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Abstract

We provide a model of dynamic duopoly in which �rms face �nancial constraints and dissa-

pear when they are unable to ful�ll them. We show that, in some cases, Cournot outputs are no

longer supported in equilibrium, because if these outputs were set, a �rm may have incentives

to ruin the other. In these cases, standard grim-trigger strategies in which collusion is sustained

by in�nite reversion to Cournot outputs cannot be used. We show that there is a stationary

Markov equilibrium in mixed strategies where predation occurs with a positive probability. We

also obtain a modi�ed �folk theorem.� We show that any bankruptcy-free outputs (outputs

in which no �rm can drive another �rm to bankruptcy without becoming bankrupt itself) that

attain individually rational pro�ts (re�ecting bankruptcy consideration) can be supported by a

subgame perfect Nash equilibrium when �rms are su¢ ciently long-sighted.
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1. Introduction

There is ample evidence that �nancial constraints play an important role in the behavior of �rms

(Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997). We begin with the observation that the

punishment for violation of a �nancial constraint must be severe or otherwise �rms would default

all the time. Suppose that the punishment is so severe that �rms violating �nancial constraints

lose the capacity to compete and disappear (Sharfstein and Bolton, 1990).1 Firms might then

have incentives to take actions that would make it impossible for competitors to ful�ll �nancial

constraints in the hope of getting rid of them.

In this paper we provide a model of dynamic duopoly in which both �rms take fully into account

the �nancial constraints of the other �rm as well as their own �nancial constraints. To simplify

our task we make two assumptions: Pro�ts cannot be transferred from one period to the next

and the �nancial constraint requires that pro�ts must be non-negative in each period. The second

assumption entails just a normalization of pro�ts. However, the �rst assumption is not innocuous

and is discussed later on.

We introduce the concept of Bankruptcy-Free outputs (BF hereinafter). This is the set of

outputs in which pro�ts for all �rms are non negative (so no �rm goes bankrupt) and no �rm

can make the other �rm bankrupt without becoming bankrupt. The concept of BF captures the

opportunities for ruining other �rms that exist in our set up, while they are not captured by standard

concepts such as Cournot equilibrium. Importantly, we show that Cournot equilibrium may not be

BF. Consider a market with constant returns to scale but di¤erent marginal costs. If marginal costs

are not signi�cantly di¤erent, both �rms produce positive outputs in Cournot equilibrium. These

outputs are not BF because the most e¢ cient �rm can produce an output (larger than its Cournot

output) for which the market price becomes strictly lower than the competitor�s average cost but

larger than its own average cost. As a result, the e¢ cient �rm earns a positive pro�t while the other

�rm incurs a negative pro�t and goes bankrupt. Why a �rm would make such a move? Because

in a dynamic game this move gets rid of a competitor so if the e¢ cient �rm is very patient this

move will pay o¤ in the future. This story suggests that the commonly used constant-marginal-cost

Cournot model might be misleading if �rms have di¤erent marginal costs and �nancial constraints

1Even though �rms can be reorganized after bankruptcy and continue business, the survival rate of �rms after

bankruptcy is typically low, 18% US, 20% in UK and 6% in France, see Couwenberg (2001).
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are relevant. In fact, the introduction of �nancial constraints implies that monopolization (by the

e¢ cient �rm) occurs with positive probability in a competitive equilibrium as we explain shortly.

When �nancial constraints are considered, the grim-trigger strategies may not work because

reversion to Cournot outputs does not guarantee that �rms have incentives to stay there. More

strikingly, tacit collusion cannot be supported in general by the grim-trigger strategies even if �rms

are su¢ ciently patient, which is in a sharp contrast with the standard collusion analysis. We

consider a more general concept, namely stationary Markovian equilibrium, a dynamic equilibrium

in which �rms�outputs depend only on states, not on the detailed history. Let the state of each

period be the set of active �rms, i.e., the �rms that have not been bankrupted until that period. The

unique Markovian equilibrium in pure strategies, if it exists, is the Cournot equilibrium. However,

as we argued above, Cournot equilibrium may fail to be an (Markovian) equilibrium. Therefore, in

these cases, each stationary Markovian equilibrium must entail mixed strategies. We show that such

equilibrium exists. Assuming constant average costs and concave pro�t functions we characterize

the support of this equilibrium. Precisely, when discount factor is larger than certain cut-o¤ value,

the equilibrium in mixed strategies is the unique Markovian equilibrium and it has the following

properties: i) the �rm with larger average costs, called the inferior �rm from now on, never takes an

output larger than the one that maximizes per period pro�ts, ii) the inferior �rm becomes bankrupt

with positive probability (so monopolization occurs with positive probability), and iii) the support

of each �rm�s mixed strategy contains exactly one interval with a unique mass point. Moreover,

for each �rm the mass point coincides with the best reply of the static game (to the other �rm�s

mixed strategy). For the �rm with smaller average costs, called the superior �rm, the mass point

is isolated and lies strictly below the interval support. Since the superior �rm would not produce a

larger output than the best reply unless bankruptcy occurs, outputs in the interval support re�ect

the predatory activities of the superior �rm. For the inferior �rm, the mass point lies weakly above

the interval. This re�ects that the possibility of bankruptcy makes the inferior �rm prudent when

choosing outputs.

The failure of the standard grim-trigger strategies does not necessarily imply that collusion is

not sustainable as an equilibrium. Firms may maintain collusion by employing other self-enforcing

punishments rather than reverting to Cournot outputs. The celebrated �folk theorem� shows

that any feasible and individually rational pro�ts can be supported by a Subgame Perfect Nash
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Equilibrium (SPNE) when �rms are fully patient (i.e., their discount factors are close to 1). Our

interest is whether a similar characterization can be obtained when bankruptcy considerations are

introduced.

We show that the folk theorem remains to be valid in our environment, once the set of feasible

and individually rational pro�ts are appropriately modi�ed. In the original folk theorem (without

bankruptcy consideration), each �rm�s pro�t becomes individually rational if it exceeds a minimax

value, i.e., the minimum pro�t that a �rm can guarantee itself even though the opponent takes

the severest output, and this becomes zero in our duopoly model. Therefore, any combination of

feasible and positive pro�ts can be sustained by an equilibrium. The modi�cation of feasibility is

straightforward. Instead of considering all possible pro�ts, we should focus only on BF outputs,

since at least one �rm has an incentive to ruin the other if the output is not BF. The modi�cation

of the individual rationality condition comes from the fact that under �nancial constraints, �rms

that take severe punishments may become bankrupt as a consequence of their own action. To

avoid such scenario, we de�ne a new concept called the minimax BF value where minimization and

maximization are taken over only BF outputs.2 Then, we establish the modi�ed folk theorem that

re�ects bankruptcy consideration. Namely, we show that any BF output pro�le that gives pro�ts

greater than the minimax BF value can be supported as an SPNE and that pro�ts less than the

minimax BF value cannot be sustained in any SPNE for a discount factor close to 1.

We end this introduction with a preliminary discussion of the literature (see more on this in the

�nal section). Although a number of papers demonstrate that the �nancial structure does a¤ect

market outcomes in an oligopoly, most previous studies adopt either static or two-stage models.

There are at least two exceptions, Spagnolo (2000) and Kawakami and Yoshida (1997). Both

papers make use of repeated games like ours. The former examines the role of stock options in

repeated Cournot games. In his model, unlike standard repeated games, �rms do not necessarily

maximize average discounted pro�ts because stock options a¤ect managers�incentives. Taking this

e¤ect into consideration, Spagnolo (2000) shows that collusion becomes easier to achieve. In our

model, by contrast, collusion becomes more di¢ cult to support, at least when �rms adopt the

grim-trigger strategies. The latter incorporates a simple exit constraint into the repeated prisoners�

dilemma. In their model, each �rm must exit from the market no matter how it plays if the rival

2For technical reasons we assume here that average costs are increasing.
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deviates over certain number of periods, and hence no output pro�le can be bankruptcy free. They

show that predations inevitably occur when bankruptcy constraints are asymmetric and �rms are

long-sighted.

Finally, our approach might provide support to the notion that �rms may engage in predatory

activities when pursuing pro�t maximization. Standard explanations of this behavior are based

on incomplete information (Milgrom and Roberts, 1982), the learning curve (Cabral and Riordan,

1994) or �rms playing an attrition game (Roth, 1996). In our model, �rms have complete in-

formation, the technology is �xed and �rms play standard quantity-setting games. Nevertheless,

we obtain predation as a competitive equilibrium in mixed strategies. More importantly, both

predation and tacit collusion can be derived (as di¤erent equilibria) in a single model, which is a

completely new result to the best of our knowledge.

The rest of the paper is organized as follows. Section 2 spells out the model and the main

properties of the Bankruptcy-free set. Section 3 analyzes the existence and the properties of the

stationary Markov equilibrium. Section 4 studies the folk theorem in our setting. Finally, Section

5 o¤ers our �nal remarks.

2. The model and preliminary results

Two �rms compete in an in�nite number of periods. In each period �rms simultaneously choose

quantities. Firms produce an homogeneous product. In order to focus in the strategic decisions

regarding outputs we assume that �rms cannot accumulate pro�ts. Firms become bankrupt if

they su¤er losses in a period. A bankrupt �rm exits the market (i.e., �produces�zero every period

thereafter). When making its quantity decision in a period, each �rm knows what any �rm has

produced in all previous periods and which �rms became bankrupt. The equilibrium concept that

we use is Subgame Perfect Nash Equilibrium (SPNE). The formal de�nitions are given in Section

4. In the rest of this section we present the elements of the game that is played in each period. For

simplicity, the time dimension is not considered yet.

We refer to one of the �rms as the superior (S) and the other as the inferior (I). Let j 2 fI; Sg

denote a �rm and xj 2 R+ the output of �rm j: Let Ci(xi) denote the cost function. Assume

that for all output, x, ACS(x) � ACI(x), where ACj(:) is �rm j0s average-cost schedule. Assume

that average cost is nondecreasing and twice di¤erentiable. Let x = (xS ; xI) denote an output
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pro�le, and let X = xS + xI be the aggregate output. Let p(X) be the inverse demand function

assumed to be strictly decreasing in X for any positive price and twice di¤erentiable. Derivatives

are denoted by primes, i.e. p0(X) is the slope of the inverse demand at X, etc. Pro�ts for �rm i

are �i � p(X)xi �Ci(xi); and written as �i(x) or as �i(xi; xj). We assume the classical conditions

that guarantee existence and uniqueness of a Cournot equilibrium namely, for all x = (xS ; xI);

p00(X)xi + p
0(X) < 0; for all i 2 fS; Ig; (2.1)

p0(X)� C 00i (xi) < 0; for all i 2 fS; Ig: (2.2)

These conditions are satis�ed if, for example, demand is linear and cost functions are quadratic.

We denote by xC = (xCS ; x
C
I ) the Cournot output pro�le and by �

C
i �rm i0s payo¤ at the

Cournot output pro�le.

Central to the analysis of our dynamic set up is the concept of bankruptcy-free (BF) output

pro�les. This is the set of output pro�les in which no �rm makes negative pro�t and no �rm

can drive another �rm into bankruptcy without bankrupting itself. A motivation to focus on such

outputs is that they describe a long run equilibrium in an industry in which all �rms have incentives

to stay in the market and not to engage in predatory activities. Of course these activities might

be important but we look at the industry once the dust has settled and the predatory activities (if

any) have been done in the past. Formally,

De�nition 1. An output pro�le x̂ = (x̂S ; x̂I) is Bankruptcy-Free (BF) if:

a) �i(x̂) � 0; for all i 2 fS; Ig.

b) For all xj such that �j(xj ; xi) � 0; �i(xi; xj) � 0 for i 6= j:

Note that if �rm i is required to make some pro�t vi (it could be either positive or negative) to

avoid bankruptcy, we can de�ne a new pro�t function as ~�i(x) � �i(x)� vi and rede�ne BF with

respect to this new pro�t function.

Next we characterize the BF output pro�les. The characterizations will become important for

the analysis of the dynamic game.

Lemma 1. An output pro�le x = (xI ; xS) is BF if and only if, for both j, �j(x) � 0 and

ACj(xj) � ACk(D(ACj(xj))� xj); for all j such that xj 6= 0; (2.3)

where D(:) is aggregate demand and k 6= j.
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Proof. The requirement �j(x) � 0 for both j follows from the de�nition of BF. If x̂ > x̂0, then

�j(xj ; x̂
0
j) < 0 entails �j(xj ; x̂) < 0. Firs note that, if a �rm is not producing any output, this �rm

can not be driven to bankruptcy. Thus, consider a �rm j such that xj 6= 0; and let us see when the

other �rm k can drive �rm j to bankruptcy. De�ne

x(xj) = inffx 2 R+=�j(xj ; x) < 0g: (2.4)

By continuity �j(xj ; x(xj)) = 0. It follows that

p(xj + x(xj)) = ACj(xj) =) x(xj) = D(ACj(xj))� xj : (2.5)

It follows that �rm k can drive �rm j to bankruptcy without bankrupting itself if and only if

0 � p(xj + x̂k)�ACk(x̂k) < p(xj + x)�ACk(x) = ACj(xj)�ACk(D(ACj(xj))� xj) (2.6)

for some x̂k > x(xj). But (2.6) can hold if and only if (2.3) does not.

Corollary 1. If the average cost is constant for both �rms, ACj(x) = cj ; j 2 fI; Sg; and cS < cI
no output pro�le with both �rms active is BF. In a BF output pro�le only the superior �rm is

producing.

Proposition 1. Suppose x = (xI ; xS) is BF. Then, any combinations of outputs smaller than x,

i.e., x0 = (x0I ; x
0
S) such that x

0
I � xI and x0S � xS , must be BF.

Proof. Because demand curves slope down and average cost is nondecreasing, D(ACj(xj)) �

D(ACj(xj 0)) for xj � xj 0. This establishes the chain:

0 � ACk(D(ACj(xj))� xj)�ACj(xj) � ACk(D(ACj(x0j))� xj 0)�ACj(xj 0): (2.7)

It follows, from Lemma 1 that x0 is BF.

A useful characterization of the BF set can be provided under the following additional assump-

tion.

Assumption 1. Both �rms have increasing average cost, and there is a unique �x = (�xS ; �xI)

with �xi 6= 0 for all i 2 fS; Ig such that �i(�x) = 0 for all i 2 fS; Ig:

Assumption 1 always holds if for example demand is linear and Ci(xi) = 
ix
2
i with 
i > 0:
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Lemma 2. Suppose Assumption 1 holds: Then the set of BF output pro�les is:

BF = f(xS ; xI) j 0 � xi � �xi for i 2 fS; Igg: (2.8)

Proof. Note �rst that, trivially, �x = (�xS ; �xI) is BF. By Proposition 1, all x < �x are also BF:

We can see that no other output pro�le can be BF. Let (xS ; xI) be an output pro�le such that both

�rms have non negative pro�ts, and suppose that xI > �xI . Let us see that �rm S; by increasing

its output, can drive �rm I into bankruptcy keeping positive pro�ts for itself. Let x̂S be such that

x̂S + xI = �xS + �xI ; since xI > �xI ; x̂S < �xS ; thus, at (x̂S ; xI) �rm S has positive pro�ts. But since

average cost is increasing and xI > �xI ; �rm I at (x̂S ; xI) becomes bankrupt.

To close this section, we see under which conditions Cournot� output pro�le is BF in the

particular case of linear demand, p(xS +xI) = A�xS �xI ; and cost, CS(x) = 
Sx2; CI(x) = 
Ix2

with 0 < 
S � 
I : By Lemma 2 the BF set is completely characterized by the output pro�le

�x = (�xS ; �xI) such that ACI(�xI) = ACS(�xS) = p(�xS + �xI); thus, 
S �xS = 
I �xI = A� �xS � �xI :

�xS =

IA

(1 + 
S)(1 + 
I)� 1
; �xI =


SA

(1 + 
S)(1 + 
I)� 1
: (2.9)

The Cournot equilibrium is given by

xCS =
(1 + 2
I)A

4(1 + 
I)(1 + 
S)� 1
: (2.10)

xCI =
(1 + 2
S)A

4(1 + 
I)(1 + 
S)� 1
(2.11)

For the superior �rm is always the case that xCS � �xS : For the inferior �rm, xCI � �xI if and only if

(1 + 
I)(1� 2
S) � 1: (2.12)

Thus, the Cournot equilibrium is BF if and only if condition (2.12) holds.

Finally, note that the joint pro�t maximization output, xJ = (xJS ; x
J
I ); is always BF because

marginal cost for both �rms has to be equal, 
Sx
J
S = 
Ix

J
I ; and pro�ts are non negative for both

�rms. Thus, trivially xJj � �xj for all j 2 fS; Ig:

3. Dynamic Competition with Bankruptcy

In this section we focus on the dynamic model.
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In each period t each �rm i 2 fI; Sg chooses an output denoted by xti: Let xt = (xtI ; xtS) be a

pro�le of outputs in period t. The pro�ts obtained by �rm i in period t are �i(xt) t = 0; 1; ::::; � ; ::We

de�ne a state at t as the set of �rms that did not fall into bankruptcy in previous periods called

active �rms. Let � 2 (0; 1) be the common discount factor. Discounted pro�ts for �rm i are �i =P1
t=0 �

t�i(x
t). The continuation payo¤ in period t is given by �ti =

P1
r=0 �

r�i(x
t+r). At period 0

the game begins with the null history h0: For t � 1; a history, denoted by ht = (x0;x1; ::;xt�1), is

a list all outputs at all periods before t: A strategy for �rm i; �i; (pure or mixed) is a sequence of

maps, one for each period t; mapping all possible period t histories into a probability distribution

in outputs. Let � = (�I ; �S) denote a strategy pro�le (pure or mixed). A Markovian strategy

for �rm i is a mapping from the set of active �rms into a probability distribution on outputs. A

Nash Equilibrium (NE hereinafter) is a collection of strategies from which no �rm �nds it pro�table

to deviate. A Subgame Perfect Nash Equilibrium (SPNE hereinafter) is a collection of strategies

which are a NE in every possible subgame. A stationary Markovian SPNE is a SPNE in which

�rms use stationary Markovian strategies only. To ease notation whenever no confusion can arise,

we drop the time superindex.

In in�nite repeated games without bankruptcy considerations there is only one state, and hence

the stationary Markovian strategy (in the stationary Markovian SPNE) exactly coincides with the

Cournot output. In those games, collusive outcomes can be supported as a SPNE using grim-trigger

strategies in which any deviation from collusion triggers a switch to the Cournot outcome forever.

Under bankruptcy considerations, when the Cournot output pro�le is BF, the unique stationary

Markovian equilibrium is that both �rms produce the Cournot outcome when both are active and,

when only one �rm is active, this �rm produces the monopoly outcome. In equilibrium both �rms

are active in every period. It is not di¢ cult to see that, in this case, the collusive outputs that can

be supported without bankruptcy considerations by grim-trigger strategies, can be also supported

with bankruptcy considerations. Formally, the outputs (xi; xj) that can be supported for a given �

without bankruptcy considerations are those that satisfy:

�i(xi; xj) � (1� �)�i(Bi(xj); xj) + ��Ci ; (3.1)

where Bi(xj) = argmax�i(xi; xj): Given that �i(xi; xj) � �i(Bi(xj); xj);

��i(Bi(xj); xj) � ��Ci : (3.2)
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Since �i(Bi(xj); xj) is decreasing in xj and �Ci = �i(Bi(x
C
j ); x

C
j ); the above inequality implies that

xj � xCj . Thus, the quantities produced at those collusive outputs are smaller than at Cournot

outputs and by Proposition 1, if Cournot is BF, all these output pro�les are BF.

A di¤erent analysis has to be made when the Cournot outcome pro�le is not BF because it

could be the case that for some discounts factors one �rm may have incentives to bankrupt the

other �rm.3 In the following Lemma we provide the range of the discount factor that is needed in

order to prevent such a deviation.

Lemma 3. Suppose that (xCS ; x
C
I ) is not BF. Then, there exists � < 1 such that the stationary

Markov strategy xi = xCi ; i 2 fI; Sg in the state with all �rms active, and xi = xMi in states where

only �rm i is active constitutes a stationary Markovian SPNE if and only if � � �.

Proof. Deviations in states at which only one �rm is active are not pro�table because the

active �rm is producing the monopoly outcome and the other �rm is out of the market. Thus,

only deviations at states with both �rms active are possible. Note that if both �rms are active

and produce Cournot outputs, pro�ts for �rm i are �Ci =(1 � �). Given that the Cournot output

pro�le is not BF, a potential pro�table deviation is such that one �rm drives the other to bankruptcy

without bankrupting itself. The discounted pro�ts for this move are �Di +��
M
i (1��); where �Mi are

monopoly pro�ts and �Di are pro�ts in the deviation for �rm i: Firm i drives �rm j to bankruptcy

by producing an outcome x̂i > x(xCj ); where x(x
C
j ) is such that �j(x

C
j ; x(x

C
j )) = 0: Given that

�j(x
C
j ; x

C
i ) � 0; x(xCj ) � xCi ; and therefore, for all x̂i > x(xCj ); �i(x̂i; xCj ) < �i(x(xCj ); xCj ): Thus,

driving �rm j to bankruptcy is not a pro�table deviation for �rm i if and only if

�Ci � (1� �)�i(x(xCj ); xCj ) + ��Mi : (3.3)

For � ' 0 the right hand side of 3.3 is approximately �i(x(xCj ); xCj ), and then the inequality holds

because �Ci � �i(x(xCj ); xCj ): For � ' 1 the right hand side of 3.3 is approximately �Mi ; and the

inequality does not hold because �Ci < �
M
i : Since the right hand side of 3.3 is decreasing in �; by

the intermediate value theorem there is �i such that �
C
i � (1� �)�i(x(xCj ); xCj ) + ��Mi if and only

if � � �i: In conclusion, by taking � = minf�igi2fI;Sg; we get the result.
3Recall that if �rms have constant marginal costs, the Cournot outcome is BF if (i) costs are identical or (ii) they

are su¢ ciently di¤erent so that only one �rm produces in equilibrium. In cases where costs are di¤erent, but not

quite, the Cournot outcome is not BF and therefore, for some discount factors, it is not an equilibrium.

10



In order to grasp the implications of bankruptcy considerations, we start by analyzing the case

of linear demand and constant marginal cost. We also assume that at Cournot equilibrium both

�rms are active.

As we have shown in Lemma 3, even though the Cournot output is not BF; for � � � �rm S

does not have incentives to bankrupt �rm I: In the next proposition we show that if �rm S does

not have incentives to predate at Cournot outputs, it does not have incentives to predate at any

collusive output supported by triggering with the Cournot outcome forever without bankruptcy

considerations. The intuition behind this is that in all those collusive outcomes, �rms produce less

than under Cournot. And since the cost of bankrupting a �rm in the collusive output is larger

than in the Cournot outputs, if bankruptcy was not pro�table for the superior �rm in the Cournot

outputs, it is not pro�table under collusion. Before formally introduce the proposition, we need

the following auxiliary lemma.

Lemma 4. Suppose that a collusive outcome x = (xI ; xS) is supported by the grim-trigger strate-

gies under bankruptcy consideration for some � � �. Then, x can also be supported by the

grim-trigger strategies without bankruptcy consideration for the same �.

Proof. Since the punishment phase (repeated production of the Cournot outcomes) constitutes

a SPNE without bankruptcy consideration, it is enough to show that no deviation can occur on the

cooperation phase, i.e., (3.1) holds for x = (xI ; xS). By our assumption, x is supported by the grim-

trigger strategies under bankruptcy consideration. Therefore, each �rm i does not have incentive

to switch its output from xi to any other, in particular to Bi(xj), in the presence of bankruptcy

constraints. If choosing Bi(xj) makes the rival �rm to stay in the market, the incentive condition

remains identical to (3.1). If choosing Bi(xj) makes the rival to go bankrupt, the condition becomes

�i(xi; xj) � (1� �)�i(Bi(xj); xj) + ��Mi > (1� �)�i(Bi(xj); xj) + ��Ci : (3.4)

The second inequality is satis�ed since �Mi > �Ci . Thus, (3.1) must hold in both possible cases.

Proposition 2. Suppose demand is linear, marginal cost is constant and both �rms are active at

the Cournot output. When � � �; bankruptcy considerations do not change the collusive outcomes

that can be supported by grim-trigger strategies.

11



Proof. We have to show that, for � � �, (i) any x that can be supported (by the grim-trigger

strategies) under bankruptcy consideration can also be supported without the consideration, and

(ii) any x that can be supported without bankruptcy consideration can also be supported under

the consideration. Since (i) is already shown by Lemma (4) in general settings, we only need to

show (ii).

The collusive outcomes that can be supported for a given � without the bankruptcy considera-

tions satisfy (3.1). For i = S, the following inequality holds.

�S(xS ; xI) � (1� �)�S(BS(xI); xI) + ��CS : (3.5)

As we have shown, xI � xCI . Under bankruptcy considerations, we have to add the condition

that each �rm does not have incentives to drive the other �rm to bankruptcy. Since only �rm S

possibly has those incentives, the condition that will prevent that deviation is,

�S(xS ; xI) � (1� �)�S(x(xI); xI) + ��MS : (3.6)

Since � � �, at the Cournot output pro�le �rm S does not have incentives to bankrupt �rm I,

�CS � (1� �)�S(x(xCI ); xCI ) + ��MS : (3.7)

Condition (3.5) can be rewritten as

�S(xS ; xI) � (1� �)�S(BS(xI); xI)� (1� �)�CS + �CS : (3.8)

Substituting (3.7) into (3.8),

�S(xS ; xI) � (1� �)�S(BS(xI); xI)� (1� �)�CS + (1� �)�S(x(xCI ); xCI ) + ��MS ; (3.9)

which is also rewritten as

�S(xS ; xI) � (1� �)�S(BS(xI); xI)� (1� �)�CS + (1� �)�S(x(xCI ); xCI ) (3.10)

� (1� �)�S(x(xI); xI) + (1� �)�(xS(xI); xI) + ��MS

= (1� �)[(�S(BS(xI); xI)� �S(x(xI); xI))� (�S(BS(xCI ); xCI )� �S(x(xCI ); xCI ))]

+ (1� �)�S(x(xI); xI) + ��MS :

In order to derive (3.6), it is enough to show the third line in (3.10) being non-negative, that is,

�S(BS(xI); xI)� �S(x(xI); xI) � �S(BS(xCI ); xCI )� �S(x(xCI ); xCI ): (3.11)
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Note that �S(BS(xI); xI) � �S(x(xI); xI) is decreasing in xI for all xI < xCI in the wide range of

situations, including the linear demand with constant marginal costs. Therefore, (3.11) holds under

our assumption.

When � > �; the stationary Markov strategy xi = xCi ; i 2 fI; Sg in the state with all �rms active,

and xi = xMi in states where only �rm i is active is not a stationary Markovian Perfect Equilibrium

because �rm S has incentives to bankrupt �rm I: Thus, the Markovian Perfect equilibrium may

involve mixed strategies. We formally discuss this point at the end of this section. Before that, we

discuss �rst the possibility of collusion in this case. In particular, consider all collusive outcomes

supported with grim-trigger strategies without bankruptcy considerations. In the next example we

show that none of those collusive outcomes can be supported as an SPNE because in all of them,

�rm S have incentives to bankrupt �rm I:

Example 1. Let p(X) = (a � xS � xI); a > 0; aI = a � cI = 5; aS = a � cS = 7; � = 0:3: Note

�rst that � > � = 0:235 29: Let (xS ; xI) be an output pro�le satisfying (3.1). That is:

(7� xI � xS)xS � 0:7(
7� xI
2

)2 + 2:7; (3.12)

(5� xI � xS)xI � 0:7(
5� xS
2

)2 + 0:3 (3.13)

For � > �; at the Cournot output �rm S has incentives to bankrupt �rm I: We can see that at all

the output pro�les that satis�ed (3.12) and (3.13), �rm S has incentives to bankrupt �rm I: That

is,

(7� xI � xS)xS < 1:4(5� xI) + 0:3(
7

2
)2: (3.14)

In Figure 1 the area enclosed between the two solid lines corresponds to all the output pro�les

(xI ; xS) that satisfy (3.12) and (3.13). The area above the dash line corresponds to all the outputs

that satisfy (3.14). Note that for all (xI ; xS) that satisfy (3.12) and (3.13), �rm S has incentives

to bankrupt �rm I:4

4A similar example can be cosntructed with linear demand and cuadratic cost.
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As we have mentioned above, in what follows we discuss the properties of equilibrium when

� > �: We start by a general observation that will be useful later on.

Lemma 5. For any pure strategy SPNE, no �rm goes bankrupt.

Proof. Suppose that �rm i goes bankrupt in some period t, which happens only if its pro�t in

t is negative. Since the pro�ts after bankruptcy are always zero, the i�s continuation payo¤ at t is

zero. However, producing nothing at t and at any following periods, assures zero pro�ts, so �rm i

can pro�tably deviate by choosing xti = 0 at t. Thus we derive contradiction.

Note that Lemma 5 holds even when strategies are not constrained to be Markovian. The

following lemma shows that when the repeated Cournot outcome cannot be an equilibrium, no

equilibrium in pure strategies exists when � is large.

Lemma 6. For any � > �, there is no stationary Markov SPNE in pure strategies.

Proof. Given no bankruptcy occurs in an equilibrium in pure strategies (Lemma 5), the re-

peated Cournot outcome when both �rms are active is a unique mutual best reply in pure strategies

that are Markovian. However, it cannot be an equilibrium for � > � by Lemma 3.

In light of Lemma 6, we study equilibria in mixed strategies when the in�nite repetition of the

Cournot output cannot be an equilibrium, i.e., � > �. The existence of a stationary Markovian
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equilibrium is guaranteed by an extension of a theorem proved in Dasgupta and Maskin (1986)

which we leave in an appendix.

Proposition 3. For any �, there exists at least one stationary Markovian equilibrium, possibly, in

mixed strategies.

Proof. See Appendix.

The characterization of the mixed strategy equilibrium is not an easy task. We limit our study to

the characterization of the support of the mixed strategy. The details are developed in the Appendix

but we highlight here some of the properties. i) The support of each �rm�s mixed strategy contains

exactly one interval with a unique mass point. Moreover, for each �rm the mass point coincides

with the best reply of the static game (to the other �rm�s mixed strategy). ii) The inferior �rm

becomes bankrupt with positive probability (so monopolization occurs with positive probability).

There is only one output in its support in which the probability of bankruptcy is zero, namely

the inferior point of the support. As output increases, the probability of bankruptcy increases but

is never one. The mass point lies weakly above the interval. This re�ects that the possibility of

bankruptcy makes the inferior �rm prudent when choosing outputs. iii) For the superior �rm, the

mass point is isolated and lies strictly below the interval support. Since the superior �rm would

not produce a larger output than the best reply unless bankruptcy occurs, outputs in the interval

support re�ect the predatory activities of the superior �rm.

4. Equilibrium with Increasing Average Cost and Patient Firms

The folk theorem of repeated games states that when �rms are su¢ ciently patient, arbitrary feasible

payo¤s larger than the minimax can be obtained as the average payo¤ of an SPNE of the repeated

game. Thus a natural question is to ask what kinds of payo¤s can be supported as an SPNE in our

model for su¢ ciently patient �rms. This section is devoted to this task under Assumption 1 (see

Section 3). We concentrate here on pure-strategy equilibria.

We �rst see that, for su¢ ciently patient �rms (� close to one), any SPNE of the dynamic game

yields BF action pro�les in each period. This result is independent on both demand and costs

conditions. Denoting monopoly pro�ts for �rm i as �Mi , we have the following:
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Proposition 4. Let ((x1S ; x
1
I); :::; (x

t
S ; x

t
I); ::::) be a sequence of output pro�les yielded by a SPNE

for a su¢ ciently large � and such that there is an � > 0 with �i(xt) + � � �Mi for all t = 1; 2; :::;

i 2 fS; Ig. Then, when � ! 1; (xtS ; x
t
I) is BF for all t:

Proof. Suppose that in period t, (xtS ; x
t
I) is not BF: Thus, one �rm can bankrupt the other.

Suppose, without loss of generality, that the superior �rm can bankrupt the inferior one. Consider

the following strategy for �rm S. In period t; �rm S produces an output ~xS that drives �rm I into

bankruptcy, and produces the monopoly output thereafter. The continuation payo¤ for �rm S is

(1� �)(�S(~xS ; xtI) + ��MS + �2�MS + :::): (4.1)

The continuation payo¤ at t for the sequence ((x1S ; x
1
I); :::; (x

t
S ; x

t
I); :::) is:

(1� �)(�S(xt) + ��S(xt+1) + �2�S(xt+2) + :::): (4.2)

By the de�nition of an SPNE,

�S(x
t) + ��S(x

t+1) + �2�S(x
t+2) + :::: � �S(~xS ; xtI)) + ��MS + �2�MS + ::: (4.3)

or

�S(x
t)��S(~xS ; xtI) � �(�MS ��S(xt+1))+ �2(�MS ��S(xt+2))+ ::: � ��+ �2�+ ::: = �

�

1� � : (4.4)

Clearly, when � ! 1, the above inequality is impossible, contradicting that we were in an SPNE.

The condition that �i(xt) + � � �Mi is satis�ed, for instance, for stationary sequences. This

result shows that when �rms are su¢ ciently patient, incentives for predation are high so �rms only

choose BF allocations in equilibrium.5

In what follows we characterize the payo¤ that can be supported as a SPNE of the dynamic

game for su¢ ciently patient �rms. For this purpose, we adapt the standard de�nition of a minimax

payo¤ to the case in which outputs are constrained to be BF.

Assumption 1 guarantees that the set of BF output pro�les is not empty and, as we have shown

in Lemma 2, is characterized as BF = f(xS ; xI)=0 � xi � �xi for i 2 fS; Igg; where �x = (�xS ; �xI)
5This result can not be extended to n �rms. The di¢ culty is that, after a �rm is bankrupted, the strategies of

the surviving �rms can be anything. An example of this is obtainable under request from the authors.
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with �xi 6= 0 for all i 2 fS; Ig is such that �i(�x) = 0 for all i 2 fS; Ig: The minimax BF payo¤

for �rm i is de�ned as:

�im = min
xj2[0;�xj ]

max
xi2[0;�xi]

�i(xi; xj) = max
xi2[0;�xi]

�i(xi; �xj): (4.5)

Note that, since �i(�x) = 0; �im > 0 because at (�xi; �xj) �rm i by reducing his output gets

positive pro�ts. The standard minimax, when applied to our model, yields a minimax payo¤ of

zero because �rm j 6= i could produce an output, call it xj , such that the best reply of i is to

produce zero. But xj might not ful�ll the de�nition of minimax BF payo¤s because it might drive

�rm j to bankruptcy.

In the following example we show the isopro�ts corresponding to the minimax BF payo¤.

Example 2. Let �rm I be such that �I(xI ; xS) = (10� xI � xS)xI � x2I ; and �rm S be such that

�S(xS ; xI) = (10�xS�xI)xS� 1
5x
2
S . In Figure 2, the intersection of the linear solid lines provides

(�xI ; �xS):The dash lines correspond to the best replies of the �rms and the curve lines corresponds

to the minimax BF isopro�ts. Minimax outputs are those between the two isopro�t corresponding

to minimax BF pro�ts.

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

xI

xS

Figure 2

The next proposition shows that, for a su¢ ciently large �; no SPNE of the dynamic game can

give any �rm a payo¤ lower than its minimax BF payo¤.

17



Proposition 5. Under Assumption 1, �0 2 (0; 1) exists such that for all � 2 (�0; 1), �i < �im

cannot be supported in any SPNE.

Proof. For each i 2 fS; Ig; let �i 2 (0; 1) be such that �i�Mi = �im where �Mi is the monopoly

pro�ts for �rm i and �im is the minimax BF payo¤. Since �Mi > �im; �
i exists. Let �0 = maxi2N �i

and let � 2 (�0; 1): Suppose that �i < �im is supported as an SPNE for � 2 (�0; 1): If xtj 2 [0; �xj ]

for all t on and o¤ the equilibrium path, �rm i could have achieved at least �im irrespective of �

by choosing an output xti 2 [0; �xi] (the standard argument in repeated games can be applied here

because in this case the output pro�le at each t is in the BF set). Therefore, if �i < �im happens

in equilibrium, xtj > �xj must hold for some t either on or o¤ the equilibrium path. We show that if

this is the case, the continuation payo¤ for i at t in equilibrium; �ti; must be such that �
t
i � ��Mi :

Suppose that �ti < ��Mi ; since x
t
j > �xj , �rm i can make �rm j bankrupt retaining non-negative

pro�ts, and can achieve a monopoly pro�t in every period from t+ 1: Although the bankruptcy of

�rm j has a cost at period t, the continuation payo¤ for �rm i if it deviates from equilibrium will

be at least ��Mi : However, if ��
M
i > �ti such a deviation would be pro�table for �rm i and would

contradict the notion that we are in equilibrium. Therefore, �ti � ��Mi : Since � 2 (�0; 1); �ti > �im:

Thus, �i must exceed �im which concludes the proof.

Note that when � is very small, �rms may have little incentives to engage in predatory activities

and allocations which are not BF might be supported as an SPNE. For instance, if � = 0 only the

payo¤s corresponding to the Cournot equilibrium can be supported as an SPNE, but Cournot

equilibrium outputs may be not BF (see Figure 2).

We are now ready to prove a folk theorem regarding BF allocations. We say that �i is an indi-

vidually rational BF payo¤ if �i > �im: An individually rational BF vector payo¤ (�i)i2fS;Ig

is feasible if a BF output pro�le (xi; xj) exists such that �i = �i(xi; xj) for all i; j 2 fS; Ig; i 6= j:

In Figure 2 the BF output pro�les that give an individually rational BF payo¤ are the ones in the

area limited by the minimax BF isopro�ts.

Proposition 6. Suppose Assumption 1 holds. Let � = (�i)i2fS;Ig be a feasible and individually

rational BF payo¤ vector. Then, �0 2 (0; 1) exists such that for all � 2 (�0; 1), � is the average

payo¤s in some SPNE.

Proof. The proof is given by constructing an equilibrium which is originally proposed by

Fudenberg and Maskin (1986). Let (�i)i2fS;Ig be feasible and individually rational BF payo¤
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vector. By the de�nition of feasibility, there is a BF output pro�le (xi; xj) such that �i = �i(xi; xj)

for i; j 2 fS; Ig; i 6= j:

Suppose each �rm i 2 fS; Ig produces output xi in each period if no deviation has occurred,

but both i 2 fS; Ig produce �xi, for T periods once one of them unilaterally deviates from the

equilibrium path. If no one deviates during these T periods, then �rms go back to the original

path. Otherwise, if one of them deviates, then �rms restart this phase for T more periods. We

prove that this strategy constitutes an SPNE.

First consider a deviation from the equilibrium path. Suppose �rm i produces x0i 6= xi in some

period, say period t. By the one-stage-deviation principle (e.g. Fudenberg and Tirole, 1991, p.110),

a deviation is pro�table if and only if �rm i could pro�t by deviating from the original strategy in

period t only and conforming thereafter. Therefore, �rm i can bene�t by deviation if and only if

x0i exists such that

(1� �)�i(x0i; xj) + (1� �)(� + ::+ �T )�i(�xi; �xj) + �T+1�i > �i; (4.6)

or equivalently,

(1� �)�i(x0i; xj) + �T+1�i > (1� �)(1 + � + :::+ �T )�i + �T+1�i; (4.7)

which it holds whenever:

(1� �)f(�i(x0i; xj)� �i)� (� + :::+ �T )�ig > 0: (4.8)

Let �i = maxx0i �i(x
0
i; xj)� �i and choose T such that �i < T�i. Note that the left hand side

of (4.8) is weakly less than (1� �)f�i� (�+ :::+ �T )�ig. This term is non-positive when � is close

to 1. Therefore, (4.8) cannot be satis�ed for such T .

By the same argument as above, �rm i can bene�t by deviating from the mutual minmax phase

if and only if x00i exists such that

(1� �)�i(x00i ; �xj) + (1� �)(� + :::+ �T )�i(�xi; �xj) + �T+1�i

> (1� �)(1 + � + :::+ �T�1)�i(�xi; �xj) + �T�i, (4.9)

which can be written as:

�i(x
00
i ; �xj) > �

T�i: (4.10)
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Note that �i(x00i ; �xj) � maxxi2[0;�xi] �i(xi; �xj) = �im: Since �i > �im by assumption, (4.10) never

holds when � is close to 1.

Thus there is no pro�table deviation when � is su¢ ciently close to 1. Since � is an arbitrary

feasible and individually rational BF payo¤ vector, the proof is complete.

5. Final Remarks

In this paper we have developed a theory of dynamic competition in which �rms may bankrupt

other �rms. We have shown that this theory provides new insights into the theory of dynamic

games. Cournot may not constitute a Markovian equilibrium. When this is the case, collusive

outcomes supported as an SPNE by grim-trigger strategies without bankruptcy considerations may

not be supported now, because in those outcomes, the superior �rm have incentives to predate.

For su¢ ciently high � the Markov equilibrium involves mixed strategies and predation occurs with

positive probability. Finally, we have shown limited results, a folk theorem kind of result. Collusion

is more di¢ cult to sustain than in standard supergames and, in particular, not every individually

rational payo¤ can be supported by a SPNE.

Our results are obtained at the cost of making several simplifying assumptions to make the

model tractable. Here we discuss some of the issues arising from these simpli�cations.

No accumulation

In this paper we focused on outputs that make other �rms bankrupt, but we did not consider

the funds that might support or deter aggressive strategies (the "deep pocket" argument). Our

research strategy is to analyze the incentives to prey in the simplest possible case where no funds

can be accumulated. A full �edged model of accumulation and predation is, no doubt about it,

preferable but it is beyond the scope of our paper. In other cases, accumulation of pro�ts might play

an important role in shaping the SPNE set as in the model of Rosenthal and Rubinstein (1984).6

Credit

If credit is given on the basis of past performance, the rede�nition of the BF set can be applied

here and credits can be incorporated into the model. However, if credit is given on the basis of

6They characterize a subset of the Nash equilibria in the repeated game with no discounting (i.e., � = 1) where

each player regards ruin of the other player as the best possible outcome and his own ruin as the worst possible

outcome.
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future performance, future performance also depends on credit (via the BF constraints), which

makes this problem extremely complex. This points to a deep conceptual problem about credit in

oligopolistic markets where �rms might be made bankrupt. This topic should be the subject of

future research.

Entry

In this paper we assumed that the disappearance of a �rm does not bring a new one into the

market. Of course this should not be taken literally. What we mean is that if entry does not

quickly follow, it makes sense, as a �rst approximation, to analyze the model with a given number

of �rms. For instance it can be shown that when �rms are very patient and costs and demand are

linear, ruining a �rm is a good investment even if monopoly lasts for one period. In other cases,

though, the nature of equilibria will be altered if, for instance, entry immediately follows the ruin

of a competitor as in the model of Rosenthal and Spady (1989).7

Buying Competitors

In our model, there is no option to buy a �rm. Sometimes it is argued that buying an opponent

may be a cheaper and safer strategy than ruining it. We do not deny that buying competitors

plays an important role in business practices. However, we contend that under the option of buying,

ruining a competitor is irrational. First, buying competitors may be forbidden by a regulatory body

because of anticompetitive e¤ects. Second, when the owner of a �rm sells it to competitors, this

does not stop her from creating a new �rm and �nancing it with the money received from selling the

old one. In other words, selling a �rm is not equivalent to a contract in which the owner commits

not to enter into a market again. Thus, bankruptcy may be the only credible way of getting rid

of a competitor. Finally, buying and ruining competitors may complement each other because the

acquisition value may depend on the aggressiveness of the buyer in the past; see Burns (1986) for

some evidence in the American tobacco industry. Thus, it seems that a better understanding of

the mechanism of ruin might help to further enhancement of our understanding of how the buying

mechanism works in this case.

Summing up, the model presented in this paper sheds some light on certain aspects of the

equilibrium in oligopolistic markets in which �rms may make each other bankrupt . We hope that

7They consider a prisoner�s dilemma in continuous time in a market with room for two �rms only. When a �rm

goes bankrupt, this �rm is immediately replaced by a new entrant. They show that some kind of predatory behavior

can arise in equilibrium.
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the insights obtained here can be used in further research in this area.

6. APPENDIX

Proof of Proposition 3. There are 4 possible states in our dynamic game, i.e., the set of active

�rms is (i) S and I, (ii) S (iii) I, and (iv) empty. Note that continuation payo¤s in (ii) to (iv) can

be derived straightforwardly. Then, a stationary Markov SPNE of our dynamic game is identical

to a Nash equilibrium of a static game with the following payo¤ functions for each �rm:

For all x such that �i(x) � 0 for all i 2 fS; Ig;

Vi(x) =
�i(x)

1� � i 2 fS; Ig; (6.1)

for all x such that �i(x) � 0 and �j(x) < 0; i 6= j; i; j 2 fS; Ig;

Vj(x) = �j(x); (6.2)

Vi(x) = �i(x) +
�

1� ��
M
i ; (6.3)

for all x such that �i(x) < 0 for all i 2 fS; Ig;

Vi(x) = �i(x); i 2 fS; Ig: (6.4)

This game has discontinuous payo¤ functions so the usual existence theorems can not be applied

here. The discontinuities in our game arises because of the possibility of bankruptcy. When only

one �rm goes bankrupt, the bankrupted �rm disappears from the market and the other one gets

monopoly pro�ts. Fortunately, Theorem 5b in Dasgupta and Maskin (1986) (D&M hereinafter) can

be invoked to show the existence of a Nash equilibrium in mixed strategies. Roughly speaking, the

existence of equilibrium is guaranteed when utility functions are bounded and continuous except

in a set of measure zero in the (joint) strategy space. More precisely, the theorem requires that (a)

discontinuities occur in a set whose dimension is strictly lower than the dimension of the strategy

space, (b) strategy sets are intervals, and (c) when we approach a discontinuity if a �rm payo¤

falls, another rises. 8

8The original proof of D&M presumes that the set of points in which discontinuities occur is the main diagonal,

i.e., xS = xI . However, as the authors discuss in subsection 4.1, it is easy to verify that the essentially same proof

also holds as long as the dimensionality assumption is satis�ed.
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To apply this theorem we need to construct an auxiliary game in which we disregard the

possibility that both �rms go bankrupt. We will now show that this auxiliary game ful�lls the

conditions of Theorem 5b. The bankruptcy-free constraint of a �rm i is p(xi + xj) � ACi(xi) and,

since demand is strictly decreasing (and average costs are non-decreasing), the discontinuity set for

a �rm i is

A(i) = f(xi; xj) 2 R2+ j either xj = D(ACi(xi))� xi and �j(xi; xj) > 0;

or xi = D(ACj(xj))� xj and �i(xi; xj) > 0g; (6.5)

which is of lower dimension than the set of possible outputs which is a subset of R2+ with dimen-

sionality 2. For instance, under linear demand (p = a � x1 � x2) and quadratic costs (�ix2i ) the

set of outputs for which a discontinuity occurs for �rm i is the intersection of the segment given by

a� xi � xj � �ixi = 0 and a� xi � xj � �jxj > 0, j 6= i:

Pro�ts are bounded and continuous except in the aforementioned set, and at the discontinuity

point when the pro�t of a �rm falls (because this �rm is bankrupt) the pro�t of the other �rm rises

(because it becomes a monopolist). Thus this auxiliary game ful�lls the conditions of Theorem 5b

in D&M and, therefore, it has an equilibrium in mixed strategies. The �nal step is to show that the

Nash equilibrium of this auxiliary game is a Nash equilibrium of the original game. This is done

by realizing that no pro�table deviation exists in the original game from the Nash equilibrium of

the auxiliary game: for the superior �rm because it will never bankrupt itself and for the inferior

�rm because in order to bankrupt the superior �rm it will become bankrupt itself.

Characterization of the support of the Markovian mixed strategy equilibrium.

In the rest of the appendix, we study the structure of the Markovian mixed strategy equilib-

rium which we simply call �equilibrium.�To characterize the equilibrium support, we impose two

assumptions.

Assumption AC The average cost for each �rm is constant.

Let cS denote the average constant cost of the superior �rm and cI the average constant cost

of the inferior �rm, cS > cI :

Assumption EC Each �rm i�s expected pro�t function (given other �rm�s mixed strategy) is

strictly concave in xi for any xi > 0.

Let E[�i(xi; xj) j �j ] be expected pro�ts of �rm i, given that �rm j is using the mixed strategy

�j :
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Assumption EC is often imposed in the IO literature, which holds under the wide range of

environments, such as linear cost functions with linear demand.

In order to characterize the support of the Markovian mixed strategy we need the following

auxiliary lemmas.

Lemma 7. For any mixed strategy of the other �rm, the optimal output that maximizes a �rm�s

expected pro�t in a period (i.e. E[�i(xi; xj) j �j ]) is always unique.

Proof. From Assumption EC, argmaxxi>0E[�i(xi; xj) j �j ] is unique (if it exists), and i�s

optimal output is either argmaxxi>0E[�i(xi; xj) j �j ] or 0. Assumption AC implies that the

expected pro�t of the former is always positive, so it cannot be the case that both become optimal.

For constant marginal costs with linear demand, we can easily derive the optimal output as

follows. Firm i�s expected pro�t function (given j�s mixed strategy �j) is

E[�i(xi; xj) j �j ] = E[(A� (xi + xj)� ci)xi j �j ] (6.6)

= (A� (xi + E[xj ])� ci)xi;

which is a quadratic function of xi. Then, the optimal solution is derived by

xi = max

�
0;
A� ci
2

� E[xj ]
2

�
; (6.7)

which is clearly unique.

Lemma 8. Given � > �, for any equilibrium in mixed strategies,

(i) at least one �rm goes bankrupt with strictly positive probability,

(ii) no �rm uses pure strategy.

Proof. (i) Since � > �; at least one �rm is not using a pure strategy. Suppose without loss of

generality that is �rm j and suppose that no �rm goes bankrupt. Pick any two outputs x; x0 from

the support of the mixed strategy of �rm j. Then, the �rm must be indi¤erent between choosing x

and x0. However, given that no bankruptcy occurs, the �rm�s optimal output (to the other �rm�s

equilibrium strategy) is always unique by Lemma 7. Thus we get a contradiction.

(ii) Suppose on the contrary that �rm i uses pure strategy xi (and j uses mixed strategy �j). Then,
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�rm j does not go bankrupt in equilibrium, since choosing such an output in the support of j is

clearly suboptimal. Let x < x0 be two di¤erent outputs in the support of �j . Lemma 7 implies

that, in order for j to be indi¤erent between x and x0, bankruptcy must occur in either output.

Since �i is decreasing in xj , i must go bankrupt under x0 but not under x. Moreover, the support

of �j cannot contain a point other than x and x0 (since choosing such an output cannot yield the

same pro�t as x and x0 do). However, given that j randomizes only over the two points x and x0,

x must be best reply to xi, since bankruptcy does not occur in such case. Then, we can conclude

that either i or j has a pro�table deviation; j has incentive to set x0 as small as possible to make

i going bankrupt, but then i can avoid bankruptcy by slightly reducing xi. In this way, (xi; �j)

cannot be a mutual best reply.

Let us denote smallest and largest outputs in the support of the equilibrium (mixed) strategy

for �rm i by xi and xi, respectively. By Lemma 8 (ii), we have xi < xi for each i.

Lemma 9. In equilibrium, the following condition must hold for every �rm i:

�i(xi; xj) > 0:

Proof. Suppose �i(xi; xj) � 0. By choosing xi = xi, �rm i always receives non-positive pro�t,

and strictly negative pro�t when xj > xj (note �i(xi; xj) is decreasing in xj). Since the latter case

occurs with positive probability, i would always become strictly better o¤ by choosing xi = 0.

Lemma 10. In equilibrium, the following condition must hold for at least one �rm:

�i(xi; xj) > 0:

Proof. Suppose on contrary that �i(xi; xj) � 0 and �j(xj ; xi) � 0 hold simultaneously.

Combining with Lemma 9, the following inequalities must hold.

�i(xi; xj) > 0 and �j(xj ; xi) � 0) ACi(xi) < p(xi + xj) � ACj(xj); (6.8)

�j(xj ; xi) > 0 and �i(xi; xj) � 0) ACj(xj) < p(xj + xi) � ACi(xi): (6.9)

Since average costs are non-decreasing, the above conditions imply

p(xj + xi) � ACi(xi) � ACi(xi) < p(xi + xj); (6.10)

p(xi + xj) � ACj(xj) � ACj(xj) < p(xj + xi); (6.11)
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which further implies p(xi+ xj) < p(xj + xi) and p(xj + xi) < p(xi+ xj); which is a contradiction.

Lemma 11. If �i(xi; xj) > 0 holds, then

(i) xi maximizes the expected per period pro�t given j�s mixed strategy, E[�i(xi; xj) j �j ];

(ii) xi must be isolated from other part of the support of i�s equilibrium strategy.

Proof. Since �j(xj ; xi) > 0 by Lemma 9, j�s pro�t �j(xj ; xi) is non-negative for any xj 2 [0; xj ].

This implies that probability such that j goes bankrupt is 0 when i chooses output su¢ ciently close

to xi. Therefore, (i) xi must be optimal given that no bankruptcy occurs, and (ii) no output close

to xi can be contained in i�s equilibrium support.

Lemma 12. In equilibrium, �rm I never takes strictly higher output than the one which maximizes

its per period pro�t given �rm S�s equilibrium mixed strategy. That is,

xI � argmax
xI

E[�I(xI ; xS) j �S ]:

Proof. Note �rst that I can make S bankrupt only if I itself goes bankrupt. Hence, �rm

I can never be better o¤ by bankrupting �rm S. Choosing xI > xI weakly increases the risk of

bankruptcy and strictly reduces �I in that period. Therefore, it must be suboptimal. (Note that I

makes S bankrupt only when I itself goes bankrupt.)

Lemma 13. The following conditions must hold:

(i) �I(xI ; xS) � 0:

(ii) �S(xS ; xI) > 0:

Proof. We �rst verify (i). Suppose on the contrary that �I(xI ; xS) > 0 holds. Then,

by Lemma 11, I must choose a strictly larger output than argmaxxI E[�I(xI ; xS) j �S ], which

contradicts Lemma 12. Given that (i) holds, (ii) must be satis�ed by Lemma 10.

Lemma 14. Let x0S = argmaxxS E[�S(xS ; xI) j �I ]: The equilibrium support of �rm S0s mixed

strategy is such that xS = x0S :

Proof. By Lemma 13, �S(xS ; xI) > 0:Thus, by Lemma 11, xS maximizes S�s expected pro�t

(per period) given I�s mixed strategy and it is an isolated point. Therefore, xS = x0S :
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Lemma 15. In equilibrium, �rm I goes bankrupt with positive probability.

Proof. By Lemma 8 at least one �rm goes bankrupt. If I does not go bankrupt then �rm S is

bankrupt, but this is impossible because whenever �rm S is bankrupt �rm I is also bankrupt.

Lemma 16. For all xI in I 0smixed strategy support, �I(xI ; xS) � 0:

Proof. This follows immediately from Lemma 13.

Lemma 17. In equilibrium:

(i) There is at most an ~xI in the support of I 0s mixed strategy such that the probability of

bankruptcy for �rm I is zero.

(ii) If such ~xI exists, then ~xI = xI :

Proof. By Lemma 12, xI � argmaxxI E[�I(xI ; xS) j �S ]: If there are two points with zero

probability of bankruptcy, ~x1I and ~x
2
I ; it should be the case that ~x

1
I < ~x2I < xI : But then, since

each �rm i�s expected pro�t function (given other �rm�s mixed strategy) is strictly concave in xi;

it could not be that the payo¤ of �rm I is the same at ~x1I and at ~x
2
I : The proof of (ii) follows

immediately.

Lemma 18. The probability of bankruptcy for �rm I at xI is zero.

Proof. Suppose on the contrary that the probability that I goes bankrupt at xI is positive.

This probability is the probability that the superior �rm produces xS 2 (~xS ; xS ]; for ~xS such that

p(xI + ~xS) = cI : By Lemma 9, �I(xI ; xS) > 0; thus, ~xS 2 (xS ; xS ]: If ~xS is in the support of S0s

mixed strategy, �rm S; by concentrating all the mass placed at [~xS + "; xS ] in ~xS + "; will not

change the probability of bankruptcy for �rm I and will increase its per period payo¤. If ~xS is not

in the support of S0s mixed strategy, let x̂S > ~xS be the closest point to ~xS in the support of S0s

mixed strategy. Again, �rm S; by placing all the mass placed at [x̂S ; xS ] in x̂S ; will not change the

probability of bankruptcy for �rm I and will increase its per period payo¤.

Lemma 19. If the support of �rm I 0s mixed strategy contains an interval [x�I ; xI
�], then x�I = xI ;

and there exists no other interval.
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Proof. Suppose that [x�I ; xI
�] is in the support and x�I > xI : Then, by Lemma 17 the probability

of bankruptcy for �rm I is positive at all xI 2 [x�I ; xI�]: Suppose without loss of generality that

[x�I ; xI
�] is the �rst interval in the support. The argument in the proof of Lemma 18 can be

replicated here applied to x�I : Thus, the probability of bankruptcy for �rm I at x�I should be zero.

By Lemma 17 and 18, x�I = xI : Therefore, it can not be another interval in the support.

Lemma 20. The support of I�s mixed strategy contains exactly one interval.

Proof. By Lemma 19, if the support contains an interval, it must be unique. Suppose that

the support does not contains an interval. Since all �rms are playing mixed strategies, the support

should contain at least two isolated mass points. Let these two points be x1I and x
2
I ; and assume

that x1I < x2I . At x
2
I �rm I must go bankrupt with positive probability. Thus, �I(x2I ; xS) < 0:

But this implies that probability that I goes bankrupt is unchanged for any xS 2 [xS � "; xS ]

for su¢ ciently small �: However, if xS � " is in the support of S0s mixed strategy, S cannot be

indi¤erent over this interval since there is a unique optimal output by Lemma 7: If xS � " is not

in the support, it is a pro�table deviation for �rm S; because choosing xS � " does not change the

probability of bankruptcy and gives a higher per period payo¤ (note xS = x0S < xS by Lemma 14).

Lemma 21. The equilibrium support of �rm S0s mixed strategy contains at least one interval

[x�S ; xS
�].

Proof. Note that �I contains an interval by Lemma 20 and xI � argmaxxI E[�I(xI ; xS) j

�S ] by Lemma 12. Since I�s per period pro�t is strictly increasing and also continuous in xI in

the interval, the probability of bankruptcy must be continuously increasing (in order for I to be

indi¤erent in the interval). This becomes possible only when �S also contains an interval where

the distribution of xS does not jump.

Lemma 22. For any interval in the support of the �rms�equilibrium mixed strategy, the following

must hold:

(i) �I(x�I ; xS
�) = 0.

(ii) �I(xI�; x�S) = 0
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Proof. (i) Lemma 18 implies �I(x�I ; xS
�) � 0: Since �I(x�I ; xS

�) � 0 by Lemma 13, equality

must hold.

(ii) If �I(xI�; x�S) < 0, then �I(xI�; xS) < 0 must hold for any xS � x�S . This implies that

probability such that I goes bankrupt is unchanged if I chooses xI from [xI���; xI�] for su¢ ciently

small �. However, I cannot be indi¤erent over this interval. Therefore, �I(xI�; x�S) � 0.

Now assume �I(xI�; x�S) > 0: Suppose �rst that there is no isolated (mass) points in the support

of I 0s mixed strategy. By Lemma 20 the support of I 0s mixed strategy contains exactly one interval,

then, �I(xI�; x�S) > 0 implies that �I(xI ; x
�
S) > 0 for any xI 2 [x�I ; xI�]: Thus, the probability that

I goes bankrupt is unchanged if S chooses xS from [x�S ; x
�
S + "] for su¢ ciently small �. But if this

is the case, S cannot be indi¤erent over this interval.

If there is an isolated point in the support of I 0s mixed strategy, by Lemmas 19 and 20, the largest

output in I 0s support, xI ; has to be the one. Suppose that �I(xI ; x�S) � 0; then �I(xI ; x�S) > 0 for

all xI < xI in I 0s support. Then for " su¢ ciently small, for any xS 2 [x�S ; x�S + "] the probability of

bankruptcy for �rm I is zero. But if this is the case, �rm S can not be indi¤erent in the interval

[x�S ; x
�
S + "]: Consequently, �I(xI ; x

�
S) < 0: Since we assume �I(xI

�; x�S) > 0, when �rm S produces

x�S the probability of bankruptcy for �rm I is the probability that I produces xI : By producing

x�S+" the probability of bankruptcy for I does not change. But in this case, S can not be indi¤erent

among the outputs in [x�S ; x
�
S + "]: Thus �I(xI

�; x�S) = 0.

Lemma 23. In equilibrium, the support of each �rm strategy contains exactly one interval.

Proof. The property in Lemma 22 cannot hold if a �rm has more than one (disjoint) interval.

By Lemma 21 and 20, we obtain the result.

Lemma 24. The interval in the equilibrium support of �rm S cannot contain x�S :

Proof. First, note that our argument so far has not concluded whether the interval is open or

closed, i.e., endpoints are contained within the support or not. The lemma claims that the smaller

endpoint of S�s interval is not contained.

Suppose that x�S is included in the support. If I
0s support does not contain an isolated mass

point, when �rm S produces x�S the probability of bankruptcy for �rm I is zero because by Lemma

22, �I(xI�; x�S) = 0: Then, at x
0
S (the isolated point in S�s support which is the smallest output in the

support), �I(xI ; x0S) � 0 for all xI in I 0s support. Thus, by producing x0S �rm S cannot bankrupt

29



�rm I: But in this case, �rm S cannot be indi¤erent between x0S and x
�
S : If I

0s support contains

an isolated point, xI ; by producing x�S the probability that I goes bankrupt is the probability that

I produces xI because by Lemma 22, �I(xI�; x�S) = 0: But then at x
�
S � " for " su¢ ciently small,

the probability of bankruptcy for �rm I will not change and �rm S will be better o¤ because

x0S < x
�
S � " < x�S .

Lemma 25. Let x0I = argmaxxI E[�I(xI ; xS) j �S ]; Then, the following must hold:

(i) xI = x0I :

(ii) �I(x0I ; x
0
S) > 0:

Proof. (i) Suppose that xI < argmaxxI E[�I(xI ; xS) j �S ]: By Lemma 22, �I(xI ; x�S) � 0

(either because there is no isolated points in I 0s support and therefore xI = xI� and �I(xI ; x�S) = 0;

or there are isolated points and then xI is an isolated point and �I(xI ; x�S) < 0): Then �I(xI ; xS) < 0

for all xS 2 (x�S ; xS�]; and by Lemmas 9 and 14 �I(xI ; x0S) > 0: Thus, the probability of I being

bankrupt when producing xI is the probability that �rm S produces xS 2 (x�S ; xS�]: Take xI = xI+"

with " su¢ ciently small, then �I(xI ; x0S) > 0; and �I(xI ; x
�
S) < 0: Therefore �I(xI ; xS) < 0 for all

xS 2 (x�S ; xS�]: Thus, the probability of I being bankrupt at xI is the same that at xI . Given that

xI < xI � argmaxxI E[�I(xI ; xS) j �S ], the one period payo¤ at xI is higher and �rm I would be

better o¤ at xI than at xI : Thus, xI = x0I :

(ii) By (i) and Lemmas 9 and 14, �I(xI ; xS) = �I(x0I ; x
0
S) > 0

Lemma 26. If �rm I has an isolated point in its support it has to be x0I ; and in this case, the

interval in the equilibrium support of �rm I has to exclude xI�:

Proof. It follows directly from Lemma 25 that if there is an isolated point, x0I must be isolated.

Suppose that in this case, xI� is in the support. By Lemma 22 �I(xI�; x�S) = 0; thus, the probability

of bankruptcy for I when producing xI� is the probability that S produces xS 2 (x�S ; xS�]: But

given that �I(x0I ; x
0
S) > 0 by Lemma 25 (ii), the probability of bankruptcy for I when producing

x0I is also the probability that S produces xS 2 (x�S ; xS�]: But if this is the case; I can not be

indi¤erent between x0I and xI
�: Therefore, xI� can not be in the support.

Summarizing we have the following characteristics of the equilibrium strategy support for each

�rm.
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Proposition 7. Every equilibrium must satisfy the following conditions:

(i) Firm S randomizes over x0S [ (x�S ; xS�] where x0S < x�S :

(ii) Firm I randomizes over [x�I ; xI
�) [ x0I where xI� � x0I :

(iii) x0I = argmaxxI E[�I(xI ; xS) j �S ].

(iv) The probability of bankruptcy for �rm I is positive at every xI in the support except at x�I :

(v) x0S = argmaxxS E[�S(xI ; qS) j �I ].

(vi) �I(x�I ; xS
�) = 0.

(vii) �I(xI�; x�S) = 0.

(viii) �I(x0I ; x
0
S) > 0:

31



References

[1] Bernanke B., and M. Gertler (1989). "Agency Costs, Net Worth, and Business Fluctuations".

The American Economic Review, 79, 1, 14-31.

[2] Burns M. R. (1986). "Predatory Pricing and the Acquisition Cost of Competitors". The Journal

of Political Economy, 94, 2, 266-296.

[3] Cabral L., and M. Riordan (1994). "The Learning Curve, Market Dominance, and Predatory

Pricing". Econometrica, 62, 1115-1140.

[4] Couwenberg C. (2001). "Survival Rates in Bankruptcy Systems: Overlooking the Evidence".

Research School Systems, Organisation and Management, 115. Groningen University.

[5] Dasgupta P., and E. Maskin (1986). "The existence of Equilibrium in Discontinuous Economic

Games, I: Theory". The Review of Economic Studies, 53: 1-26.

[6] Fudenberg D., and E. Maskin (1986). "The Folk Theorem in Repeated Games with Discounting

or with Incomplete Information". Econometrica, 54: 533-554.

[7] Fudenberg D., and J. Tirole (1991). Game Theory, MIT Press, Cambridge, MA.

[8] Kawakami T., and Y. Yoshida (1997), "Collusion under Financial Constraints: Collusion or

predation when the discount factor is near one?" Economics Letters, 54: 175-178.

[9] Kiyotaki N., and J. Moore (1997). "Credit Cycles". The Journal of Political Economy, 105, 2,

211-248.

[10] Milgrom, P. and J. Roberts (1982). "Predation, Reputation, and Entry Deterrence". Journal

of Economic Theory, 27, 280-312.

[11] Rosenthal R., and A. Rubinstein (1984). "Repeated Two-Players Games with Ruin". Interna-

tional Journal of Game Theory, 13, 3, 155-177.

[12] Rosenthal R., and R. H. Spady (1989). "Duopoly with Both Ruin and Entry". Canadian

Journal of Economics, 22, 4, 834�851.

[13] Roth D. (1996). "Rationalizable Predatory Pricing". Journal of Economic Theory, 68, 380-396.

32



[14] Sharfstein D., and P. Bolton (1990). "A Theory of Predation Based on Agency Problems in

Financial Contracting". American Economic Review, 80, 93-106.

[15] Spagnolo G. (2000), "Stock-Related Compensation and Product-Market Competition". RAND

Journal of Economics, 31: 22-42.

33


