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Abstract

In the context of Dynamic Factor Models (DFM), we compare point and in-
terval estimates of the underlying unobserved factors extracted using small and
big-data procedures. Our paper di¤ers from previous works in the related litera-
ture in several ways. First, we focus on factor extraction rather than on prediction
of a given variable in the system. Second, the comparisons are carried out by
implementing the procedures considered to the same data. Third, we are inter-
ested not only on point estimates but also on con�dence intervals for the factors.
Based on a simulated system and the macroeconomic data set popularized by Stock
and Watson (2012), we show that, for a given procedure, factor estimates based
on di¤erent cross-sectional dimensions are highly correlated. On the other hand,
given the cross-sectional dimension, the Maximum Likelihood Kalman �lter and
smoother (KFS) factor estimates are highly correlated with those obtained using
hybrid Principal Components (PC) and KFS procedures. The PC estimates are
somehow less correlated. Finally, the PC intervals based on asymptotic approxi-
mations are unrealistically tiny.
KEY WORDS: Con�dence intervals, Kalman �lter, Principal Components,

Quasi-Maximum Likelihood, Sectorial factors.

1 Introduction

It is often argued that macroeconomic and �nancial variables are governed by a few
underlying unobserved factors. Extracting these factors is becoming a central issue that
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interests econometricians, practitioners and policy decision makers1. In this context,
dynamic factor models (DFMs), originally introduced by Geweke (1977) and Sargent
and Sims (1977), are a very popular instrument to deal with multivariate systems of
macroeconomic and �nancial variables.

The availability of large (sometimes huge) systems has generated a debate about
whether small or big-data DFM should be used to obtain more accurate estimates of
the underlying factors. The most popular small-data procedure is based on Kalman
Filter and smoothing (KFS) algorithms with the parameters estimated by Maximum
Likelihood (ML); see, for example, Engle and Watson (1981) for an early reference. On
the other hand, big-data procedures are usually based on Principal Components (PC)
techniques. Allowing for weak cross-correlations between the idiosyncratic noises, the
factors are given by the �rst few principal components (ordered by their eigenvalues)
of the many variables in the system; see, for example, Stock and Watson (2002) and
Forni et al. (2005). Finally, Doz et al. (2011, 2012) propose hybrid methods that
combine the PC and KFS (PC-KFS) procedures taking advantage of the best of each
of them in such a way that it is possible to deal with big-data systems having e¢ ciency
similar to that of KFS. In particular, Doz et al. (2011) propose a two-step Kalman
�lter (2SKF) procedure which is iterated until convergence in the Quasi-Maximum
Likelihood (QML) algorithm of Doz et al. (2012). Several works compare small and
big-data procedures in the context of forecasting one or several variables of interest;
see, for example, Boivin and Ng (2006), Bai and Ng (2008b), Banbura and Runstler
(2011), Caggiano et al. (2011), Alvarez et al. (2012) and Banbura and Modugno
(2014). However, few works comparing small and big-data procedures focus on factor
estimates on their own; see, for example, Bai and Ng (2006b) for the importance of an
adequate estimation of factors. Diebold (2003), in a short note, implements KFS to
small-data and PC to big-data to extract the common factor from an empirical system
of macroeconomic variables and, after visual inspection of the corresponding plots,
concludes that nearly the same factor is extracted by both procedures. Alvarez et al.
(2012) carry out Monte Carlo experiments to compare point factor estimates obtained
using small and big-data procedures. For the big-data case, they implement the QML
procedure while for the small-data they extract the factors using KFS and conclude
that factors extracted using the small scale model have smaller Mean Squared Errors
(MSE) than when they are estimated using the big-data procedure. The di¤erences
are more pronounced for high levels of cross-correlation among the idiosyncratic noises
and, especially, for high persistence in either the common factors or the idiosyncratic

1Stock and Watson (1991), Forni et al. (2000, 2005), Aruoba et al. (2009), Altissimo et al. (2010),
Camacho and Perez-Quiros (2010) and Frale et al. (2011) extract factors to estimate the business cycle;
Chamberlain and Rothschild (1983), Diebold and Nerlove (1989), Harvey et al. (1994) and Koopman
and van der Wel (2013) deal with �nancial factors; Bernanke et al. (2005), Buch et al. (2014), Eickmeier
et al. (in press) and Han (in press) extract factors to incorporate them in FAVAR models; Banerjee et
al. (2014) and Bräuning and Koopman (2014) propose incorporating factors in FECM and unobserved
component models, respectively.
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noises. Finally, Doz et al. (2012) also carry out Monte Carlo experiments to compare
point estimates obtained using PC and the 2SKF and QML procedures.

In this paper we compare point and interval factor estimates obtained using the
four procedures mentioned above. Our contribution is di¤erent from other papers in
the literature in several aspects. First, as just mentioned, our focus is on estimating the
underlying factors implementing the same procedures to the same data sets; see Aruoba
et al. (2009) who suggests that, in order to make a proper empirical comparison among
procedures, small versus big-data approaches should be �tted to the same data set.
Furthermore, we compare all the most popular procedures available in the literature,
namely, KFS, PC and the two hybrid procedures. Finally, we compare not only point
estimates but also interval estimates; see Bai (2003) and Bai and Ng (2006b) for the
importance of measuring the uncertainty when estimating the underlying factors. We
carry out this comparison using both simulated data and the real data base of Stock
and Watson (2012).

We compare the small and big-data procedures for di¤erent number of variables
in the system. Based on asymptotic arguments, several authors argue that the usual
methods for factor extraction turn the curse of dimensionality into a blessing2. Accord-
ing to Bai (2003), "economists now have the luxury of working with very large data
sets." However, one can expect that, when introducing more variables, it is more likely
that the weak cross-correlation assumption fails unless the number of factors increases;
see Boivin and Ng (2006). Furthermore, when increasing the number of variables is
very likely that additional sectorial factors may appear; see, for example, Kose et al.
(2003) and Moench et al. (2013) for sectorial factors. Also, by having more variables,
the uncertainty associated with the parameter estimation is expected to increase; see
Poncela and Ruiz (2015). Therefore, if one wants to estimate a particular factor, for
example, the business cycle, it is not obvious that having more variables in the system
increases the accuracy. Finally, it is important to mention that several authors conclude
that the factors are already observable when the number of variables in the system is
around 30; see Bai and Ng (2008b) and Poncela and Ruiz (2015) when extracting the
factors using PC and KFS procedures, respectively. We should point out that, in or-
der to avoid the e¤ect of parameter uncertainty, in this paper we consider large time
dimension.

We show that, for a given procedure, factor estimates based on di¤erent cross-
sectional dimensions are highly correlated. On the other hand, given the cross-sectional
dimension, the Maximum Likelihood smoothed Kalman �lter factor estimates are highly
correlated with those obtained using the hybrid PC-KFS procedures. The Principal
Components estimates are somehow less correlated. Finally, the PC intervals based

2See Stock and Watson (2002) and Forni et al. (2000, 2005) for PC consistency results and Doz
et al. (2011, 2012) for results on the 2SKF and QML procedures, in stationary systems with weak
cross-correlations of the idiosyncratic noises when both the temporal and cross-sectional dimensions
tend to in�nity.
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on asymptotic approximations are unrealistically tiny. Regardless of the dimension of
the system, the two-steps procedures are a compromise between the e¢ ciency of KFS
procedures and the ine¢ cient but computationally simple and robust PC procedures.

The rest of this paper is organized as follows. In section 2, we establish notation by
brie�y describing the DFM and the alternative factor extraction procedures considered
which are illustrated using simulated data. Section 3 reports the results of a Monte
Carlo experiment to analyze the e¤ect of the number of variables and factors on the
properties of the factors extracted using the alternative procedures considered in this
paper. Section 4 contains the empirical analysis of the Stock and Watson (2012) data
base. Section 5 concludes the paper.

2 Extracting common factors

This section establishes notation and brie�y describes the DFM and the factor extrac-
tion procedures considered, in particular, the PC, KFS, 2SKF and QML procedures.
The procedures are illustrated by implementing them to a simulated system.

2.1 The dynamic factor model

Consider the following DFM in which the factors are given by a VAR(p) model and the
idiosyncratic noises are assumed to be a VAR(1) process

Yt = PFt + "t; (1)

Ft = �1Ft�1 + :::+�pFt�p + �t; (2)

"t = �"t�1 + at (3)

where Yt = (yt1; :::; ytN )
0 is the N � 1 vector of observed variables at time t, Ft =

(ft1; :::; ftr)
0 is the r � 1 vector of underlying factors and "t is the N � 1 vector of

idiosyncratic noises. The disturbance, �t; is a Gaussian white noise vector with �nite
and positive covariance matrix ��. The idiosyncratic noises, "t; are independently
distributed of �t�� for all leads and lags. Finally, at is a Gaussian white noise vector with
�nite and positive de�nite covariance matrix �a: The r� r autoregressive matrices are
such that all the roots of the equation jIr � �1z � :::� �pzpj = 0 are strictly larger than
one. Therefore, the factors are zero mean and stationary3. Similarly, the idiosyncratic
noises are assumed to be zero mean and stationary. Consequently, in the remainder
of this paper, we assume that, prior to the analysis, all the series in Yt are demeaned
and transformed to stationarity. We also assume that all autoregressive matrices, �i,
i = 1; :::; p; and �; are diagonal. In this way, the number of parameters is reduced to
a manageable size and we avoid to blur the separate identi�cation of the common and
idiosyncratic components; see Jungbacker and Koopman (in press) and Pinheiro et al.

3The stationarity assumption is made in order to implement procedures based on PC.
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(2013). The N � r factor loading matrix is given by P = [pij ] for i = 1; :::; N and
j = 1; :::; r; see Bai and Ng (2008a), Breitung and Eickmeier (2006), Stock and Watson
(2006, 2011) and Breitung and Choi (2013) for excellent surveys on DFM.

As it stands, the DFM de�ned in equations (1) to (3) is not identi�able; see Bai
and Wang (2014) who point out that "the identi�cation problem is not well understood
even for static factor models". The factors and factor loadings are only identi�ed up to
a pre-multiplication of an invertible matrix. In classical factor analysis, the covariance
matrix of the factors, �F ; is assumed to be the identity matrix while P 0P is a diagonal
matrix; see, for example, Bai (2003). Alternatively, in state space models, it is rather
common to assume that �� = Ir together with pij = 0 for j > i; see Harvey (1989).
In both cases, the factors are assumed to be contemporaneously independent which is
an appealing property. With any of these restrictions, F and P are uniquely �xed up
to a column sign change given the product FP 0. We identify the sign of the estimated
factor by imposing pii > 0: These restrictions are arbitrary in the sense that the factors
are �xed up to their multiplication by an invertible r � r matrix. Consequently, the
factors obtained may not lead to a particularly useful interpretation. However, once
they have been estimated, the factors can be rotated to be appropriately interpreted.

There are several particular cases of the DFM in equations (1) to (3) that have
attracted a lot of attention in the related literature. When � = 0 and �a is diagonal,
the idiosyncratic noises are contemporaneously and serially independent. In this case,
the DFM is known as strict. When there is serial correlation with � being diagonal, the
model is known as exact. Chamberlain and Rothschild (1983) introduce the term "ap-
proximate factor structure" in static factor models where the idiosyncratic components
do not need to have a diagonal covariance matrix.

Next, we brie�y describe each of the four procedures considered in this paper to
extract the factors in DFM.

2.2 Principal Components

In the context of big-data, the factors are usually extracted using procedures based on
PC which are attractive because they are computationally simple and are nonparamet-
ric and, consequently, robust to potential misspeci�cations of the dynamics of factors
and idiosyncratic noises. The price to pay for this robustness is that PC extraction
looses e¢ ciency with respect to procedures based on well speci�ed dynamics.

In this section, we describe the PC procedure following Bai (2003). PC procedures
allow estimating the space spanned by the factors. Consequently, in order to extract
the individual factors one needs to know r; the number of factors in the system. The
T � r matrix of PC factor estimates, bF =

� bF 01; :::; bF 0T� ; is given by pT times the r

eigenvectors associated with the r largest eigenvalues of Y Y 0; where Y is the T � N
matrix given by Y = (Y 01 :::Y

0
T ); arranged in decreasing order. Then, assuming that
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1
T
bF 0 bF = Ir, the estimates of the loadings are given by

bP = Y 0 bF
T
:

The properties of the PC factors are based on asymptotic arguments when both the
cross-sectional, N , and temporal, T , dimensions tend simultaneously to in�nity. Stock
and Watson (2002) show that, if the cross-correlations of the idiosyncratic noises are
weak and the variability of the common factors is not too small, the estimated factors
are consistent4. Under general conditions that allow for serial and contemporaneous
cross-correlation and heteroscedasticity in both dimensions, Bai (2003) shows that the
estimated factors can be treated as if they were observed as long as the number of
factors is known and �xed as both N and T grow and

p
T
N ! 0 and N;T !1. He also

derives the following asymptotic distribution

p
N( bFt �H 0Ft)

d! N(0; V �1Q�tQ
0V �1); (4)

where H = bV �1 � bF 0F=T� (P 0P=N) with bV being the r � r diagonal matrix consisting
of the �rst r largest eigenvalues of the matrix Y Y 0=(TN); arranged in decreasing order,
and V is its limit in probability, Q being the r � r limit in probability matrix of bF 0F

T

and the r � r matrix �t is de�ned as follows

�t = lim
N!1

1

N

NX
i=1

NX
j=1

E(p0i:pj:"it"jt);

with pi: being the i � th row of the factor loading matrix P: Given that the factors
are estimated according to the normalization

bF 0 bF
T = Ir; an estimate of Q is just the

identity matrix. Therefore, an estimate of the asymptotic variance of bFt would be
var( bFt) = 1

N
bV �1b�t bV �1; (5)

with b�t being a consistent estimate of �t (or more precisely of H�1�tH�1). Bai and
Ng (2006a) propose three di¤erent estimators of �t depending on the properties of the
idiosyncratic errors. Two of them assume cross-sectionally uncorrelated idiosyncratic
errors but do not require stationarity while the third is robust to cross-sectional corre-
lation and heteroscedasticity but requires covariance stationarity. Bai and Ng (2006a)
argue that for small cross-correlation in the errors, constraining them to be zero could
sometimes be desirable because the sampling variability from estimating them could

4Breitung and Choi (2013) has an interesting summary of the conditions for weak cross-correlated
idiosyncratic noises and strong factors. Onatski (2012) describes situations in which PC is inconsistent
while Choi (2012) derives the asymptotic distribution of a Generalized Principal Component estimator
with smaller asymptotic variance.
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generate nontrivial e¢ ciency loss. Consequently, they recommend using the following
estimator of �t b�t = 1

N

NX
i=1

bp0i:bpi:b"2it; (6)

where b"t = (b"1t; :::;b"Nt)0 is obtained as b"t = Yt � bP bFt.
2.3 Kalman �lter and smoothing

In the context of small-data, the factors are usually estimated using the KFS algorithms
with the parameters estimated by ML. Running the Kalman �lter requires knowing
the speci�cation and parameters of the DFM in equations (1) to (3). Therefore, the
factors extracted using the KFS algorithms can be non-robust in the presence of model
misspeci�cation. However, if the model is correctly speci�ed, extracting the factors
using the Kalman �lter is attractive for several reasons. First, it allows to deal with data
irregularities as, for example, systems containing variables with di¤erent frequencies
and/or missing observations; see Aruoba et al. (2009), Jungbacker et al. (2011),
Pinheiro et al. (2013), Banbura and Modugno (2014) and Bräuning and Koopman
(2014) for some examples. Second, KFS algorithms are not so a¤ected by outliers as
PC procedures which are based on estimated covariance matrices. Third, they provide
a framework for incorporating restrictions derived from economic theory; see Bork et
al. (2009) and Doz et al. (2012). Fourth, the KFS procedures are more e¢ cient than
PC procedures for a �exible range of speci�cations that include non-stationary DFM
and idiosyncratic noises with strong cross-correlations. Finally, they allow obtaining
uncertainty measures associated with the estimated factors when the cross-sectional
dimension is �nite; see Poncela and Ruiz (2015). However, the number of parameters
that need to be estimated increases with the cross-sectional dimension in such a way
that ML estimation is unfeasible for moderate systems. Jungbacker et al. (2011)
and Jungbacker and Koopman (in press) propose a computationally feasible device to
deal with large dimensional unobserved component models using the Kalman �lter.
However, if the cross-sectional dimension is large, this procedure is only feasible if the
idiosyncratic noises are serially uncorrelated. Fiorentini et al. (2014) also propose an
alternative spectral EM algorithm capable of dealing with large systems.

The DFM in equations (1) to (3) is conditionally Gaussian. Consequently, when
the idiosyncratic noises are serially uncorrelated, the KFS algorithms provide Minimum
MSE (MMSE) estimates of the underlying factors which are given by the corresponding
conditional means. Denoting by ftj� the estimate of Ft obtained with the information
available up to time � , and by Vtj� its corresponding MSE, KFS delivers

ftj� = E [FtjY1; :::; Y� ] ; (7)

Vtj� = E
�
(Ft � ftj� )(Ft � ftj� )0jY1; :::; Y�

�
; (8)
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where � = t� 1; for one-step-ahead predictions, � = t for �ltered estimates and � = T
for smoothed factor estimates. It is also important to point out that the KFS algorithms
deliver out-of-sample forecasts of the factors together with their corresponding Mean
Squared Forecast Errors (MSFE). In this paper, our focus is on smoothed estimates so
that they can be compared with those obtained from alternative procedures.

When the idiosyncratic noises are serially correlated, the DFM can be reformulated
in two alternative ways to preserve the optimal properties of KFS. First, it is possible
to express the DFM in state space form as follows

Yt = �Yt�1 +
h
P ��P

i " Ft
Ft�1

#
+ at (9)"

Ft
Ft�1

#
=

"
�1 �2
I 0

#"
Ft�1
Ft�2

#
+

"
�t
0

#
;

see Reis and Watson (2010), Jungbacker et al. (2011) and Pinheiro et al. (2013) for
implementations of the model in (9). One can alternatively deal with the autocorrela-
tion of the idiosyncratic noises by augmenting the state vector by "t; see, for example,
Jungbacker et al. (2011), Banbura and Modugno (2014) and Jungbacker and Koopman
(in press). Both formulations lead to the same results when the initialization issues are
properly accounted for. However, note that, in practice, augmenting the state space is
only feasible for relatively small cross-sectional dimensions.

The parameters are usually estimated by Maximum Likelihood (ML) maximizing
the one-step-ahead decomposition of the log-Gaussian likelihood; see Engle and Watson
(1981) and Watson and Engle (1983). The maximization of the log-likelihood entails
nonlinear optimization which restricts the number of parameters that can be estimated
and, consequently, the number of series that can be handled when estimating the un-
derlying factors. Even if the number of factors is considered as �xed, the number of
parameters to be estimated increases very quickly with N . Consequently, the estima-
tion problem is challenging if not impossible. Although the EM algorithm allows to
maximize the likelihood function of very large DFM, it does not allow the estimation
of the parameters in �; see Doz et al. (2012). Alternatively, Jungbacker and Koopman
(in press) propose to transform the observation equation into a lower dimension which
leads to a computationally e¢ cient approach to parameter and factor estimation.

With respect to the uncertainty associated with the KFS estimates, Poncela and
Ruiz (2015) obtain expressions of the �nite N and T steady-state MSE associated with
the common factors estimated by the KFS procedure both when the model parameters
are known and when they are estimated using a consistent estimator. They show that,
in the �rst case, the MSE are decreasing functions of the cross-sectional dimension
regardless of whether the idiosyncratic noises are weakly or strongly correlated. Fur-
thermore, if the idiosyncratic noises are weakly correlated, the minimum MSE are zero
for �ltered and smoothed estimates while if they are strongly correlated, the minimum
MSE are di¤erent from zero, so the factor estimates are not consistent. However, it
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is very important to remark that, in any case, the MSE is very close to the minimum
when the number of variables in the system is relatively small, approximately around
30 variables. In the latter case, when the parameters are estimated, if the sample size
is �xed, the MSE can even be an increasing function of the cross-sectional dimension.
Therefore, in this case, which is the most common when dealing with empirical data,
one can have more uncertainty about the underlying factors when the number of series
used to estimate them increases.

2.4 Principal Components-Kalman �lter smoothing

Doz et al. (2011, 2012) propose two further two-steps procedures to estimate the factors
in the presence of big-data systems based on combining the PC and KFS approaches; see
Giannone et al. (2008) for previous empirical applications and Banbura and Modugno
(2014) for an extension to systems with missing data.

The 2SKF procedure proposed by Doz et al. (2011) starts extracting the factors
by PC. Then, the factors�dynamics are estimated after �tting a VAR(1) model which

is estimated by Least Squares (LS), i.e. b�(0) = TX
t=1

( bF (0)t�1
bF (0)0t�1 )

�1( bF (0)t�1
bF (0)0t ) where

bF (0)t = bFPCt . The parameters in �" are estimated using the sample covariance matrix
of the residuals as follows b�(0)" =

1

T

TX
t=1

b"(0)t b"(0)0t ;

where b"(0)t = Yt � bP (0) bF (0)t and bP (0) = bPPC . Setting �� = I for identi�cation purposes,
in the second step, the factors are estimated by running the smoothing algorithm of
the Kalman �lter implemented in the DFM in equations (1) to (3) with � = 0 and
the parameters substituted by bP (0); b�(0) and b�(0)" . In the second step, the factors are
estimated implementing the Kalman �lter smoother with the estimated parameters and
assuming that the idiosyncratic noises are serially and contemporaneously uncorrelated.
The MSE of the factors are directly obtained from the Kalman �lter.

Doz et al. (2012) propose a QML procedure based on iterating the 2SKF. Actually,
this is equivalent to maximum likelihood estimation implemented through the EM
algorithm when the idiosyncratic noises are white noise. Given bF (i)t , obtained at step i,
the two steps of the 2SKF procedure are iterated by re-estimating the VAR parameters,
the factor loadings and the variance of the error term in equation (1) as explained above.
At each iteration, the algorithm ensures higher values of the log-likelihood. The process
converges when the slope between two consecutive log-likelihood values is lower than a
given threshold. The MSE of the factors are directly obtained from the Kalman �lter
in the last step; see Banbura and Runstler (2011) for an application in which they use
the MSE to compute the weights for the predictions of a variable of interest.
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3 Monte Carlo experiments

In this section, for each of the four procedures considered, we analyze the role of N
and r on the �nite sample properties of the estimated factors. Furthermore, given N
and r, the four procedures are compared in �nite samples by carrying out Monte Carlo
experiments. The comparisons, made both in terms of point and interval factor esti-
mates, are based on R = 500 replicates generated from four di¤erent Data Generating
Processes (DGP) with N = 120 variables, r = 3 factors and T = 200 observations. The
�rst DFM considered as DGP, denoted as model 1 (M1), is given by

Yt = PFt + "t; (10)

Ft =

264 1:3 0 0

0 0:9 0

0 0 0:5

375Ft�1 +
264 �0:36 0 0

0 0 0

0 0 0

375Ft�2 + �t; (11)

where the weights of the �rst factor, pi1; for i = 1; :::; N; are generated by a uniform
distribution in [0; 1]; see Bai and Ng (2006a) who also carry out simulations generating
the weights by a uniform distribution. The weights of the second factor are generated
such that pi2 6= 0, for i = 13; :::; 60 and pi2 = 0 otherwise. When di¤erent from zero,
the weights are also generated by a uniform distribution. Note that the second factor
only a¤ects the variables from i = 13; :::; 60. Finally, the weights of the third factor,
pi3 = 0 for i = 1; :::; 60 and generated from an uniform distribution for i = 61; :::; 120.
Consequently, the third factor a¤ects the last 60 variables in the system. These two
latter factors have a block structure as they are speci�c to subsets of variables. They
can be considered as sectorial factors, likely to appear when big-data systems are con-
sidered; see, for example, Karadimitropoulou and León-Ledesma (2013) and Breitung
and Eickmeier (2014, 2015). The idiosyncratic errors are Gaussian white noise with
covariance matrix given by �" = IN so that they are homoscedastic and temporal and
contemporaneously uncorrelated. Note that in equation (11), the �rst factor is given
by an AR(2) process with roots 0.9 and 0.4 while the second and third factors are
stationary AR(1) processes with roots 0.9 and 0.5 respectively. Finally, the noise in
equation (11), �t; is a Gaussian white noise with diagonal covariance matrix such that
the variances of the three factors are 1.

Given that both hybrid procedures are based on assuming that the idiosyncratic
errors are uncorrelated, we consider a second DGP, denoted as model 2 (M2), speci�ed
as in equations (10) and (11) with temporally correlated idiosyncratic errors which are
de�ned as in equation (3) with � = 0:5IN and the covariance matrix of at de�ned in such
a way that �" = IN . In this way, comparing the results of models M1 and M2, we can
conclude about how the dependence of the idiosyncratic noises a¤ect the conclusions
when the ratios of the variances of factors and idiosyncratic noises are kept �xed at
1. The third DGP considered is designed to check how the three factor extraction
procedures based on the Kalman �lter behave in the presence of misspeci�cation of
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the factor temporal dependence. Model 3 (M3) is speci�ed as model M1 with the
factors given by a VARMA(2,1) model with autoregressive parameters as in equation
(11) and MA(1) parameters given by 0.7, 0.5 and 0.3 for the �rst, second and third
factors, respectively. The noises of the factor model are standardized in such a way
that �F = Ir: Finally, the fourth DGP considered, model M4, is designed to take into
account the e¤ects on the conclusions of variations in the factor loadings as postulated,
for example, by Breitung and Eickmeier (2011). In M4, we introduce a break in the
loadings of the �rst factor at T2 of magnitude b = 1 for all pi1; i = 1; :::; N:

For each DGP and each of the four procedures considered, the factors are extracted
with di¤erent number of variables and factors in the system. First, we consider N = 12

variables (small-data) with the �rst 12 variables being selected (r = 1); second, N = 12

variables are selected from the 13th to the 24th so that r = 2; third, N = 12 variables
are selected from the 55th to the 66th so that r = 3 and the third factor only has
weights on a subset of variables; fourth, N = 30 (medium-data) with variables from
the 13th to the 42th so that r = 2; �fth, N = 30 with variables from the 46th to the 75th
being chosen so that r = 3; sixth, we consider extracting the factors using all N = 120

variables (big-data). Previous to extract the factors, their number is selected by using
the procedure proposed by Onatski (2009)5. For each replicate in which the number
of factors is correctly estimated, we estimate P and F by each of the four procedures
considered. Consequently, the Monte Carlo results reported later in this paper are
conditional on the true number of factors and based on a number of replicates that
typically is smaller than 500. As mentioned above, the factors are estimated up to a
rotation. Consequently, in order to compare the true and estimated factors, the latter
are rotated to be in the scale of the former as follows

bF � = bF �� bP 0 bP��1 bP 0P��1 ; (12)

where bP and bF are the matrices of estimated factor loadings and factors obtained after
implementing each of the four procedures. After rotating the estimated factors as in
(12), the precision of the point factor estimates is measured by the trace R2 of the

5Note that the factors are not uniquely identi�ed which means that even when the objective is the
estimation of an unique factor, it is important to know r so that the estimated factors can be rotated
to obtain the desired interpretable estimation. There is a large number of alternative proposals of
estimating the number of factors, mostly based on the eigenvalues of the sample covariance matrix of
Yt; see, for example, Bai and Ng (2002, 2007), Amengual and Watson (2007), Alessi et al. (2010),
Kapetanios (2010) and Breitung and Pigorsch (2013), among others. These procedures require that
the cumulative e¤ect of the factors grows as fast as N . Alternatively, Onatski (2009, 2010) proposes
an estimator of the number of factors that works well when the idiosyncratic terms are substantially
serially or cross-sectionally correlated. Onatski (2009) formalize the widely used empirical method
of the number of factors determination based on the visual inspection of the sree plot introduced by
Cattell (1966).
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regression of the estimated factors on the true ones

Tr =

Trace

�
F 0 bF � � bF �0 bF ���1 bF �0F�
Trace(F 0F )

: (13)

The trace measure in (13), which is smaller than 1 and tends to 1 with the increasing
canonical correlations between the estimated and true factors6, has been implemented
by, for example, Stock and Watson (2002), Boivin and Ng (2006), Doz et al. (2012)
and Banbura and Modugno (2014), to assess the precision of factor estimates.

As the objective of this paper is not only to assess the accuracy of point factor
estimates but also of interval estimates, we also compute the empirical coverages of
the pointwise intervals of the factors extracted by each of the four procedures when
the nominal coverage is 95%. The MSE used to construct the PC intervals are the
asymptotic MSE in equation (5) while the MSE of the other three procedures are
obtained from the Kalman smoother when the model parameters are substituted by
the corresponding estimated parameters. Note that these MSE do not incorporate
the uncertainty associated with the parameter estimation. Of course, we have also
considered the rotations given by (12) when computing the con�dence bands.

Consider �rst the results when the DGP is model M1. The �rst row of Table 1
reports the percentage of failures of the Onatski (2009) test. Observe that the per-
formance is appropriate when the number of series is relatively large with respect to
the number of factors. When N = 12 and there are 3, 2 and 1 factors in the system,
Onatski (2009) procedure detects them correctly in 18%, 55% and 99.6% of the repli-
cates, respectively. By increasing the number of variables in the system to N = 30; the
percentage of failures is drastically reduced.

Consider now the Monte Carlo results corresponding to the estimation of the factors
in model 1. The top panel of Table 2 reports the Monte Carlo averages and standard
deviations of the trace statistic in (13) computed through those replicates for which
the test proposed by Onatski (2009) detects the true number of factors in the system.
Note that in model M1 the idiosyncratic errors are white noise and, consequently, the
KFS, 2SKF and QML procedures are based on the true DGP when the parameters are
substituted by the corresponding estimates. Table 2 shows that, as expected, regardless
of the procedure, if the number of variables is �xed, the trace statistic decreases when
the number of factors increases. On the other hand, if r is �xed, the trace statistic
increases with the number of variables. Also, it is important to note that the trace
statistics of the KFS and QML procedures are very similar in all cases. On the other
hand, the trace statistics of PC are clearly smaller while 2SKF is somehow in between.
If N > 30; depending on the number of variables and factor in the system, it seems
that just one iteration of the Kalman �lter is enough to obtain similar factor estimates
as with the KFS. Only when N = 120 and r = 3; the trace statistics of all procedures

6Results based on canonical correlations are available upon request.
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are similar and over 0.9. Furthermore, note that with N = 30; the Kalman based
procedures have statistics over 0.8. Finally, Table 2 shows that, when using the KFS or
QML procedures to extract the factors, a remarkably large precision is obtained even
with N = 12 if there is just one single factor in the system. If by adding more variables,
the number of factors increases, the precision is similar. Regardless of the procedure
and number of factors, all procedures considered are adequate to estimate the space
spanned by the factors if N > 30.

Table 3, which reports the Monte Carlo averages and standard deviations of the
coverages of the asymptotic 95% con�dence intervals, shows that the asymptotic MSE
used to construct the intervals for the PC factor estimates are clearly small to represent
the uncertainty associated with these estimates. The coverages of the three other
procedures considered are appropriate when N = 12 and r = 1: However, when the
number of factors is larger than one, the empirical coverages are well under the nominal.
Note that, in each case, the coverages are similar for all the factors in the system.
Therefore, if the interest is estimating just one factor (for example, the business cycle),
having more factors in the system could deteriorate the interval estimation. Given the
number of factors in the system, the performance of the intervals deteriorates when N
increases since the parameter uncertainty also increases and, consequently, the intervals
that do not incorporate this uncertainty are less reliable. This could explain why the
coverages of the intervals can deteriorate as N increases. Therefore, according to the
Monte Carlo results reported in Table 3, if one wants to obtain interval estimates of a
single factor, it is better to keep the number of variables to be relatively small so that
no new additional factors are introduced in the system.

As mentioned above, in model M1 the DGP is the same as that assumed when
running the Kalman �lter. Consequently, the factors extracted by PC may have a
disadvantage. Next, we consider the results for model M2 in which the idiosyncratic
noises are a VAR(1). Note that the 2SKF and QML procedures are run assuming that
the idiosyncratic noises are white noise. When dealing with the KFS we also run the
�lter as if the idiosyncratic noises were white noise. The second row of Table 1, which
reports the percentage of failures of the Onatski (2009) test, shows that this percentage
is larger than in model M1. Therefore, when the idiosyncratic noises are serially corre-
lated, identifying the correct number of factors (and, consequently, a correct estimation
of the space spanned by the factors becomes more complicated). When looking at the
results on the trace statistic reported in Table 2, we can observe that the results for PC
are very similar to those reported for model 1. This could be expected as the PC factor
extraction is non-parametric. When looking at the results for KFS, we can see that
the average traces are smaller and the standard deviations are larger. Therefore, by
assuming that the idiosyncratic noises are white when they are not, the performance of
the KFS is worse. However, it is important to point out that when N = 120, the results
are very similar to those obtained under the true DGP pointing out the possible con-
sistency of the KFS in front of misspeci�cation of the dependencies of the idiosyncratic
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noises. It is also important to point out that the performance of KFS is still better than
PC for small N . Finally, the results obtained for the hybrid procedures are very similar
to KFS. Finally, Table 3 reports the Monte Carlo averages and standard deviations of
the empirical coverages of the 95% con�dence intervals of the factors. Once more, we
can observe that the results for PC are the same as in model 1 while the coverages of
the other three procedures deteriorates when the cross-sectional dimension and/or the
number of factors increase. In any case, all coverages are well bellow the nominal. As
before, the best results are obtained for N = 12 and r = 1:

In model M3, the dynamics of the common factors are misspeci�ed. The third row
of Table 1, which reports the percentage of failures of the Onatski (2009) test, shows
that they are very similar to those obtained in model M1. Therefore, if the dynamics
of the common factors are misspeci�ed, the test proposed by Onatski (2009) does not
deteriorate at all. When looking at the results of the trace statistic reported in Table
2, PC does not deteriorate since this procedure does not contemplate the dynamics in
the common factor. However, the results for the remaining three procedures show a
deterioration similar to that of model M2. Finally, the coverages given in Table 3 are
very similar for PC, while for KFS, 2SKF and QML, they show similar results to the
well speci�ed dynamics. Again, all coverages are well bellow the nominal.

In model M4 we have added breaks to the loadings of the �rst common factor.
However, we have estimated the models as if there were no breaks. Curious enough, the
Onatski�s (2009) procedure does not deteriorate very heavily, but in the case of the large
factor model (N = 120). The results for the trace statistic, given in Table 2, are very
similar to those of the other two misspeci�cations (models M2 and M3). In this case,
we do not compute the coverages since we are estimating constant parameter models,
while the true ones incorporate the break. This issue deserves further investigation
as, for instance, to detect where the breaks go to the estimated factors or to the error
terms.

It is important to point out that, if the interest is the estimation of a single original
factor common to all variables in the system in a multifactor model, it is not straightfor-
ward to �nd an adequate rotation of the factors that estimates properly this particular
original factor. The individual estimated factors could be inappropriate as they in-
volved linear combinations of the original factors and it is not always obvious how to
disentangle them. In our experience, when looking at the individual match between
each simulated and estimated factor, there are a number of problems that can appear.
For instance, the estimated factors are interchanged in a number of replicates, i.e. the
common factor is estimated as the sectorial factor and vice versa. In practice, although
the space spanned by the factors is correctly estimated, each individual factor can be
far from the true simulated one. This problem is not important when the factors are
used with forecasting purposes as, in this case, the linear combinations of the estimated
factor have the predictive power. However, when the objective is the estimation of a
single factor of interest, it is not obvious that the factor can be identi�ed individually.
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Consequently, the individual correlations between each estimated factor and the corre-
sponding true factor could be much smaller than what the statistics reported in Table
2 might suggest.

The results in this section are based on a medium sample size, T = 200. Of course,
large sample sizes will deliver even better results. On the other hand, smaller sample
sizes are not very likely to be used in any sensible empirical application.

4 Empirical analysis

In this section, we analyze the monthly series contained in the data base considered by
Stock and Watson (2012), which consists of an unbalanced panel of 137 US macroeco-
nomic variables (two of which are de�ators and other six not included in the analysis)
observed monthly from January 1959 to December 2011. These variables have been
de�ated, transformed to stationarity and corrected by outliers as described by Stock
and Watson (2012). Furthermore, as it is usual in this literature, they have been stan-
dardized to have zero mean and variance one. The variables can be classi�ed into the
following 12 economic categories (in parentheses the number of variables in each cate-
gory): industrial production (13); employment and unemployment (44); housing starts
(8); inventories, orders and sales (8); prices (16); earnings (3); interest rates and spreads
(18); money and credit (14); stock prices (3); housing prices (2); exchange rates (6);
and other (2). In order to obtain a balanced panel, we select those variables observed
without missing values over the whole observation period. The resulting balanced panel
has N = 103 variables, classi�ed into 11 categories and T = 628 observations. The two
variables belonging to the Housing Prices category disappear from the panel. The
objective of this empirical exercise is to answer the following questions: i) When the
interest is to estimate just one factor as, for example, the business cycle, is it worth
to use all available variables to extract it?; ii) Are the factor extraction procedure and
number of variables used relevant to estimate the factors?; iii) Is the number of factors
in the system independent of the number of variables?

We start the analysis by extracting the factors from a system with 11 variables
each of them representing one of the categories. Each variable has been chosen as
that exhibiting the highest averaged correlation with respect to the remaining series
in the same category; see Alvarez et al. (2012) for this criterion. In this system, we
start selecting the number of factors as proposed by Onatski (2009). The number of
factors is the same when using the procedure proposed by Alessi et al. (2010) who,
following Hallin and Liska (2007), introduce a tuning multiplicative constant to im-
prove the performance of the procedure proposed by Bai and Ng (2002). The number
of factors selected is one. The factor is then extracted by each of the four procedures
described above. Maximum likelihood (KFS) is implemented estimating a diagonal
VAR(1) for the idiosyncratic noises. Figure 1 plots the extracted factor together with
its corresponding 95% pointwise intervals. It is important to point out that the fac-
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tor extracted by each procedure has been rotated as in equation (12) substituting the
unknown matrix P by bP estimated using PC. The corresponding Root MSE (RMSE),
computed without incorporating the parameter uncertainty, have been reported in the
main diagonal of Table 4 for each of the four procedures considered. As already con-
cluded from the simulated system used in the illustration, we can observe that the
asymptotic RMSE of the PC procedure are unrealistically small. Figure 1 illustrates
that, regardless of the factor extraction procedure, the point estimates of the factors
extracted using the information contained in the 11 variables selected from the original
data base are very similar.

Next, we add into the set of variables used to extract the factors the variables
with second highest correlation, with N = 21 variables. In this case, the number of
factors identi�ed is again 1. Figure 2 plots the factors extracted by each procedure
together with the corresponding pointwise 95% intervals. Then, we extract the factors
with N = 91 variables and br = 47; see Figure 3 which plots the �rst extracted factor.
Finally, the factors are extracted using all N = 103 variables. For each procedure, Table
4 reports the RMSE together with the correlations between the factors extracted when
the cross-sectional dimension changes. We can observe that, in general, the RMSE
decrease with N . However, the MSE when N = 91 and when N = 103 are very similar.
For each procedure, Table 4 also reports the correlations between the factors estimated
with di¤erent cross-sectional dimensions. These correlations are very high, being always
over 0.85. It seems that regardless of the procedure implemented for factor extraction,
increasing the number of variables only pays a very marginal increase in terms of factor
estimation accuracy.

Finally, we compare the factors extracted using di¤erent procedures with the same
number of variables. Table 5, that reports the correlations between the estimated
factors obtained by the alternative procedures, shows that there is a high correlation
between the factor estimates extracted using KFS and QML-EM, which is always over
0.95. The same happens with the correlations between the factors extracted using PC
and 2SKF which are always over 0.97. These results con�rm the conclusions obtained
with the Monte Carlo experiment.

5 Conclusions

In this paper, we compare small-data and big-data factor extraction procedures imple-
menting the alternative procedures considered to the same data sets. Using simulated
and real data, we compare PC, KFS, 2SKF and QML, given the sample size. We also
compare the performance of each procedure for di¤erent cross-sectional dimensions. We
conclude that, regardless of the procedure implemented and the number of variables
used for the factor estimation, (the spaces spanned by) the factors extracted are very
similar. When using simulated data, all procedures extract (conveniently rotated) fac-

7Using Bai and Ng (2002) criteria 1, Breitung and Eickmeier (2011) estimate br = 2:
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tors highly correlated with the true unobserved factors. If the objective is estimating a
given factor (as, for example, the business cycle) adding more variables into the system
may increase the number of factors but the increase in accuracy of point estimates is
relatively small. We also show that the asymptotic bounds of PC are too narrow being
inadequate to represent the �nite sample uncertainty associated with estimated factors.
Both ML and QML procedures extract very similar point and interval factors which
have, in general, higher correlations with the true factors than PC and 2SKF estimates
when the cross-sectional dimension is relatively small.

KFS, 2SKF and QML are almost identical when they are based on the wrong
assumption about the idiosyncratic noises being white noise when they are serially
correlated. These procedures have a slight advantage over PC if the cross-correlation
dimension is small and very similar properties for large N:

In this manuscript, we did not consider the e¤ect of parameter estimation on the
construction of intervals for the factors; see Poncela and Ruiz (2015) for this e¤ect in
the context of the ML procedure. However the empirical coverages reported in Table
3 are smaller than the nominal coverages. Furthermore, the interval coverages of all
procedures decrease with the number of series, probably as a result of increasing the
number of parameters that we have to estimate as Poncela and Ruiz (2015) point out
for Kalman �lter estimations. Recall that the estimation is only carried out for those
cases where the true number of factors is detected. At this regard, the number of factors
correctly found by Onatski�s (2009) test increases with the number of series. On the
contrary, the interval coverages decrease with the number of series. Therefore, it seems
that incorporating the parameter uncertainty could be important to get more adequate
con�dence intervals. When dealing with ML or the hybrid procedures, this uncertainty
can be incorporated in practice using bootstrap procedures as those proposed by Ro-
dríguez and Ruiz (2009, 2012) in the context of state space models. However, as far as
we know, there are not procedures proposed in the literature to incorporate the para-
meter uncertainty in the context of PC procedures. Looking at the e¤ects of parameter
uncertainty when constructing intervals for estimated factors in empirical applications
is within our research agenda. Also, the analysis of real data systems can be extended
to consider unbalanced data bases by using, for example, the computationally e¢ cient
procedures by Jungbacker et al. (2011) and Jungbacker and Koopman (in press).

Finally, it is important to mention that, in practice, the models �tted could be
misspeci�ed. In stationary DFMs, Doz et al. (2011, 2012) show the consistency of
the factors estimated using the PC-KFS procedures so that he misspeci�cation of the
idiosyncratic noise serial correlation does not jeopardize the consistent estimation of the
factors. Considering the e¤ects of misspeci�cation both in the number of factors and/or
in the dynamics of factors and idiosyncratic noises is also left for further research.
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N = 12 N = 12 N = 12 N = 30 N = 30 N = 120

r = 1 r = 2 r = 3 r = 2 r = 3 r = 3

Model 1 0.4% 45% 82% 4.2% 20% 0.6%

Model 2 3% 60% 90% 12% 47% 1%

Model 3 0.4% 43% 81% 1.4% 15% 1%
Model 4 1.2% 47.6% 87.2% 6.2% 36% 36.6%

Table 1. Percentage of failures of Onatski (2009) test to detect the true number of
factors through 500 Monte Carlo replicates.
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N = 12 N = 12 N = 12 N = 30 N = 30 N = 120

r = 1 r = 2 r = 3 r = 2 r = 3 r = 3

Model 1

PC 0:77
(0:08)

0:68
(0:06)

0:63
(0:04)

0:81
(0:04)

0:78
(0:04)

0:93
(0:01)

KFS 0:91
(0:04)

0:86
(0:03)

0:77
(0:05)

0:91
(0:03)

0:85
(0:03)

0:92
(0:01)

2SKF 0:86
(0:06)

0:76
(0:06)

0:69
(0:05)

0:87
(0:04)

0:83
(0:04)

0:94
(0:01)

QML 0:90
(0:04)

0:85
(0:04)

0:76
(0:05)

0:91
(0:03)

0:86
(0:03)

0:94
(0:01)

Model 2

PC 0:77
(0:08)

0:69
(0:06)

0:66
(0:06)

0:82
(0:04)

0:79
(0:04)

0:93
(0:02)

KFS 0:84
(0:07)

0:76
(0:06)

0:66
(0:08)

0:86
(0:04)

0:79
(0:04)

0:89
(0:02)

2SKF 0:82
(0:08)

0:74
(0:06)

0:68
(0:07)

0:85
(0:04)

0:80
(0:04)

0:93
(0:02)

QML 0:83
(0:08)

0:76
(0:06)

0:67
(0:07)

0:85
(0:04)

0:80
(0:04)

0:92
(0:02)

Model 3

PC 0:78
(0:06)

0:69
(0:05)

0:64
(0:05)

0:81
(0:04)

0:77
(0:04)

0:93
(0:01)

KFS 0:82
(0:05)

0:76
(0:06)

0:68
(0:06)

0:85
(0:03)

0:80
(0:03)

0:91
(0:01)

2SKF 0:81
(0:06)

0:72
(0:05)

0:66
(0:05)

0:84
(0:04)

0:79
(0:03)

0:93
(0:01)

QML 0:82
(0:05)

0:75
(0:06)

0:68
(0:05)

0:82
(0:03)

0:79
(0:03)

0:89
(0:03)

Model 4
PC 0:77

(0:06)
0:66
(0:06)

0:61
(0:06)

0:76
(0:04)

0:73
(0:04)

0:88
(0:02)

KFS 0:80
(0:05)

0:80
(0:04)

0:71
(0:07)

0:84
(0:03)

0:78
(0:04)

0:87
(0:02)

2SKF 0:79
(0:05)

0:72
(0:06)

0:65
(0:07)

0:81
(0:04)

0:77
(0:04)

0:90
(0:02)

QML 0:80
(0:05)

0:80
(0:04)

0:71
(0:07)

0:84
(0:03)

0:80
(0:03)

0:87
(0:02)

Table 2. Monte Carlo results for DFM with white noise idiosyncratic noises (Model
1), VAR(1) idiosyncratic noises (Model 2) and VAR(6) factors (Model 3). Monte Carlo
means and standard deviations (in parenthesis) of the trace statistic computed through
those replicates for which the number of factors is correctly estimated.
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N 12 12 12 30 30 120

r 1 2 3 2 3 3

Model 1

P 0.14
(0.07)

0.13
(0.07)

0.13
(0.07)

0.11
(0.05)

0.14
(0.06)

0.12
(0.05)

0.16
(0.10)

0.17
(0.08)

0.13
(0.07)

0.18
(0.07)

0.15
(0.06)

0.11
(0.07)

0.16
(0.08)

0.12
(0.07)

K 0.94
(0.03)

0.75
(0.22)

0.74
(0.21)

0.69
(0.20)

0.75
(0.18)

0.71
(0.19)

0.58
(0.25)

0.59
(0.23)

0.65
(0.21)

0.70
(0.18)

0.56
(0.15)

0.39
(0.13)

0.42
(0.19)

0.32
(0.15)

S 0.96
(0.02)

0.56
(0.16)

0.62
(0.13)

0.62
(0.13)

0.68
(0.14)

0.64
(0.09)

0.44
(0.15)

0.48
(0.11)

0.54
(0.13)

0.60
(0.16)

0.58
(0.12)

0.40
(0.12)

0.42
(0.19)

0.33
(0.12)

Q 0.97
(0.01)

0.64
(0.22)

0.68
(0.20)

0.70
(0.18)

0.79
(0.15)

0.69
(0.13)

0.48
(0.20)

0.50
(0.17)

0.64
(0.22)

0.68
(0.19)

0.54
(0.15)

0.52
(0.21)

0.43
(0.20)

0.33
(0.14)

Model 2

P 0.15
(0.07)

0.13
(0.07)

0.14
(0.06)

0.10
(0.04)

0.14
(0.05)

0.13
(0.05)

0.16
(0.10)

0.17
(0.09)

0.13
(0.07)

0.18
(0.07)

0.16
(0.07)

0.11
(0.07)

0.17
(0.08)

0.12
(0.07)

K 0.80
(0.05)

0.61
(0.17)

0.58
(0.14)

0.56
(0.17)

0.61
(0.12)

0.64
(0.12)

0.54
(0.23)

0.53
(0.20)

0.60
(0.19)

0.62
(0.15)

0.51
(0.14)

0.38
(0.14)

0.40
(0.17)

0.31
(0.13)

S 0.88
(0.04)

0.52
(0.16)

0.56
(0.13)

0.57
(0.14)

0.59
(0.15)

0.57
(0.10)

0.42
(0.14)

0.43
(0.10)

0.51
(0.13)

0.57
(0.15)

0.49
(0.15)

0.37
(0.11)

0.40
(0.17)

0.31
(0.10)

Q 0.86
(0.05)

0.57
(0.20)

0.59
(0.17)

0.63
(0.16)

0.62
(0.12)

0.56
(0.11)

0.46
(0.18)

0.45
(0.14)

0.57
(0.19)

0.60
(0.15)

0.50
(0.15)

0.45
(0.18)

0.39
(0.15)

0.32
(0.15)

Model 3

P 0.14
(0.05)

0.12
(0.06)

0.13
(0.06)

0.10
(0.04)

0.14
(0.06)

0.12
(0.05)

0.17
(0.09)

0.17
(0.08)

0.13
(0.06)

0.18
(0.06)

0.15
(0.06)

0.11
(0.07)

0.16
(0.09)

0.11
(0.07)

K 0.95
(0.02)

0.80
(0.17)

0.78
(0.18)

0.84
(0.16)

0.71
(0.14)

0.77
(0.19)

0.68
(0.24)

0.69
(0.24)

0.68
(0.17)

0.75
(0.15)

0.66
(0.14)

0.48
(0.18)

0.47
(0.19)

0.41
(0.20)

S 0.94
(0.02)

0.57
(0.14)

0.64
(0.11)

0.61
(0.12)

0.67
(0.13)

0.66
(0.10)

0.47
(0.13)

0.52
(0.11)

0.55
(0.11)

0.62
(0.16)

0.54
(0.10)

0.42
(0.10)

0.43
(0.19)

0.35
(0.10)

Q 0.93
(0.02)

0.71
(0.18)

0.76
(0.18)

0.74
(0.14)

0.80
(0.13)

0.73
(0.12)

0.60
(0.22)

0.66
(0.22)

0.66
(0.17)

0.70
(0.16)

0.62
(0.13)

0.57
(0.18)

0.45
(0.19)

0.39
(0.15)

Table 3. Percentage coverages of pointwise factor intervals when the nominal is
95% for the succeed simulations reported in Table 1. P stands for PC estimation, K
for Kalman �lter ML, S for 2SKF and Q for QML.
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PC KFS 2SKF QML

N 11 21 91 103 11 21 91 103 11 21 91 103 11 21 91 103

11 0.11 0.96 0.89 0.89 0.27 0.95 0.96 0.96 0.38 0.98 0.94 0.94 0.34 0.91 0.88 0.85

21 0.05 0.94 0.94 0.04 0.96 0.95 0.28 0.98 0.98 0.10 0.93 0.89

91 0.02 1 0.13 0.97 0.13 1. 0.15 0.99

103 0.02 0.15 0.13 0.18

Table 4. Empirical application of the Stock and Watson (2012) data base. Main
diagonal: RMSE of extracted factors. The KFS, 2SKF and QML are computed using
the steady-state RMSE obtained from the Kalman �lter with estimated parameters.
The PC RMSE are obtained using the asymptotic approximation and averaging over
time. O¤-diagonal elements: correlations between the factors estimated using alterna-
tive number of variables.

N = 11 N = 21 N = 91 N = 103

KFS 2SKF QML KFS 2SKF QML KFS 2SKF QML KFS 2SKF QML

PC 0.84 0.97 0.91 0.85 0.98 0.86 0.97 0.99 0.92 0.94 0.99 0.88

KFS 0.92 0.95 0.92 1 0.98 0.95 0.96 0.97

2SKF 0.96 0.93 0.93 0.89

Table 5. Empirical application of the Stock and Watson (2012) data base. Cor-
relations between the factor estimated by alternative procedures given the number of
variables in the system.
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Figure 1: Factor extracted by each of the four procedures using 11 variables selected
as the two more correlated in average within its class together with the corresponding
95% intervals. The gray shadow areas represent the US business cycle recessions as
dated by the NBER (National Bureau of Economic Research).
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Figure 2: Factor extracted by each of the four procedures using 21 variables selected
as the two more correlated in average within its class together with the corresponding
95% intervals. The gray shadow areas represent the US business cycle recessions as
dated by the NBER.
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Figure 3: First actor extracted by each of the four procedures using 91 variables selected
as the more correlated in average within its class together with the corresponding 95%
intervals. The gray shadow areas represent the US business cycle recessions as dated
by the NBER.
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