βp = 0.1, αq = 3 and βq = 0.1. The concentration

parameter c is set to be equal to 1, as in Carvalho et al. (2010b). Using the simulated

data, we fit the MSSV-DPM model using PL, number of particles N = 300k. All codes

were written in R.

Figure 1 top graph draws the simulated log returns yt. The middle graph repre-

sents the true realization of the log volatility (in black) and the mean estimated filtered

log volatility (in grey). The 95% credible intervals (CIs) for the estimated filtered log

volatility almost always capture the true realization of the log volatility (not reported).

The bottom graph of the same figure draws the mean probability of being in a state
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one (st = 1), compared to the true state. As seen from the figure, PL takes some time

to learn, since at first it is not able to distinguish the regimes well. However, around

observation 1000 the algorithm is able to correctly identify the regimes with the overall

regime miss-classification rate equal to 13%. Figure 2 draws the sequential estimation

of the model parameters and their 95% CIs. The parameter estimates seem reasonable

and very close to their true values. It takes some time to learn the true value of the pa-

rameter q because there is no information available about it before the regime switch,

which happens around time t = 700. The estimation of the parameter τ2 is the least

precise due to the fact that this parameter represents the volatility of the volatility, and

is notoriously difficult to estimate. Finally, Figure 3 draws the estimated non-parametric

density of the log squared error term, which is almost identical to the true DGP, which

is log χ2
1 distributed.

Overall, the obtained estimation results seem quite reasonable and PL is able to cor-

rectly identify the hidden volatility regimes, filter log volatilities, estimate the density of

the errors and the parameters in an efficient sequential manner.

However, one has to be aware of the shortcomings of the PL procedure. Virbickaite

et al. (2018) summarize the main weaknesses of particle filters, with the main disadvan-

tage being an ever-decreasing set of atoms in the particle approximation of the density

of interest. As noted by Chopin et al. (2011), increasing the number of observations will

lead to degenerating paths, unless the number of particles is being increased simulta-

neously. Therefore, the use of PL or any particle-based filter in general is advantageous

only if one is interested in fast one-step-ahead predictions. However, once the number

of observations has increased one should consider restarting the filter at a later time t

with a smaller number of observations, or anticipate the large sample size and employ

more particles (which would slow down the estimation, since the sizes of matrices that

need to be carried from one time to another increase dramatically).

4 Real Data Application

In this section we present a real data application using log returns of three financial as-

sets: S&P500 index, Ford company and a commodity - natural gas. The S&P500 and

14



Figure 1: Simulated data: daily log returns (top), true and estimated log volatilities
(middle), true and estimated volatility regimes (bottom).
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Ford prices are from Jan 2nd 1997 till Sept 9th 2014 and Henry Hub natural gas spot

prices (dollars per million btu) are from Jan 5th 1997 till Sept 9th 2014. All data is ob-

tained from the Datastream database. The descriptive statistics are in Table 1 and the

descriptive graphs are in Figure 4.

[Table 1 about here.]

Next, using the de-meaned data we fit two semi-parametric models, SV-DPM and

the newly introduced MSSV-DPM. The hyper-parameters for the priors are the same

as in the simulation study in Section 3.2. Note that the SV-DPM model is a restricted

version of the MSSV-DPM model where the probability of staying in the same regime is

set equal to one, p = 1, therefore, neither q, nor γ1 nor λt are possible to estimate. Also,
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Figure 2: Simulated data: sequential estimation of the model parameters, their 95%
credible intervals and their true values.
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as mentioned before, both models nest a benchmark SV model with Normal errors as a

special case. The number of particles is set to N = 500k since the number of observations

is larger than in the simulation study (4000+).

To compare the performance of the models, we use the average log predictive score

(LPS) and average log predictive tail score (LPTSα). LPTSα considers the predictive per-

formance only in the upper 100α% of the empirical distribution of the squared log re-

turns. LPTSα was also employed by Delatola and Griffin (2011). As the authors point
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Figure 3: Simulated data: MSSV-DPM estimated non-parametric density of the log
squared error term compared to the true DGP of log χ2

1.

−10 −5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

True
PL

out, the LPTSα is not a proper scoring rule, however, it can be very helpful in under-

standing how the model performs in the tails. The LPS is defined as follows:

LPS = − 1
T

T

∑
t=1

log p(rt|rt−1),

and LPTSα is defined as:

LPTSα = − 1
T
∑

t=1
I{rt > zα}

T

∑
t=1

I{rt > zα} log p(rt|rt−1),

where zα is the upper 100α percentile of the empirical distribution of rt. Note that smaller

values of the LPS and LPTSα correspond to a better model.

The log predictive densities are straightforward to obtain with the PL algorithm,

since they are a by-product of the estimation procedure. For each t = 1, . . . , T the log

17



Figure 4: Daily log returns (in %) and histograms for the S&P500 (top), Ford (middle)
and natural gas (bottom) data.
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predictive densities are calculated as:

log p(rt|rt−1) =
1
N

N

∑
i=1

log p(rt|(Θ, ht, kt, λt)
(i)). (12)

Differently than in MCMC setting, there is no need to fix a certain Θ̂ for the calculation of

the LPS and LPTSα, and we can account for the parameter and state uncertainty by using

the approximation in (12). Accounting for parameter and state uncertainty in MCMC

setting at each time t without fixing certain Θ̂ would be prohibitively costly. The LPS

and LPTSα report the average predictive performance for the entire distribution and the

tails of the distribution, respectively. Comparing these scores is not straightforward,

since there is no established decision rule to decide whether the difference in the scores

between the two models is statistically significant.
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Therefore, we also report the cumulative LPS, which can be seen as a log predictive

Bayes Factor (BF). Bayes factor allows for consistent model comparison even for non-

nested models, it contains rewards for model fit, accounts for coherency between the

prior and the information arising from the data, as well as rewards parsimony, see Koop

(2003). BF between modelM1 and modelM2 is defined as BF12 = p(D|M1)/p(D|M2),

see Kass and Raftery (1995). Here p(D|M) is the marginal likelihood for data D given

a certain model M. For a predictive BF, this marginal likelihood is nothing else but

the log predictive density in (12). Then, the difference between such cumulative log

predictive densities is a log predictive Bayes Factor (LPBF). Kass and Raftery (1995) also

provide a scale for the strength of preference of one model against another, and if the

2× LPBF > 10, the evidence in favor of one model against another is very strong.

Next, we present the estimation results for the S&P500 index. Figure 5 draws the

estimated densities for the error term for the SV-DPM and the MSSV-DPM models as

compared to the frequently used mixture of 7 Normals of Kim et al. (1998), as an ap-

proximation for log χ2
1. SV-DPM and MSSV-DPM models estimates are very similar to

each other and different from the 7-mixture approximation. This shows that the as-

sumption of Normality is restrictive and, for this data set, would be inappropriate. As

seen in Figure 6, the filtered log volatilities and volatilities for both models are very sim-

ilar (second and third graphs). The differences arise during the financial crisis period,

where the MSSV-DPM model estimates higher volatility. This is one of the main advan-

tages of the Markov Switching specification, since it allows for high volatility via the

shift in the regime and not by artificial inflation of the volatility persistence parameter

β. The filtered volatility regimes in the MSSV-DPM model are in the bottom part of the

Figure 6. The volatility of the S&P500 index is in the high regime during the years 1999-

2001 and 2008-2010 (financial crisis). Table 2 presents the estimated parameter means

and 95% credible intervals. The volatility persistence parameter is significantly larger

for the SV-DPM model, i.e. the estimated 95% CIs do not overlap. This result is in line

with the findings present in other papers, see So et al. (1998), Kalimipalli and Susmel

(2004), Shibata and Watanabe (2005), Vo (2009), among others.

[Table 2 about here.]
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Figure 5: Estimated densities for the log squared error term for the SV-DPM and MSSV-
DPM models, as compared to the approximation of 7 Normals.
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Table 3 presents the LPS, LPTSα and LPBF for the S&P500 data. As mentioned before,

the LPS measures the average predictive model performance for the entire distribution

of the log squared returns and LPTSα only for the tails. Even thought the averages are

virtually indistinguishable, the cumulative differences - LPBFs - are significantly differ-

ent. In particular, for the S&P500 data, the SV-DPM model performs better for the entire

distribution, but the results change if we consider only the tails of the predictive dis-

tribution, where the newly introduced MSSV-DPM model provides significantly better

performance.

[Table 3 about here.]

Similar results can be seen in the estimation of the other two data sets, see Tables 4, 5, 6

and 7 and Figures 7 and 8. For Ford data the estimated mean of the persistence param-

eter drops from 0.9514 to 0.908 and the 95% CIs do not overlap. For the natural gas

data the SV-DPM model estimates the persistence parameter to be 0.8889 as compared

to the MSSV-DPM model estimate of 0.8137, and the 95% CIs do not overlap either. The

average LPS and LPTSα for both models are very similar, however, the LPBFs favor the

MSSV-DPM model in the entire distribution and in the tails for both data sets, see Tables
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Figure 6: Filtered volatilities and volatility states for S&P500 data for SV-DPM and
MSSV-DPM models.

−
10

−
5

0
5

10

Daily log−returns (in %)

1997 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2011 2012 2013

−
1

0
1

2
3

Log−volatility (SV in black & MSSV in grey)

1997 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2011 2012 2013

0
10

20
30

40

Volatility (SV in black & MSSV in grey)

1997 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2011 2012 2013

0.
0

0.
4

0.
8

MSSV volatility states

1997 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2011 2012 2013

0
1

5 and 7. Figures 7 and 8 draw the estimated volatilities and volatility states for Ford

and natural gas data. The Ford returns exhibit three periods of volatility increases. The

increase in the years 1998-1999 might be due to a series of lawsuits against the com-

pany, which later were dismissed. The volatility increase in 2002-2003 might be due to

the early 2000s economic recession in the US, meanwhile the volatility increase in the

2008-2009 is clearly due to the global financial crisis. Natural gas data exhibits a very

clear periodical pattern of shifts in the volatility regimes due to industry-specific events.
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Interestingly, during the global financial crisis the natural gas volatility does not exhibit

a long-lasting shift in the regime.

Important to mention, that Figures 6-8 present only filtered, but not smoothed volatil-

ities and volatility state estimates. In general, the purpose of the analysis plays essential

role. If one is interested in understanding the historical behavior of the series and the

effects of, say, economic factors on the changes in volatility, it is important to consider

the information from the entire sequence, as is done by MCMC. In SMC setting this can

be achieved by performing the backwards smoothing procedure, where PL provides a

procedure to perform direct backwards smoothing, see Carvalho et al. (2010a). If one is

interested in the prediction of the volatility in the next period t + 1, backwards smooth-

ing does not apply. As noted in Lopes et al. (2011), in most models estimated using PL

smoothing can effectively be performed after the estimation.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

To conclude, in majority of the cases the newly proposed MSSV-DPM model outper-

forms the SV-DPM model in terms of one-step-ahead prediction for the entire distribu-

tion (except for the S&P500 data) and for the tails (for all three data sets). Moreover,

including the regime shifts in the mean of the volatility equation reduces the value of

the estimated persistence parameter. As noted in Vo (2009), ignoring the shifts in the

regimes gives the impression that the volatility is highly persistent, therefore, highly

predictable, which is not the case. The half-life of a volatility shock, defined as ’the time

it takes for a shock to decay half of its initial value’ (Vo, 2009,) for the S&P500 data drops

from 61 days to 24 days, for Ford data - from 14 to 7 days, and for natural gas data -

from 6 days to 3 days.
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Figure 7: Filtered volatilities and volatility states for Ford data for SV-DPM and MSSV-
DPM models.
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5 Discussion

This paper augments the existing SV-DPM model with Markov switching jumps to cap-

ture different volatility regimes, resulting into a MSSV-DPM model. We test the newly

proposed model on simulated data and find that the Particle Learning estimation proce-

dure it is able to identify different volatility regimes. We present a real data application

using three financial time series of the returns for one index - S&P500, one company -
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Figure 8: Filtered volatilities and volatility states for natural gas data for SV-DPM and
MSSV-DPM models.
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Ford, and one commodity - natural gas. We find that the MSSV-DPM model performs

significantly better than the SV-DPM model if we consider the entire predictive distri-

bution of the returns for Ford and natural gas data, but not for the S&P500 data. If we

consider the tails of the distributions, the MSSV-DPM model significantly outperforms

the SV-DPM model for the three data sets for all percentiles (1, 5 and 10) of the tail. Fi-

nally, the volatility persistence parameter estimates drop significantly after including the

Markov Switching specification, a finding in line with the results in multiple previous
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studies. Overestimation of the volatility persistence leads to incorrect understanding of

the predictability of the volatility.

Appendix: PL for MSSV-DPM

1. Resampling. Resample old particles (parameters and the set of sufficient statistics,

including the three state variables, ht, kt and λt) with weights proportional to the

predictive density of the returns, that can be obtained as below, where p(rt|ht, Θ)

and p(ht|ht−1, Θ) are as in (8) and (9):

p(rt|ht−1, Θ) =
∫

p(rt|ht, Θ)p(ht|ht−1, Θ)dht

=
1

c + t− 1

L?
t−1

∑
j=0

nj

∫
fN (rt; ht + µj, σ2

j ) fN (ht; γ0 + γ1λt + βht−1, τ2)dht

= . . .
∫ exp{−(rt − (ht + µj))

2/(2σ2
j )}√

2πσ2
j

exp{−(ht − (γ0 + γ1λt + βht−1))
2/(2τ2)}√

2πτ2
dht

=
1

c + t− 1

L?
t−1

∑
j=0

nj fN(rt; γ0 + γ1λt + βht−1 + µj, τ2 + σ2
j ),

where n0 = c and (γ0, γ1, β, τ2, p, q, µ1, . . . , µL?
t−1

, σ2
1 , . . . , σ2

L?
t−1

) have been simu-

lated at the end of the previous period.

2. Sampling. In this step we propagate the latent states ht, the latent volatility states

λt and the indicator variables kt, that indicate to which mixture component the

observation belongs to. Note that the tilde above the parameter indicates that the

particle has been resampled in the first step.

(a) The volatility state variable λt is propagated according to the following:

p(λt|λ̃t−1, h̃t−1, Θ̃, rt) ∝ p(rt|λ̃t−1, h̃t−1, Θ̃)p(λt|λ̃t−1)

λt|λ̃t−1, h̃t−1, Θ̃, rt ∼ BER
(

z2

z1 + z2

)
,

where z1 and z2 as in (11) and α̃ = γ̃0 + γ̃1λt.
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(b) For sampling the ht make use of p(ht|h̃t−1, rt, λt, Θ̃) ∝ p(rt|ht, Θ̃)p(ht|h̃t−1, λt, Θ̃),

where p(rt|ht, Θ) and p(ht|ht−1, λt, Θ) are as in (8) and (9):

p(ht|h̃t−1, Θ̃, ñ, L̃?
t−1, λt, rt) ∝

L̃?
t−1

∑
j=0

ñj

c + t− 1
fN (rt; ht + µ̃j, σ̃2

j ) fN (ht; α̃ + β̃h̃t−1, τ̃2)

ht|h̃t−1, Θ̃, ñ, L̃?
t−1, λt, rt ∼

L?
t−1

∑
j=0

ñj

c + t− 1
N (ht; mhj, Vhj),

where, Vhj = Ajσ̃
2
j , mhj = Aj(rt − µ̃j) + (1− Aj)(α̃ + β̃h̃t−1), Aj = τ̃2/(τ̃2 +

σ̃2
j ) and α̃ = γ̃0 + γ̃1λt.

(c) For sampling new indicators kt, make use of p(kt = j|rt, h̃t−1, Θ̃) ∝ p(rt|kt =

j, h̃t−1, Θ̃)p(kt = j|h̃t−1, Θ̃), where

p(rt|kt = j, h̃t−1, Θ̃) =
∫

p(rt|ht, Θ̃)p(ht|h̃t−1, Θ̃)dht

and

p(kt = j|h̃t−1, Θ̃) ∝
ñj

c + t− 1
,

therefore,

p(kt = j|rt, h̃t−1, Θ̃) ∝ ñj fN(rt; α̃ + β̃h̃t−1 + µ̃j, τ̃2 + σ̃2
j ), j = 1, . . . , L?

t−1 + 1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 .

3. Propagating sufficient statistics and learning Θ.

(c.3) & (c.4) Sampling τ2 and β:

p(β, τ2|ht) ∝ p(ht|β, τ2)p(β, τ2)

∝ fN (ht; α̃ + βh̃t−1, τ2) fT N (−1,1)
(β; m̃β, Ṽβτ2) fIG(τ2; b̃0/2, b̃0τ̃2

0 /2)

τ2 ∼ IG(τ2;
b̃0 + 1

2
,

b̃0τ̃2
0 + (m̃βh̃t−1 − (ht − α̃)2)/(1 + Ṽβh̃2

t−1)

2
)

β ∼ T N (−1,1)(β;
m̃β + Ṽβh̃t−1(ht − α̃)

1 + Ṽβh̃2
t−1

,
Ṽβτ2

1 + Ṽβh̃2
t−1

)
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Sufficient statistics updates and sampling for the rest of the parameters is analo-

gous to (c.3) & (c.4).
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Table 1: Descriptive statistics for S&P500, Ford and natural gas data.

S&P500 Ford Gas
Mean 0.0223 0.0182 0.0104

Median 0.0690 -0.0778 0.0668
St.dev. 1.2752 2.8026 4.4554

Skewness -0.2237 -0.0220 0.7370
Kurtosis 10.4789 15.8981 28.3024

T 4447 4329 4193

33



Table 2: Parameter estimation for SV-DPM and MSSV-DPM models for S&P500 data at
time T.

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

α 0.0019 (-0.002, 0.0061) - -
β 0.9887 (0.984, 0.9932) 0.9712 (0.9592, 0.9822)
τ2 0.016 (0.0144, 0.0173) 0.0319 (0.0293, 0.0351)
γ0 - - 0.0074 (6e-04, 0.0136)
γ1 - - 0.0737 (6e-04, 0.5593)
p - - 0.9998 (0.9987, 1)
q - - 0.9971 (0.8617, 1)
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Table 3: LPS and LPTS for SV-DPM and MSSV-DPM for S&P500 data (T = 4447).

SV-DPM MSSV-DPM difference 2×LPBF
LPS 2.1956 2.1991 -0.0036 -32.0184

LPTS0.10 2.5953 2.5527 0.0426 37.8884
LPTS0.05 2.8400 2.7826 0.0574 25.5258
LPTS0.01 3.3949 3.2398 0.1550 13.7857
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Table 4: Parameter estimation for SV-DPM and MSSV-DPM models for Ford data at time
T.

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

α 0.0707 (0.0641, 0.0774) - -
β 0.9514 (0.9461, 0.9563) 0.908 (0.9041, 0.9119)
τ2 0.0432 (0.0339, 0.0487) 0.0395 (0.0374, 0.0417)
γ0 - - 0.1287 (0.1223, 0.1351)
γ1 - - 0.139 (0.113, 0.167)
p - - 0.9994 (0.9981, 0.9999)
q - - 0.9949 (0.9847, 0.9992)
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Table 5: LPS and LPTS for SV-DPM and MSSV-DPM for Ford data (T = 4329).

SV-DPM MSSV-DPM difference 2× LPBF
LPS 2.0783 2.0756 0.0027 23.3766

LPTS0.10 2.8134 2.7260 0.0873 75.5843
LPTS0.05 3.1713 3.0334 0.1379 59.6969
LPTS0.01 4.2408 3.9699 0.2709 23.4545
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Table 6: Parameter estimation for SV-DPM and MSSV-DPM models for Gas data at time
T.

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

α 0.2262 (0.2125, 0.2408) - -
β 0.8889 (0.8812, 0.8961) 0.8137 (0.807, 0.8206)
τ2 0.1219 (0.1129, 0.1458) 0.1338 (0.1245, 0.1492)
γ0 - - 0.4161 (0.397, 0.4368)
γ1 - - 0.2758 (0.2255, 0.3205)
p - - 0.9951 (0.9907, 0.9976)
q - - 0.9802 (0.9655, 0.9904)
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Table 7: LPS and LPTS for SV-DPM and MSSV-DPM for Gas data (T = 4193).

SV-DPM MSSV-DPM difference 2×LPBF
LPS 2.1592 2.1529 0.0063 52.8318

LPTS0.10 2.8845 2.7875 0.0970 81.3442
LPTS0.05 3.2812 3.1095 0.1717 71.9938
LPTS0.01 4.5151 4.2300 0.2851 23.9085
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