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Abstract

We propose a new and simple to compute semiparametric CUSUM-type statistic based on the sequence
of centered and squared OLS (Ordinary Least Squares) residuals from the estimation of a single-equation
cointegrating regression model as the basis to test the null hypothesis of cointegration against no
cointegration. The main novelty of this testing procedure is that, besides very simple corrections for serial
correlation and endogeneity of the integrated regressors and the only use of OLS residuals, the non-
standard limiting null distribution is invariant to the number and type of components appearing in the
estimated regression. We derive such a limiting null distribution, establish its consistency rate under no
cointegration and also present some numerical results to illustrate its finite-sample size and power
properties.
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1. Introduction

Since the seminal contributions by Granger (1981) and Engle and Granger (1987), the
literature on cointegration analysis has occupied a prominent place in the econometric
analysis of multiple nonstationary time series. In macroeconometrics there are many
examples where, given the nonstationary behaviour of the series involved, cointegration
analysis plays a central role in examining their long-run joint behavior through the
specification of a single cointegration relationship based on a regression equation. One
of the questions that has received more attention, besides the issues on model
specification and estimation, is the development of testing procedures with good size
and power properties in finite samples to consistently discriminate between
cointegration and no cointegration. There are many available parametric or
semiparametric test statistics with such a good properties, but their tabulated limiting
null distributions generally depend on the number and nature of the trending
components appearing in the specification of the cointegrating regression model.
Section 2 presents an extensive analysis of the specification and estimation methods
available for the cointegrating regression model, under the assumption of the existence
of at most one cointegration relationship among a set of k+1, k = 1, integrated variables
in the general case where the regressors are possibly endogenous and the generating
mechanism for the observations of all these variables may contain a deterministic
component usually parameterized as a polynomial time trend function of a certain order.
On the basis of this estimation results, we also review some of the more commonly used
testing procedures for cointegration in terms of the dependence of its limiting
distributions on the model specification and the structure of the data generating process
for the observations of the stochastic regressors, particularly relevant in the case of
deterministically trending integrated regressors.

Section 3 presents the main contribution of the paper in terms of a CUSUM of squares-
type statistic, that is relatively simple to compute and only requires the use of the OLS
residuals, for testing the null hypothesis of cointegration in a single-equation
cointegrating regression model admitting an arbitrary number of integrated regressors
and a very general form of the deterministic trend component, and whose limiting null
distribution is invariant to the structure of the components of the estimated model. The
proposed testing procedure is robust to endogenous integrated regressors, and through a
simulation experiment it can be verify that have good size and power properties. We
conclude with a simple empirical illustration involving testing for cointegration in a low
dimensional system given by an aggregate consumption function, using US quarterly
macroeconomic data.

2. The model, assumptions and some basic results

It is assumed that the set of k+1, k 2 1, observed series y,, X, , = (xl’,,...,xk’,)', t=1, ..,
n, are generated by the following unobserved components model
yz - dO,t + nO,t 2.1
(Xk,t) (dk,t) (nk,t @D
where d,, and d,, =(d,,,..,d,,) are the deterministic components, and

n, =(Ny,.N,,) denotes the stochastic trend component given by n, =n,, +g,, with



initial value n, =o, (n'*)," and € =(g,.&.,) , a strictly stationary and ergodic zero-
mean vector error with a finite long-run covariance matrix, Q =Z +A,+A_,
T, = E[eg], N\, =27, E[g,_ ], which is partitioned as Q, = ([0, w},] :[0d,,Q 1),
with w,, =, . Then, if there exists a k-vector 3, such that

u, =No, ~BNe, =0, -B;)(RZ’; j =K, 2.2)
is stationary with continuous spectral density, then it is said that n,, and n,, are
cointegrated in the sense of Engle and Granger (1987), with cointegrating vector
K=(,-B,), and B, =Q;'w,,.” By combining (2.1) and (2.2) we get the regression
equation

Y, =d, +B.x,  tu,
based on the observed variables with d, =d,, —=B,d,, the deterministic component.

Obviating in this paper the case of possible cancellation of similar components in this
linear combination of the deterministic trend functions (which is called cotrending), to
obtain an operative version of (2.2) based on the generating mechanism of the observed
variables in (2.1) we need to introduce a particular but quite general assumption of the
structure of the deterministic components in (2.1). Likewise, we need to formulate a
convenient set of assumption for the generating mechanism and stochastic properties of
the error terms driving the stochastic trend components in (2.1) and the equilibrium
error term u, in (2.2). These assumptions are presented below.

Assumption 2.1. Deterministic components

It is assumed that the deterministic trend components in (2.1), d.,, can be factorized as

it
d,, =0;,T,, and d  =A 1, +A, T, with k£ > g, where T, =(",...t"),
T, = ("t , with integer powers 0 < p; < ... < ppsg, and g 2 0, where, whenever

the trend coefficient matrices A, , =(Q,,,...0,,) and A, =(a,,..,d, ) are non-

Lgo*
zero matrices, each column of the trend coefficient matrix A, contains a non-zero

element, and A, is full rank, i.e. Rank(A, ) =g <k.
Assumption 2.2. Multivariate linear process for the error terms
(A) The zero-mean k+1-vector §,, =(U,,€,,) is strictly stationary and ergodic and

follows a linear process as §,, =D(L)e,, where e, =(e,,.e,,) is a k+1-variate white

noise process with zero mean, covariance matrix Efee; ]=%, > 0 and (2+m)th-order

" This general assumption on the initial value includes the case of any random variable with bounded
second moments, and also includes the case of a fixed constant value.

% In such a case, as discussed in Phillips (1986) and Phillips and Ouliaris (1990), the stationarity of the
cointegrating error sequence u, given by (2.2) implies that the long-run variance of its first differences,
v, =Qu, =K'An, =K'g,, is zero, i.e. &} =27, E[v,v,_;]=0. Given that det(Q,) =y, det(Q, ), where
Q.. >0 (excludes the possibility of additional cointegrating relationships among the stochastic trend
components of the regressors), with f, =u} —w,,Q.'w, = (1-p;,), Pi, = W, (WQ, )" W, , the
conditional long-run variance of €, given €, , then &} =K'QK =w;, =0, and hence Q, is a singular

covariance matrix.



finite moment, Efle,|”"™"]=E[(ele,)*"" <o for some m = 0. Also, for the infinite order
polynomial matrix in the lag operator L, D(L)=27,D I’ =(dy(L), D, (L)), it is
assumed that D(1) has full rank, with coefficients satisfying the summability condition
27, J ID|[*<e0, a2 2, with |[D || =[7r(D'D)]"*.

(B) The regression error term, u, , is given by u, =0u,_, +0,, with0O<a < 1.

Next, we make some additional comments on these assumptions. First, from
Assumption 2.1 we have to mention that the leading cases in many applications are

giving by the inclusion of only a constant term in the estimable form of the
cointegrating regression, i.e. d, =0, or a constant and a linear trend, d, = o +0 ¢, that

correspond to the choice of m =1 or 2, with p, =0 and p, =1, respectively. In any

case, and under the general specification of a polynomial trend function component, it is
necessary to introduce the scaling matrices [, =diag(n”,..,n ") and

- 4d; ~Pm+ TPm+q :
r,.=dagm ", ..,n ") such that the components of the polynomial trend

functions can be scaled to be bounded as Tt,, =, T, 001" and
T, =, 0017, 1mp1ying that certain functionals such as »~' X't . and
Qi =1 2T, T, have well defined limits, such as ™' %', - J§ T, (s)ds

and Q,,, () — Q. (1) = [r1, ()T, (s)ds , with [x] the integer part of x and similarly for
Ty

Second, from part (A) of Assumption 2.2 and the use of the well-known Beveridge-
Nelson (BN) decomposition D(L)=D(1)=(1-L)D(L), where D(L)=2X7,D,L’,
D =2, D;,j=0,1, .., implies the following representation of the scaled partial sum

process from &,

(1/~/n )[sz =D()(1/~/n )[Ze +(1/\/n) &, €,
with e, =D(L)e =0,(1) a well-defined stationary process, so that the last term is
asymptotically negligible and D(1)n™"*X"'e, = B(r) =BM(Q,), 0< r <I by the
classical Donsker’s theorem, with B(r) =(B,(r),B,(r)")" a (k+1)-dimensional Brownian
motion with covariance matrix Q, =D(1)2,D(1)'. Once established this result, and
taking into account that sup,_,.,[(1/~/n) ZI%(§,, —D(De,)| < 2max,__, [(1/v/n)é[=0,(1),
this also ensures that the partial sum process from &, satisfies a multivariate invariance
principle such that n™> X!"'& = B(r) .’ On the other hand, from part (B) and for any

value 0 < o < 1 (that is, under the cointegration assumption), we can define the k+1-
vector

3 There could be some situations where this invariance principle is not enough, being necessary to have
stronger approximations that involve explicit convergence rates. Thus, e.g., Park and Hahn (1999) prove

that, under Assumption L, it is also verified that: (a) sup,.,., |n""* X% (§,, ~D(1e,)|= O, (n™), and (b)
sup,.,, | D(n™"? X% e, =B(r)[= O, (n™") for large n, where a = (m—2)/2m. This results imply that the

convergence rate is faster if e, has higher moments, with n* - /n as m - .



g = (s’fij - ((1 - Oe‘kL)‘ U’j =C(L)e, = (lc)'ok((LL))eerJ 2.3)

with ¢,(L)=(1—-aL)"'d,(L), that also satisfy the same summability conditions as for
the coefficients in do(L),* which implies that the scaled partial sum of &, also weakly
converges to a well defined limit as for &, where now B(r) =(B,(r),B,(r))" is a k+1-

vector Brownian process with covariance matrix Q; = C(1)Z,C(1)’, with

_( e\ _{(1-)"d(1)
c() =| & )_ 0
o=(50)-" B
which implies that the long-run variance of u, and covariance between u, and g, are
given by «f =(1-0)”w}, and @, =(1-0)"'w,,, respectively, with « and ,, the

corresponding elements in Q,. Furthermore, under the additional assumption of no

cointegrated integrated regressors x,,, so that Q, >0, the Brownian process B, (r)
admits the decomposition B, (r)=B, (r)+w, Q,B,(r), with B, (r)=w, W, (r),

where of, = —@}, Q' is the long-run variance of u, conditional on €, so that

E[B,(r)B,,(r)]=0, and hence the jointly Gaussian processes B, ,(r) and B, (r) are

independent. The rest of this section is dedicated to complete the specification of the
estimating cointegrating regression model and to the review the estimation of the model
parameters with the final aim to obtain the residuals as the main tool used in the
construction of many feasible statistics to test for cointegration.

2.1. The cointegrating regression model and estimation

Once stated the structure of the underlying deterministic components established in
Assumption 2.1, and by combining (2.1)-(2.2) we obtain the following estimable
version of the single-equation cointegrating regression model

I

y,=a, T, +Bix,, +u (2.4)

m~m,t

where a, =da,, —A;,B,, that only incorporates the common structure of the

deterministic components of each series under the assumption that —A} B, =0, . Next,

I

defining the complete vector of all the trending regressors in (2.4) as m, =(T,, X, ),

we must find a non-singular weighting matrix W, such as m, =Wm,, with

I I

m, ) a triangular array with a well-defined limit m

nt?>

m, =(m = m(r), where

m,nt > n[nr]

m(r) = (m’, (r),m, (7))’ is a full-ranked process, in the sense that [, m()m'(r)dr >0
a.s. Given the assumption on the structure of the deterministic component appearing in
the cointegrating regression and the fact that the k-vector of stochastic regressors can be
decomposed as x,, =A, I, T +I',:,i,nmk,m, with m,, =F, (n,, +A, T ), then

k,m" mm,n *m,nt k,nt

* By writing D(L) as D(L) =(d,(L), D, (L)), with d,(L)=X72,d, L and D,(L)=X" D L, we have
20, DI =20 jTr(d, dy ) + 25, j“Tr(D;D,,) . Then, by the recurrence relation d,; =¢, ; —ac,
for j 2 1, the first term above can be decomposed as X', j'Tr(d, dy,) = (1+a*) X%, j'Tr(e, ¢,

+o® X7, Tr(e, jep ;) —a X5, jTr(c, €, +€,,,¢ ), so that the summability condition on the

coefficients D, and hence for d;, implies that of X7_; j*Tr(c, ;¢; ;).



a convenient choice for the weighting matrix I, is I, = W,;{l’nCZd{, so that W is
given by

r 0
W, :( '"Ifiq I_'_"fk j (2.5)
kk ,n

k,m® mm,n

In the simplest case where A, =0, , which also includes the situation where
Ak,m
is W, , =<nl, and C, =1, so that

r! 0
W = mm .k (2.6)
(Ak,mrmlm,n nl/zlk,kj
;= B,(r). On the
other hand, when A, #0, withk>gqgand A, isa full rank matrix, so that there are

=0, ., then an obvious choice for the matrices composing the scaling matrix I, ,

where m,, = (T,

m,n

1 1 . _ — _-1/2
t’nk,nt) , with m, =N, =n "N, and m

k,n[nr

any additional deterministic term not included in the polynomial trend function of the
specified regression, Hansen (1992a, b) proposes to use the weighting matrix I,

given by

oo Twn ey ) G @)
kk ,n Ok_q,q n—l/ZIk_q’k_q C’k)k_q

with C,, =A, (A} A, )", and C., =A,, (A, Q.A,, )" where A,  isa
full rank Ax(k—g) matrix which spans the null space of A, such that
K;ﬁk_qu,q =0,_,,, with C,, =(C, ,C,,_)>0 and well-defined. In this case, the k-
dimensional triangular array m

e 18 NOW given by

T +n1/2|— Cr
mk,m‘ :( q,nt C’ qq.n k,an,nt (28)
k,k—an,m
where T, = T, with weak limit
T,(r)
R ™ (2.9)
k,n[nr] k (Wk—q(’”)j

where W,_ (r) = C.. /B (r) and satisfies the following distributional equivalence
W, ()= (AL QuA, )"0, (0= BM{,_,,_,)

with v,_ (") = A, B.(r) = A}, Q*W,(r) = BM(A] ,_ Q,A,,_,), so that the limit
process m, () in (2.9) is full-ranked, which allows the derivation of a nondegenerate
asymptotic theory, but with a different limit and implications as in the standard case of
A, =0, .

This set of basic results allows for a convenient treatment of the asymptotic
distributional aspects of the OLS estimators and residuals from (2.4) under a wide

variety of situations concerning the underlying deterministic structure of the integrated
regressors in (2.1) and its effects on the corresponding limiting distributions. Thus,

given 8, =(X~, mm!)"' Y m,y =0+(X" mm' )" " mu asthe OLS estimator of
0=(a ,B;)", we get that the scaled and normalized vector of OLS estimation errors
from (2.4) is given by



n -1 n
©, =n"W (8,-0)= (n_Imem;tj n_(l_K)meut (2.10)
=1 =1
where ©, = (Om 0>

Bk are @ =n rmzn n[A . A, _A;c,m(Bk,n _Bk )] and ék,n = nKr/:/z,n (Bk,n _Bk)
respectively, and with the exponent K taking values *1/2 depending on whether we
assume cointegration or not. Thus, under cointegration (with K = 1/2), and standard
application of the weak limit of a sample covariance between the regression error and
the k-vector of stochastic trend components, n,,=n,, +€.,, we get
n? XN = B, (r)dB,(r) + A, with A, =X E[€,,_u,] the one-sided long-

run covariance between u, and €,. Then, the weak limit of the sample vector

O;( ,), so that the normalized and scaled OLS estimators of o, and

covariance in the last term of (2.10) is given by

n—l/zzn:mmut = I;m(r)dBl, (r+d= j;(;lm ((’;))deu (r)+ (c?)m j Q.11

where m, (r) =B, (r) and ®, =A, when A, =0, , while that m, (r) is as in (2.9)

with @, =(0.,A, C,, ) in the case A, # Ok,q. This last result implies that, besides

the presence of nuisance parameters arising from the endogeneity of the stochastic
regressors and the serial correlation in the regression error terms, the limiting null
distribution of the OLS estimates of the model parameters strongly depends on the

nature of the deterministic trend components in X, ,, which means that a correct use of

(2.11) requires to know the trend properties of these variables through the limiting
representation of the k-vector m, () . Despite these difficulties, another important result

arising from (2.10) and (2.11) is the consistent estimation of all the model parameters in
©=(a’ ,B;) under cointegration. Particularly, it is remarkable the superconsistent

estimation, at the rate n, of the cointegrating vector B, under cointegration, as can see
from the representation

ekn =n rkkn(Bkn_Bk _(n kam kmj - K)kam Uy

— A1 . -(1-K) I3
- Qkk,nn ka,ntut
t=1

-1 — =Kt -1 —(1=K) N1
T and u,, =u,-n"1,,Q,, " 20T, U, the

k,rtt km,n X mm,n = m,nt m,nj~" j

(2.12)

with m, ,, =m

OLS detrended observations of m, ,, and u,, respectively, Q,,  =n" Z

kn] mn/’

and where the second equality in (2.12) comes from the orthogonality between m,

=0,,,. Given that Q,, = Q, =[\ 1, (")} (r)dr, with
m,(r)=m,(r)- [ om, ()T (s)ds Q. ()T, (r) the detrended version of the limit process
m, (r), then under cointegration we get

and T, ,, ie 2. m

knt m,nt

A A 1 R
nl/zr/;kl,n (Bk,n _Bk) = Q;/} (J-O mk (r)dBu (r) + q)ku (213)

in the general case, with n(ﬁkn -B,) :>Q (Il B,(r)dB,(r)+4,,) when A, =0, and



1/2r—1 N _ ) 0
cpt| " Foe oo B Qo [, ram i+
n(Bk—qn _Bk—q 0 Ck,k—q ku
if A, #0, ., where Bk ., has been partitioned as Bk = (Bq s

cointegration when the regression error is unit-root nonstationary, also known as a
spurious regression, and under our assumption on the generating mechanism of the
dependent variable in the cointegrating regression such as y, =a +1,,, then

Bk_q’n)'. In the case of no

Om m,t

equation (2.10) can be rewritten as

-1
nKWr; (én _e) = _nKWr;e-'-(n_lZmntm;tj n_(l_K)zmnt (no,t mntrmlmn )
t=1

t=1

I——l a n -l (1K) n
K J a0, -1 J =(1-k
—n Wne+ mm()’l " | n zmntmnt n zmntno,t
k t=1 t=1

A -1
amn _GOm - < 1 -(1- C
nKW,:( B J=(n 1Z:mmmmj n"79% m,n,, (2.14)
k,n =1 t=1

where n”? Y7 m,n,, = [y m@)B,(r)dr, with B,(r) the weak limit of n7"’n,,

so that

when K = —1/2. Alternatively, given that u, can also be written as u, =n,, —B,m,, and

n n
-(1-K) s — —(1-K) o KA -1
n zmk,ntut =n zmk,mno,t n Qkk,nrkk,an
=1

t=1

then (2.12) is now given by
n n
KF-1 A —A-1 (1K) A —A-1 (1K) A A
n rkk,an,n = QM zmk,mno,t =Qu.n zmk,ntno,t (2.15)
1=l 1=l

with f,, =n,, -1,,Q, n” 24 T,.,No., » which implies inconsistent estimation of (3,

when A, =0, . B,, =0, (1), while thatif A, %0, then we get

A

—1/2|——1 B n
qq.nqn | _ ~ -1 —-(1-K) o
=C, Q.1 ka,m‘no,t
k=q.n =1

indicating that in this general case, even under no cointegration, some elements of 3,

can be still consistently estimated although we are dealing with a nonsense regression as
B, =0, by definition. As shown in Hansen (1992a, b), similar results and conclusions

are attributed to asymptotically efficient estimates obtained when using, e.g., the Fully
Modified OLS (FM-OLS) estimator proposed by Phillips and Hansen (1990) as a way
to simultaneously correct for the two sources of finite-sample bias appearing in the last

terms of (2.11) and [\ m(r)dB,(r) =[ m(r)dB, ,(r)+[, m(r)dB, (r)Q;'w, caused by
the endogeneity of the integrated regressors. Motivated by the fact that
n? X,z = B, (r)dB, (r)+A;, under cointegration, where z, =u, -y, €, and
A, =D, -ALY,,, with y, =Qlw, and A, =X E[g,, g1, the FM-OLS
estimator of the model parameters in (2.4) is given by

(g o S| (S8

where y° are modified observations of the dependent variable defined as



S =, Vo2, =m0+u’, with u =u -V, 2, where §,, and A; 6 are

ku,n

consistent estimates of y,, and A;, under the cointegration assumption. The usual

Py

ku,n Aku,n _Akk,ndu,n 4
Where Qkk = Akk n + Akk n = z W(]q )Gkk n (]) + Z W(jqn ) kk,n (_]) ? WIth
(A}kk)n (j)=n IZI:J.H zk,t_ji;{,t and Gkk,n(—j) = Gkk (), while (1) :A +A' ., Where

choice are kernel-type plug-in estimators y,,, Qkk 0, and A;

Ak“ =" w(jq,)g,, (/) and AL, , =200 w(iq, )8, (=), based on the sample

-1 — -1
serial covariances g, (/)=n"2'_ 2, 4, and g  (=j)=n"X_ . Z 4 ., although
A+

ku,n

1 n

can also be computed as ,M—Z ow(jg n™ X —+12,-;Z,, where

A

z, =i, ~Vy,,Z,,. Both y' and these estimators are based on the k-vector z,, that

represents the sequence of OLS residuals in the multivariate regression
=Axk,t:AkA'l‘,+8k,,:Bk'l‘,+8k,t, with B, =(A,,0,), A, =(A,,.A;,), and

T, =(T y T ) in the case where the mechanism generating the stochastic regressors do

k,m?

mt’

contain deterministic components, while that when d,,=0,, or d,, =A, T,, when
m+q = 1 with p; = 0, then z,, =€, ,. Otherwise, for m+q > 1, the k-vector of OLS
residuals is given by z,,=¢,, +F_,, with F_,=-n"(n"X" ¢ 1,)Q,'T, or
alternatively as  F_, =-n"?(n"' X", n,,T,)Q,'At, =-n""?(n" X" n,,1,)Q,'d,, ,
given that AT, =n"'d,,, when based on the first difference of the k-vector of OLS
residuals computed from the multivariate regression x,, =A,T,+0n,,, with
Q, =n'Y T

consistent estimation of €, ,, the sequence of error terms driving the stochastic trend

. In both cases, it can be shown that F, , =0, (n" 2y implying the

nj ”J

components of the integrated regressors. Similar to the OLS case, the scaled and
normalized FM-OLS estimation error can be written as

A+ K 1 A+ R [ K K - 0
On =n Wn (en - e) = (l’l 1zn'lntlnn J ( h )me‘ t —-n W”l l (A+m jj
t=1 ku,n

where u =u, =Y, &, = (Yu, ~ Yu )€rs ~ VeunFi» While that for the last term we have

KW—] 0m — Om
" ! AZun - nKrkk nA/:un

with W, the weighting matrix defined in (2.5), where nI" A AZ” in the case of

ku,n

cointegration (with K = 1/2) when A, =0, ,and

R n‘r, C, A
nKI— A+ - qq.,n ku,n
pre _1/2+KCkk quun
when A, ¢0kq, where the first term is asymptotically negligible both under

under

ku,n

cointegration and no cointegration and the second term is just C,,_ qA

cointegration which allows to cancel the bias term @, in (2.11) as n — o. Finally, given

that Vku,n - yku = Ql;cl,n [G)ku,n - wku - (Qkk n Qkk )Qkk wku] WIth Qkk n Qkk = Op (n_l/z) and



®,,~w, =0, (n”""?) under cointegration and the correct detrending of the regressors,

then we have u, =z, + o, (n™""*) which provides the desired limit result free of nuisance
parameters. As a by-product of this estimation, the sequence of FM-OLS residuals,

+

defined as 4, =y’ -m,0, =u —n *m,@;, can also be written as 4 =z, +0,(n""?)

under cointegration, where z, =(1,-Y )&, with & =(u,,€ ) so that the residual
covariance of order 4 is decomposed as

n

n Y atat=q1,-y, ) Z &€ (_\1/ j+0p(n_l/2) (2.16)
ku

t=h+l t=h+1
and hence the kernel-type estimator of the long-run variance of u based on these
residuals can be written as

@ (9,)=(0,-Y,)Qg, (qn)(_1

\Z j *O0m)

where

(‘05 n wu n N ’ < N [ '

Q. (q,) :( "9 ; j =n"' Y EE + D whig)n™ Y (&8 +EEL,)
wku,n ki ,n t=1 h=1 t=h+1

WhICh giVCS GO; n(qn) = ('ozu.k,n + (wuk,n - Vkquk,n)Ql;{l,n (wku,n - Qkk,nyku) + Op (n_l/z) s Where

wj.k,n = wj,n - wuk,an_kl,nwku,n s SO that wku,n - Qkk,nyku - P Ok and hence Coz* n(Qn) - g O“)zu.k K

the long-run variance of u, conditional on €, ,, under proper choice of the bandwidth,

4, =o(n'"™).

Some other alternative estimation methods frequently used in practical applications, that
also produce asymptotically efficient and equivalent results under proper choice of the
required tuning parameters, are the canonical cointegrating regression (CCR) estimator
by Park (1992), and the dynamic OLS (DOLS) estimator proposed by Phillips and
Loretan (1991), Saikkonen (1991), and Stock and Watson (1993). The CCR estimation
is similar in spirit to the FM-OLS estimation procedure but based on semiparametric
transformations both of the dependent variable and the stochastic regressors in the
cointegrating regression, while the DOLS estimator is based on the estimation of a
dynamic version of the cointegrating regression model obtained by the addition of a
number of leads and lags of An,, =€, in the case where it is observed when d,, =0, N

Without going in further analysis of these last alternative estimation methods, it is
important to remind that its usefulness crucially depends on the knowledge of the

deterministic component which drive x,, and the proper choice of different tuning

parameters conditioning its performance in finite samples that could substantially differ
from what expected asymptotically in some important situations. For some studies
evaluating these finite-sample properties see, e.g., Gonzalo (1994), Montalvo (1995),
and more recently Kurozumi and Hayakawa (2009) and the references therein. Also, for
a more complete analysis of the properties of the FM-OLS estimator see, e.g., Phillips

> Formally, under some regularity conditions, the regression error term u, can be expressed as
with X% [T, |* <co and E[g,, ]=0, forallj=0, %1, %2, ...
Writing u, =25__ T €, +7,(q), with r,(¢q)=r, +X

u, =r,+w,, where w, =2°__ T €

i T /€,-; » then the augmented version of the

cointegrating regression model is y, =@'m, +2°__ T 7, +rn(q)-20_ T F,
F,

k,nt=j

with Z, . and

at=j 2

as defined before.



(1995) in the cointegrating regression model and its extension to the estimation of a
vector autoregression with some unit roots.

To complete this section, we consider two additional estimation methods recently
proposed that are mainly characterized by relying on fewer requirements thus making
easiest the computation of the estimates.

First, although not designed to deal with the specification of the cointegrating regression
considered here, it is worth to consider the so-called AIV estimator proposed by Harris,
et.al. (2002, 2003) in the context of a generalized version of the heteroskedastic
cointegration model first introduced by Hansen (1992c). This estimator utilize an IV
technique based on m,_ =(T,,,_,x,, )", with s >0, as an instrument designed to obtain

myit—s?
consistent estimates of the model parameters when the regression error term can contain
a certain type of highly persistent component only with a proper choice of the lag
parameter s. This AIV estimator is then given by

n _1 n
8,(s)= ( > m,_sm;J > m,_y,

t=s+1 t=s+1

with associated scaled and normalized estimation error

n -1 n
én (‘S) = nKWr: (én (S) - e) = (n_l z mn(t—s)m;ltj n_(l_K) z mn(t—s)ut

t=s+1 t=s+1
From (2.3), the standard BN decomposition of the linear process describing the
generating mechanism of the regression error term under cointegration, u, =c¢,(L)e,, of
with u,, =c;(De,, n">X"'u,, = B,(r) and i, =¢;(L)e,,
allows to decompose the second term in the right hand side above as

n n-s n-s
—-(1-K) — -1/2 -1/2 _ ~
n z mn(t—s)ut —-n zmntuo,ﬁrs +tn z (mn(t+1) mnt )ut+s
t=1

t=s+1 t=1

the form wu, =u,, —Au,,

-1/2 ~
+tn (mnlus mn(n—s+l)un

-1/2

where the last term is O, (n""") , while that for the first term we can write

n—s

-1/2 _ ~
n z (mn(t+l) mnt )ut+s
t=1

n—s

-1
nd
-1/2 § m,nt ~
n _ _ u s
{rkk,n (8k,t+l + A r ; n 1dq,nt)j .

t=1 k.q" qq.n
n-s
-1 -1/2 ~
n n zdm,ntuttv
t=1
n-s n-s
1/2 -1 ~ -1 -1 -1/2 ~
rkk,n n n Zsk,t+lut+s tn Ak,qrqq,n n qu,ntutﬂ
t=1 =1
with d

-1
n dq,nt s m,nt

(T ey

uniformly in r and similarly for d_,, (see Hansen (1992a), equation (A.1)). By Theorem
l/a

where we have used the fact that At,,, ., =n"'d,, and AT

m,nt g.n(t+l) —

collecting terms of the form (#/n)” " for j =1, .., msuch that d

m,nt

1 and Lemma 2 in Harris, et.al. (2003), with s— o at least as fast as n ', such as
s=s,=o0(n") 1Ja<hb<1,az=2 (see Assumption 2.2(A)), then Elg, .1, ] - 0, when

tts

-1 - ~ — -1/2 . -1/2 - ~
s—o, and hence n™'207'€ i, =0, (n""?) given that n™"?2€E, i, weakly

converges to a Brownian process (see Theorem 3 in Harris, et.al. (2003)), implying that
all the terms above are asymptotically negligible in the case of standard stationary
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cointegration, i.e. n™"? X7 (m, ., —m, )i, =0,(1) as n—o. To complete the result,
as we can Write n_l/z Z:!lv mntu0,1+s = n_l/z 2:12_1v mntuo,t _n_l/z 2;12_1v (mn,t+s _mnt)u0,1+s +
O,(s/n"?), then we get n™"2X/mu,,, = lim(r)dB,(s), implying that under
standard stationary cointegration the use of the AIV estimator allows to eliminate the

bias term @, appearing in the limiting distribution in (2.11), but does not allows to

completely correct for the endogeneity of the regressors.

Second, Vogelsang and Wagner (2014) propose the so-called Integrated Modified OLS
(IM-OLS) estimator which is based on the OLS estimation of a simple modification,
free of tuning parameters, of all the regressors appearing in the cointegrating regression
model (2.4). The proposed transformation consists on taking partial sums of the
variables in (2.4) and augmenting the resulting specification with the addition of the
original observations of the stochastic regressors in such a way that the integrated
modified version of the cointegrating regression is of the form

S, = a'rnsm,t + B’ksk,t + kak,t +Z, (2.17)

where S, =>'_ v, S, =2,1,,, S,=2,%,,, and Z =U, -y, , with
U, = Z;Zl u, =0, (n'™) forall t=1, ..., n. In more compact form, the IM cointegrating
regression can be written as S,=6@'g,+Z, where now ©6=(a.B,,y,), and
g =(S,,.S;,.x;,), and the IM-OLS estimator is obtained by applying the OLS
estimation method, i.e. 8, =X~ gg) ">  gS =0+(X", gg) "' > gZ. Choi and
Ahn (1995) also propose the OLS estimation of a simplified version of (2.17) in the

case where the deterministic component characterizing the observations of the
deterministically trending integrated regressors x,, is such as d,, = A, T, so that

k,m *m.t
A,,=0

and x,, replaced by the integrated versions of the CCR transformation of such

1 » Dut without the addition of x, , as regressors and with the partial sums of y,

variables. Following the same line of analysis as from the estimation of (2.4), we can
express the vector of regressors g, as

n! S

mm,n"> m,nt

g =| nA r's +n|',:kl’nM

k,m" mm,n™~ m,nt

-1 -1
AT T, 4T m

k,m" mm,mn* mnt

nl™! 0., 0,.1S

mm,n

m,nt m,m m,k
’ T
-1 -1 m,nt
nA T Al 0, [|M, [+] 0 0, ( j (2.18)

k,m® mm,n k,nt k,m
mk,nt

-1 -1
Ok,m Ok,k rkk,n mk,nt A r Ok,k

k,m" mm,n

k,nt

k,nt

= Lngnt + Wz,nmnt
SR o =5 1S
where S, =n" 2 T, and M, =n" X\, m

OLS estimation error can be decomposed as

n n n n
[ -1 ] -1 ] 1 -1 ]
Z gtgt - nwl,n {n Z gntgnt +tn Z gntmntw3,n + W3,nn zmntgnt
t=1 t=1 t=1 t=1

so that the components of the IM-

k,nj

) (2.19)
+W3,nn_1 z mntmntwg,n } Wl',n

t=1

and

11



D ez =n"W, {n_l e, OZ)+W, "y m, (n_(l_K)Zt)} (2.20)
t=1 t=1 =1
where the weighting matrix W;, = VVl_nlen is of the form
0 0

m,m m,k

WS,n = Ok,m Ok,k
r kk,nA r _1 Ok,k

k,m® mm,n
with the kxm matrix [, A, I, being asymptotically negligible when m = 1 with p,
= 0 (that is, when the cointegrating regression (2.4) only contains a constant term)
irrespective of whether A, is zero or not, but diverges with the sample size for any
other specification of the deterministic component in the regression model thus failing
to provide finite limiting results for the terms in brackets in (2.19)-(2.20). Additionally,

for the scaled regression error n”'™Z, in (2.20) we have the following decomposition
n_(l_K)Zt = n_(l_K)Ut - n_(l/z_K)ank,nt - n_(l_K)y’kAkr;L[nt (2.21)

with A, =(A, ,,A, ), I, =diag(l
term involving the normalized polynomial trend function underlying the observations of
the stochastic regressors x, , will vanish asymptotically only in the case m =1, ¢ = 0

r,.,ad T, =(T,,,.»T;,.) > so that the last

k,m?> mm,n?2

and p; = 0, that is when d,, only contains k constant terms, d,, = A, =(a,,..,0,)",

both under cointegration (K = 1/2) and no cointegration (K = —1/2). In any other case (m
> 1, pn > 0) and under cointegration, this term will diverges with the sample size and
dominates the other two components. This analysis implies that the standard
formulation of the IM cointegrating regression in (2.17) is not appropriate to deal with a
deterministic component d, , including more than & constant terms. The extension of

this formulation to the general case considered in Assumption 2.1 and some required
modifications of the IM-OLS estimation method is not considered in the present paper
and it is still under development by the author. The original specification in Vogelsang
and Wagner (2014) corresponds to the case A, =0 so that the components in g,

k,m+q >

— -t — —7r7 _ . —
are M, = Hk,nt =n zj:l nk,nj s My =1, and Zt _Ut ank,z’ with g - WO,ngnt’

k,nt

where the weighting matrix is W,, =diag(nl",, ,.n""I,,,n'"’,,), providing the

following representation for the IM-OLS estimation error of the model parameters

n l n
©,=n"""W,,(®,-6)= (n‘lzgmg; j n'y g, (n"Z) (2.22)
=1 t=1

where ©, = (0 éhk,n’é’vk,n)' with components given by (:)m)n =nr,, (@, —-a,),

n m,n? mm,n

Oy, =n"""*B,,-B,) and O, , =n""*"(y,,~Y,), which makes evident that this

estimation method provides the same consistency rates for the estimators of a, and 3,
under cointegration that the usual estimates. Also, taking into account that
n'?Z,,= B,(r)~Y,B,(r)=B,,(r) under cointegration and the definition of the
centering parameter for y,, as y, =y, =Q,'w,, in case of endogeneity, then the
limiting distribution of the estimates is given by

12



6, = [ etyar] [ s, ar 223)

wnere g(r) = (g, (). g, (1), B, (") , with g,(")=J;T,(s)ds and g,(r) =i B, (s)ds , s0
that the limiting result in (2.23) has a compound normal limit distribution with nuisance
parameters that can be cancelled through scaling. Also, Theorem 2 in Vogelsang and
Wagner (2014) gives an alternative representation for the second term in the right hand
side of (2.23) as [} g(r)B, , (rdr =].[G(1) - G(r)]dB, (), where G(r) =] g(s)ds . An
important result stated in Proposition 2 by these authors is that the IM-OLS estimates
are almost asymptotically efficient in the sense that are asymptotically less efficient than
FM-OLS, although its conditional asymptotic covariance matrix ignores the impact of
the long-run variance estimators on the sampling behavior of these estimates. An
important by-product of the IM-OLS estimation is that the first difference of the
residuals, Z, =Z, —n'™g' ©,, can be written as

~ =~ &~ —-K ] ] ém n
Zt = AZt = (1’ _Vk,n )Et —-n (Tm,nt’ nk,nt)( = J (224)
@Bk N

where Y, , =Y, +n"?™8, ,, with 8, , denoting the last k components of (2.22). This

result provides a similar result to (2.16) for the residual autocovariances and the kernel-
type estimator of the long-run variance computed from (2.24) under cointegration (K =

1/2), given by G)f,n (4,) =LY%, (q,)L-Y.,) + Op(n_”z)6, so that as n o we get
@, (q,)=>w =, (1+w36, Q.0 )=w,(1+6,6,) with 8, =w,,Q."°6, the last
k random components of (2.23), implying that GJf,n (q,) is inconsistent for «, with
W >0 -

Once analyzed the properties of some alternative estimation methods of the
cointegrating regression model, it is important to remind the important role played by
the structure of the deterministic component underlying the generating mechanism of
the observations of the stochastic regressors, characterizing the limiting results both
under cointegration and no cointegration in terms of the weak limit of the normalized .-
dimensional vector m, , =", (n,, +A, T, ) given in equation (2.9) when A, #0,
and these trend components are omitted from the estimated regression model. Other

important situation that conditions all these results is given by the inclusion of a subset
of stationary and/or cointegrated variables as regressors in x,,. These two cases are

quite different but produces similar results in terms of the properties of the estimates of
the corresponding parameters, mainly in relation to the rate of consistency and the
resulting limiting distribution of the estimates, as can be seen, e.g., in Theorem 5.3 in
Park and Phillips (1989) and Theorem 4.1 in Phillips (1995). Either of these cases

represents the situation where some of the parameters in 6=(a,B,) cannot be

consistently estimated even under the cointegration assumption. This is the case where
there exist a certain number 1 < &, < k of cointegrating relationships among the set of k
integrated regressors (subcointegration) or, alternatively, when there are k, out of & of
such stochastic regressors that are not I(1) and behave like stationary variables.

® Specifically we have G)in(qn):G);n(qn)—Zé'yk,n((oW —Qkk’nyku)+é'yk,ank,n9yk’n, where the terms
involving the elements in € (g,) will converge to the corresponding population counterparts under

traditional bandwidth assumptions.

13



Appendix A presents, in a unified framework, these two possible situations that can
occur in some practical applications where the main result is that only the set of
parameters related to the remaining k; integrated and no cointegrated regressors can be
consistently estimated. This general result will substantially modify both the above
analysis as well as some results in the next section, except in the particular case where
the stochastic component characterizing the behavior of the stationary regressors or the
error terms characterizing the cointegrating relationship among the two sets of
stochastic integrated regressors are contemporaneously uncorrelated with the regression
errors u,, as it is assumed in McCabe et.al. (1997).

2.2. Residual-based tests for cointegration

This part of the section reviews some of the more commonly used testing procedures to
test for the existence of a single cointegration relationship in the framework of the
cointegrating regression model. This is not an exhaustive study of these procedures, but
aims to analyze the behaviour of some of these test statistics, both for testing the null of
no cointegration against the alternative of cointegration or for these same hypothesis in
reverse order, with particular emphasis in the impact of the number and nature of the
trending regressors appearing in the cointegrating regression on the limiting
distributions of these test statistics. In what follows we consider the OLS versions of

these test statistics based on the sequence of OLS residuals, @, =y, —m’@, , that from
(2.4), (2.10) and (2.12) can also be represented in either of the two following forms

A K A KA A
ut _ut n mnten _ut,m n mk,ntek,n’ (225)

which shows that although being consistent estimators of the regression error terms
under cointegration, i.., @, =u, +O,(n""?) when K = 1/2, some other properties will

depend on the model’s dimension and the structure of the underlying deterministic trend
component of the stochastic regressors. Thus, the Ilimiting distribution under

cointegration of many different functionals based on the sequence of OLS residuals,

such as the partial sum given by U, =X/ 4, =X u, —n'™(n” ', m,)®,, will also
depend on these features. A wide variety of semiparametric and parametric statistics,

both for testing the null hypothesis of cointegration against no cointegration (as, e.g.,
the ones proposed by Shin (1994), C[An’m(k), Xiao (1999) and Wu and Xiao (2008),

Ién’m (k), and Xiao and Phillips (2002), an,m (k), that will be presented below) and for

testing the reserved hypothesis (see, e.g., the residual-based statistics proposed in
Phillips (1987a) and Phillips and Ouliaris (1990)), exploit the information content of
these residuals and their limiting distributions basically depends on the number and
nature of the stochastic and deterministic trend components contained in the estimated
cointegrating regression. However, it could be quite common to use in practice a wrong
set of critical values if we only rely on the specification of the cointegrating regression
without paying special attention to the structure of d,,. Also, Hansen (1990) indicates

some other important consequences of this dependence upon dimensionality. Given part

7 This testing procedure was also independently proposed by Harris and Inder (1994) and Leybourne and
McCabe (1994), and consists on adapting the so-called KPSS test for the null of stationarity of a
univariate series by Kwiatkowski et.al. (1992) to the regression errors of a cointegrating regression
model.
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B of Assumption 2.2, the AR(1) structure of the regression error u, is transferred to the
OLS residuals such as

u =0ou,_ +¢ (2.26)

t

where the error term €, is can be written as €, :Ut—n_K(m:n—am'n(t_l))(:)n with

m, -om,,_, =(1-a)m,, +0aAm,, so that the OLS estimator of a, given by

n(t-1)

n n
A -1 A
Sid, i, i

= =g+ =g+ = (2.27)

n n n
~2 _n2 ~2 -(3/2-K) | _~A2 ~2
u,, un+zut n (un+zutj
t=1

1=1 t=1

[}

with #, =0, does not converge to a constant, but stays random in the limit in the case of
no cointegration (i.e., when a = 1 with K = —1/2). In this case, taking into account that
nh,, =n"u,,-m, ©, =0,(1) weakly converges to the random limit

nlnr]

n""*i,,, = B,(r)~m(r)©,, with ©, the limiting distribution under no cointegration of

the OLS estimates of 6, ©, =(J, m(s)m'(s)ds)™" |, m(s)B, (s)ds (see also equation
(2.14)), the limiting distribution of many statistics constructed from #, to test the null

hypothesis of a unit root (no cointegration) can be show to depend upon this random
element, and hence on m, ¢ and £, that is on the number and type of trend components in
the system. A detailed inspection of the sample covariance in the numerator of the last
equality of (2.27) gives the representation

n n n
-1 A - (24K A 172
n Zu,_let—n ZMHU, n O n me_lu,
t=1 t=1
~ n ~
-0 2%@Q 00 -l '
n en Zmnt tl n zmn,tmn,t—l e
t=1

+an™m,,
so that under cointegration (K = 1/2) we have n X g =0T X u, 0, +0,(n7),
which 1mphes that &,-a=0,(1) and Jn(@, —O(—Ou,nE[ut_lUt])=0p(l), where
6,,=n"'X i -"0, and E[u,_v,]1=X7,¢, Zd, .. This implies that the

asymptotic behavior of @, is model-free and only depends on the dynamics of the
regression error term. The same applies to the well-known Z tests proposed by Phillips
and Ouliaris (1990) (PO), given by the normalized estimation error Zﬂl)n =n(a, ()A\s)n) -1)

and the pseudo-T ratio test statistic Z,,=(G},/Xr 4’)""?(G,(A,,)—1), where
- 0 + 2)\ (q ) Wlth 0 Zt 1 12 and )\s n(qn) z W(h/qn)n l ;1 h+1 ét—hét
( = 0) are computed from the sequence of OLS residuals in (2.26), i.e.

=4, -04,_ =€ —i,_ (6, -a)=¢g,-n""™4_[n"?" (@, -a)], and &,(A,,) is the

n

am)

bias-corrected estimator of qQ, dn()A\M) =2 (u,_u, )\”(qn )/ 2 ., . These limiting

distributions under non-stationarity shift away from the origin as the dlmensmnahty of
the model increases. Thus larger values for these test statistics are needed for rejection,
implying that smaller estimated AR(1) parameters are needed with an expected
reduction in the power, particularly in small and even moderate sample sizes with
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moderately large systems.
When focusing on testing the null hypothesis of cointegration, we found a quite similar
effect as the one described by Hansen (1990) for the semiparametric statistics based on
measures of no excessive fluctuation in the series of residuals compatible with the null
hypothesis of stationarity of the regression error terms cited above, which are given by
the following functionals

. 1 "
Cl, . (k)y=——=5——=> U} (2.28)
’ nzwi,,,(qn);
. 1 . .
(k) =—————max,_, ,|U ~(n)U, (2.29)
)= s 0,0,
and
1 )
CSnm(k)— max,., . |U, | (2.30)
Mn(qn)‘\/_ ) " t

with &, (q,) =22, wlhg, )n™ X, 4, , and R (k)= CS (k) for m =2 1 when
the deterministic term appearing in the estimated comtegratmg regression contains at
least a constant term, so that Un =0. The main component of all these statistics used to

find empirical evidence compatible with a stationary behavior of the regression error
term is the CUSUM-type ﬂuctuation measure given by

[nr [nr]
—1/2 —l/ A 1/2 -(1-
U = ut K{ ( K)E u —n" E m' O }
=1

t

which, under cointegration, has the followmg hmltmg dlstrlbutlon representation
-1
1?0, = B, ()~ | m'(s)ds ( jolm(s)m'(s)ds) ( jolm(s)dBu (s)+ CD) 231)

that, besides the dependence on the bias term ®=(0),®, ), is a function of the

deterministic and stochastic trend components in the system through the random vector
m(r) =(T, (r),m,(r))'. As a numerical illustration of the dependence on model’s

dimensionality even in the simplest case, Table 1 below presents the finite-sample
quantiles of the null distribution under cointegration of the OLS versions of the test

statistics C/ (k) and R

n,m

(k), for a sample size of n = 250 observations and 10000

independent replications under the assumption of strictly exogenous stochastic
regressors.

Table 1. Finite-sample quantiles of the null distribution under cointegration for the fluctuation-type test
statistics. Case of no deterministic component and k = 1, ..., 5 integrated regressors

Significance Shin (1994) Test Xiao (1999), Wu and Xiao (2008) Test
Level k=1 2 3 4 5 k=1 2 3 4 5

0.01 0.0289 0.0254 0.0218 0.0192 0.0175 0.4008 0.3810 0.3633 0.3466 0.3357

0.025 0.0356 0.0305 0.0266 0.0233 0.0207 0.4365 0.4155 0.3938 0.3742 0.3587

0.05 0.0442 0.0368 0.0317 0.0277 0.0249 0.4731 0.4448 0.4250 0.4036 0.3851

0.1 0.0586 0.0470 0.0398 0.0340 0.0307 0.5191 0.4892 0.4635 0.4398 0.4206

0.25 0.0978 0.0758 0.0634 0.0528 0.0461 0.6126 0.5735 0.5410 0.5110 0.4856

0.5 0.1993 0.1510 0.1197 0.0982 0.0832 0.7496 0.6995 0.6558 0.6140 0.5798

0.75 0.4410 0.3299 0.2514 0.2072 0.1707 0.9251 0.8577 0.7977 0.7488  0.7007

0.9 0.8780 0.6469 0.4804 0.3863 0.3184 1.1141 1.0302 0.9561 0.8874 0.8321

0.95 1.2598 0.9326 0.6863 0.5491 0.4407 1.2470 1.1504 1.0629 0.9881 0.9219

0.975 1.6199 1.2346 0.9254 0.7438 0.5989 1.3725 1.2622 1.1487 1.0784 1.0196

0.99 2.2143 1.6575 1.2705 1.0106 0.8169 1.5261 1.4331 1.3007 1.1949 1.1278

A quick inspection of these results reveals a quite similar effect as the one described by

16



Hansen (1990) for testing procedures of the null of no cointegration, which is the
requirement of fluctuations of lower magnitude for models of largest dimension for not
rejection of the null hypothesis of cointegration, resulting in an expected loss of power
for high dimensional systems as a consequence of the very different shape of these
distributions depending on £, the number of integrated regressors. Also, Figure 1 below
displays these distributions through kernel-density estimation of the OLS-based
fluctuation-type test statistics with strictly exogenous integrated regressors, where it can
be appreciate that irrespective of the value of £, these are right skewed distributions and
are more concentrated for increasing values of .

Figure 1. Kernel-density estimates of the null distribution under cointegration of fluctuation-type tests

statistics. Case of no deterministic component and £ = 1, ..., 5 integrated regressors

Null distribution of Shin's (1994) fluctuation test for cointegration
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Null distribution of Xiao's (1999) and Wu-Xiao's (2008) fluctuation test for cointegration
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To complete these results in the alternative situation of no cointegration, that is when
the regression errors u, is also an I(1) process with a = 1 in Assumption 2.2(B) and K =

—1/2, the normalized OLS estimator of 3, can also be written as
-1

n n

~ — _-1/2F-1 f —_ A AT =3/2 S A

ek,n =n rkk,an,n - (l/n)zmk,ntmk,nt n ka,ntno,t
t=1 =1

where f,, =n,, —n'"*(n>"? X" Ny T, )Qm. T, are the OLS detrended observations

mm,n - m,nt

17



of the dependent variable y, =da,T,, +n,,, so that the OLS residuals can be
alternatively represented as

7 A U 2 A/ f] nt
u, =N,, —B;,my, :\/ﬁ(l,-@k,,,)( " j (2.32)

mk,nt

and their scaled partial sum admits the representation

[nr] [nr]l( A
n_l/zﬁ[w] = n_mz&t = n{(l, —(:);{)n)n_IZ(Ig(:m )} =0,(n)

t=1 t=1 Sht
which is a fundamental partial result for determining the consistency of these testing
procedures under no cointegration, but with the limitations described before. For a more
detailed analysis of all these results see, e.g., the work by Phillips (1989). Figure 2
below displays the kernel-density estimation of the distribution of the OLS-based Shin’s
(1994) test under the alternative of no cointegration, with similar shapes as under
cointegration for different number of integrated regressors.

Figure 2. Kernel-density estimates of the alternative distribution under no cointegration of fluctuation-
type tests statistics. Case of no deterministic component and k=1, ..., 5 integrated regressors

Alternative distribution of Shin's (1994) fluctuation test for cointegration
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This represents an important difference with respect to, e.g. the PO tests, where the
limiting distribution under the alternative hypothesis does not depend on the
characteristics of the estimated model. Some other existing cointegration tests, such as
the Choi and Ahn (1995) LM-type statistics and the statistic proposed by Jansson
(2005), also display the same characteristics although we do not consider their study in
this paper.

Also, besides these theoretical considerations, in practical applications it is worth to
mention the effects on the size and power properties of the methods used to adjust for
serial correlation and endogeneity of the stochastic regressors.

Finally, much of these results are also of application in more complex models allowing
to capture some non-linear effects characterizing the potential cointegrating
relationship, such as, e.g., structural breaks affecting the parameters of (2.4). Thus,
augmenting the specification of the basic cointegrating regression (2.4) as

Y, =8m, +0m,/ (1)) +u, =0'A, (1)) +u,
where 6, =(a’ ,B,), 8, =(A',1,)", 6=(6,,8))", and
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—_ mt
A ) '(mthxro)j

with A (T,) =1(¢ >[n1,]) the indicator function of the break point in the sample, where
T,0(0,1) is the true break fraction, this model allows for systematic, abrupt and

permanent changes in the values of the model parameters. This general formulation
allows for a great variety of different specifications with changes affecting the trend
function and/or the cointegrating vector. In the case of an unknown break point, the

estimating model is given by y, =0'A (1)+e,, with regression errors defined as
e, =u, +0m, (4 (T,)— A (1)) so that the scaled OLS estimation error is given by

I’lKDn (én — e) = (n‘liAm (T)A'm (T)j_

x {n_“_” DA, Ou 0 Y AL (DM, (7 (T,) A (T) nKW,Zel}
t=1 t=1
with scaling matrix D, =diag(W,,W,), and

'\, +A, m
nKW’;elan( m,n( m_l k,m k)J
rkk,nnk

Both in the case of a known break point, i.e. T = Ty, or with a wrong determination of the
break fraction with relatively small changes in the magnitude of the shifts in the model

parameters such as #n“W'0, is asymptotically negligible, then all the model parameters
are consistently estimated by OLS under cointegration, but with the same nuisance
parameters as in the linear case affecting their limiting null distribution.

With all these results in mind, but still relying on the usefulness of the information
contained in the sequence of OLS residuals, next section will present a new testing
procedure that overcome many of the difficulties discussed above.

3. A new CUSUM of squares test statistic

In the context of testing for stationarity of a univariate time series, Xiao and Lima
(2007) consider, as an extended source of information for determining this type of
behavior, the existence of excessive fluctuations in the bivariate process z, = (u,,v,,)’,

where v, =u’ -0’ , with 0., =n"' 2" u’

u,n t=1 "%t

In order to define a proper measure of

excessive fluctuation in these two series, these authors propose to built the scaled partial
sum of z, as

n_m%( K j :( —1/2n_1[/nzr]z£zzrl] ¥ 2 j 3.1
=1 \Vne no Rl () -ag,,)

Under stationarity (i.e., under cointegration if u, were the regression errors in (2.4)), the
scaled partial sum of centered and squared errors admits the decomposition

Lnr] [nr] n

- - nr| _
n I/ZZVM =n l/szt _[ ]I’l l/Zth (32)
n

t=1 t=1 =1
with v, =u’ —0>, that under quite general assumptions weakly converges to a well-

defined limiting distribution. On the other hand, under non-stationarity (i.e., under no
cointegration) we have that
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[r]

5/2[W] u " {”_12(’1_1/2’4)} O (n_l)

" ( tj: e 1/t2:1 2 1,2 [Z: - 7’17”] _1Zu2
- - - n,t
n Z[(n ut) —-n ou,n] t=1 t=1
t=1
(3.3)

so that the behavior under non-stationarity is dominated by the

where u,, =n""u,,
second component, reflecting the violation of the covariance stationarity assumption
induced by the unit root. This result give us the idea to define the empirical version of
(3.2) based on the squared and centered OLS residuals as the basis for building a

relatively simple to compute statistic to test the null hypothesis of cointegration. First,
given the sequence of OLS residuals in equation (2.25), &, =u, —n *m’,© , we have
that the scaled partial sum of squared and centered residuals is given by

[nr] [nr]

—1/2 —1/2 ~2
% 2@

t=1 t=1

1/2[m 1/2-2K A 1[nr] [nr] i< A
—2K U - i - i
th+n O |n memm——n n memm O, 34
[nr]

_2n1/2—2|<é, ( -(- K)Z [””] 00" K)zm j

with 62, =n"' X 4] the OLS-based residual variance. Note that this functional,
n 23 =2 Y@ - 62 ), is the base to built the cumulative sum (CUSUM) of

squares statistics used to test for structural stability in linear regression models with
stationary regressors and errors (see Deng and Perron (2008) for a recent review of the
conditions required on these components to obtain consistent results). In a non-
stationary framework, Lee et.al. (2003) study its properties to test for a variance change
in a unstable AR(g) model while Nielsen and Sohkanen (2011) also generalize it use to
the case of a non-stationary autoregressive distributed lag model with deterministic time
trends. For the cointegrated regression model proposed by Maekawa et.al. (1996), with
cointegrated regressors and inconsistent OLS estimation of the model parameters, Lu
et.al. (2008) studied how to built a CUSUM of squares statistic for testing structural
stability based on the first difference of OLS residuals. When using (3.4) for the
purpose of testing for cointegration, taking K = 1/2, the behaviour of (3.4) is
asymptotically equivalent to that of (3.2), that is

Lnr] Lnr

—1/2 t —1/ z +O ( 1/2)

t=1 t=1

so that the limiting distribution of (3.4) under cointegration will be invariant to the
structure and nature of the regressors in (2.4). In order to correctly characterize this
limiting null distribution, we have to consider an augmented version of the error vector
& given in (2.3) as (,=(«,,v,,&,,)", so that under the assumptions stated on the

generating mechanism of §, it also satisfies an invariance principle such as

-1/2 A -1/2 ua 2 “ 2 B” (l’) 172
n2Y L =Y | ul—0) | = By(r) =| B,(r) |=Q W, (r) (3.5
A e RG)

with covariance matrix
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0“)5 wuv wuk
— 2
QZ - (‘Ov ka
Qkk
where ), = w;k and @, =w, =2, F [sk,t—hutz +2m E [sk,tutz—h]

is the long-run

covariance between €, and u’ —0>. By the upper triangular Cholesky decomposition

of Q( , we have that

1. \2
w \/1 _ ( ('ouv B wuk gzkkl ka J w ( wuv wuk Q w
u.k u.k
wu.k wvAk ('ouAk ('ov.k
Q= 0 w,,
Ok Ok

j ('ouAkwuk (wzu.kak )_1/2
W kka (wzv.kak)_l/z

1/2
Qkk

where @, =w;(1-p;,) and @, =@ (1-p;,) =W, ~&,Y,,, with y,,

=Q. ', , are the

long-run variances of u, and v, =u —0. conditional on €, respectively, and hence
B, (r) in (3.5) can be decomposed as B,(r) =w, W, (r)+Y,B,(r).

Following, e.g., Phillips and Solo (1992), and Ibragimov and Phillips (2008), for a
univariate stationary sequence u, given by a linear process on an iid or martingale
u, =c(Lye, =% with ¢(L)=X7,¢L,
Yoict <o, c(1)#0, and E[|e, "] <, m > 2, the limiting behaviour of the sample

covariance is given by
(]

-1/2
n z (utut+h -

t=1

difference such as ce

sequence ¢, i= o iCt=i»

Y. ()= B,(r) = W, (r)

for any & = 0,1,..., where Y, (h) = E[uu,,]1=g,1)o’, g,) =22, cc,.,» ¢; =0 fori <0,
and w; = g;(DE[(e; —0;)’1+0; X7 (g,., () + g, (1))*, with
W, =g (DE(e; —0;)’1+40; X7, g/ (1)
forh=0with g_ ()=g ().
In our case, from Assumption 2.2 we have u, =¢ (L)e, =27,,¢, e_;, with

2 . \® U —_
014 - Jj=0 c0 fzeco j

V _u _0 _ZCOJ(et -j t—]_z )COJ +2zzc0](et -j t] z)CO,j+i

i=l j=0

_Z(CO] DCOJ)VeC(et -j tj _Z )+222(c0]+1 DCOJ)VeC(et -j tj 1)

=l j=0

-2,)+ ZZg (L)vec(ee, )

i=1

“o(c,,; O¢, vec(Z,), so that v, =u; -0, can be decomposed as

=g, (L)vec(ee

Where gz (L) Zm 0(c0 ,JH D cOJ)Ll = ;020 gi,jLi K Wlth gi,j

., so that the scaled partial sum process of v, can be expressed as

(o]
n—l/zz v,
t=1

=(cy . Ue, ) for i, j =0, 1,
[nr]

ngJ UZZVec(et = €, J -2 )+2zzgw UZZVGC(‘% =Jj €, J= v

s=1 j=0
(3.6)
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By application of a multivariate version of the invariance principle for the sample

variances n~'> X" vec(e,_¢; ;—Z,) and covariances n > X! vec(e ) above

t—j t Jj=s
defined in terms of the iid sequence e, and under cointegration, (3.6) will have a well-
defined limiting distribution given by the Brownian process B, (r) appearing in (3.5), so

that

[nr] [nr]

n—l/zzv —1/2zvm +O (n” 1/2):>V(7") B.(r)-rB,(1) 3.7)

t=1 t=1
where V (r) a first-level Brownian Bridge process based on B (r), with long-run
variance

W} =gy(1)E[vec(e,e; —Z,)vec(e,e, —X,)1+4>_ g (1)E[vec(e e, )vec(e,e,) g, (1)

i=1
where E[vec(ee;)vec(ee,)]1=Z, 05, X =diag(q,,0;,....0;) and o =E[e;,], and
E[vec(e,e — X )vec(ee — X )] is a square (k+1)*x(k+1)* matrix involving the fourth-
order central moments N, = E[(e;, —=0°)’], j = 0, 1, ..., k, and products of distinct
variances 03.01.2 ,J,1=0,1,... k,j# i Also, given Qz”z, the limiting distribution in (3.7)
admits the decomposition

V.(r) =, (W,(r)=riv, (1)) +Y, (B, (r) —rB,(1) (3.8)

with E[B, (r)W,(r)] = Q. E[W,(r)W,(r)] =0, . Thus, taking together (3.4), (3.7) and
(3.8), we define our test statistic as the maximum absolute fluctuation of a modified
version of the CUSUM of squared and centered OLS residuals statistic as

. 1 :
S, = x,, —(t/n)x,, (3.9)
\/_wk,,(q _____ ]Z b (4,) (X, =W)X, )
where &, ,(q,)=6%,(q,)~&,,(¢,)¥..(¢,) is a plug-in kernel estimate of «,, the

long-run variance of v, =u’ — 0. conditional on €, under cointegration, given by

n—1 n
&, (q,)= D, wlhig)n™ > o5 (3.10)
h==(n-1) t=|h|+1

with ,,,(q,) =, (4,)@,,(q,), and

0, (q,)=n" szzvz'l'zw(h/qn)” Z(thv +Z, V)

t=h+1
the kernel-based estlmators of the corresponding variances and covariances, with kernel
function w(-) and bandwidth ¢, # It is assumed that both components of these estimators
satisfy the regularity conditions stated in Jansson (2002) in order to obtain consistent
estimates of the corresponding parameters under the assumption of cointegration.
Next Proposition 3.1 establish the limiting null distribution of (3.9) in the cases
d,, =0, or,atmost, d,, = A, #0, (thatis m =1 and g = 0) relating to the structure of

¥ Observe that, alternatively, the conditional long-run variance estimator G ,4.(q,) can also be computed
as (x)i“(q,,) Z'J’ l(n 1 w(jqn Y'Y i M+1 Vi), with D, =9, —ij (9,)2,, a Fully Modified (FM)-

—_A2
type correction of ¥, =i’ —67.
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the deterministic component underlying the observed integrated regressors.

Proposition 3.1. Limiting null distribution of the maximum absolute fluctuation of the
modified CUSUM of squares statistic based on OLS residuals.

Under Assumption 2.2 and (3.5), with finite four moments for the innovations driving
the linear process for u,, and with a kernel function and bandwidth parameter

satisfying the conditions stated in Jansson (2002), then under cointegration and
integrated regressors containing at most a constant term the limiting distribution of the
modified CUSUM of squares statistic in (3.9) is given by

CSn = SUup, o, W, (r)—rW,(1)] (3.11)

which is the supremum of the absolute value of a standard (first-level) Brownian
Bridge, J (r) =W (r)—rW ().

Proof. This result follows directly from the above results, standard application of the
Continuous Mapping Theorem, the consistency of the kernel estimates of the long-run
variances and covariances, i.e., 6%, ,(g,) -’ o, and ¥, (g,) -V, and the fact
that x,, —(/n)x,, =n,, —@mn,,+d, —@nd,,, with d,, —(@@n)d,,h =0, and
n"*(d,, = (t/n)d,,)=0(n™""?) when the deterministic component underlying the
generating mechanism of the regressors contains at most a constant term.

Next we make some comments on this basic result. The first one refers to an important
limitation of this result in more general situations related to the structure of the
deterministic component underlying the observed deterministically trending integrated
regressors when m > 1, in which case we propose the convenient modification required

to account for this characteristics. The second one has to do with the correction for
endogeneity in (3.9), and in particular with the computation of the correction factor

Vi (@,)(x,, —(#/n)x, ) and the conditional long-run variance QY v (q,) which depend
on the long-run covariance @, ,(qg,). Finally, the third comment refers to the properties

of the CUSUM of squares measure based on the sequence of residuals obtained from
alternative estimation methods other than OLS such as, e.g., FM-OLS estimates.

Remark 3.1. Given the general representation for the deterministically trending
integrated regressors given in (2.1) and Assumption 2.1, x,, —(#/n)x,, =n,, —(#/n)n,,
+Ad,,withd, =T, - (#/n)1,=l,'d, and d, =T, - (¢/n)T
the numerator of (3.9) can be decomposed as

n"? {ZV _y,kvn(q )(sz (t/n)xkn } 22 i k\;n(q )(ﬂkm (f/ﬂ)l'lk,nn)

j=1

_Vkv,n (qn)Akn_l/zr:dnt
where ' —dlag(l'mn, r ) which is clearly dominated by the last term for m > 1.

Thus, if we define ¥, =X'_ %, and V,, =V, -V, ,(q,)(x,, = (t/n)x, ), then V,, is taken

t =17 t
as the dependent variable in the auxiliary regression

so that the leading term in

nn 2

V,=dd, +s, (3.12)

t,

where s, =V, ~V...(g,)(n,, —(@n)n, ), with limiting distribution under cointegration
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1

given by n™"%s;,,, = ,,J,(r). Computing the sequence of OLS residuals from (3.12)

as

-1
S, = V,’k -da, =s,—-n'd, (n_IZdnjd;jj n_3/22dnjsj
I=] J=
then we propose to modify the test statistic in (3.9) as

CS‘n(m+q): max | §, | (3.13)

1
\/ﬁ(;)v'k’n (q,) =

with limiting distribution under cointegration given by the supremum of a demeaned
Brownian Bridge process such as

CS,(m+q) = sup, ., (3.14)

J.(r)-T () ( I;T(S)T'(s)ds)_l j;r(s)Jv(s)ds

!

which depends on the order of the polinomial trend function T, =(T,,,,T,,)", but not on

the number of integrated regressors, k. The quantiles of the limiting distribution in
(3.14) are tabulated and presented in Table B.3 in Appendix B for different sample sizes
and assumed orders for T,, withm+g =1, ..., 5.

Remark 3.2. Given the definition of the long-run covariance between €, and u’ -0,

v

W, =2, E[&-:k’,_hut2 1+ E[sk,,uf_h], under the linear process assumption for the
sequence §, =(u,,& ) in (2.3) and the iid property of e, =(e,,.e,,....e,,)", we have
that

27 — - N/
Elg,, u’1=Y D, Elevec(ee,)]g,,.,

Jj=0
and

E[ak,tutz—h] = sz,h+jE[etveC(ete:‘ )']gO,j
=0

where the (k+1)*x(k+1) matrix E[vec(ee|)e ] is of the form
E[vec(ee,)e;] = (Ele,, 0}, Ele) L5, ..., Ele] LY
with 1Y/ j=1,2, ..., k+1 a square k+1 matrix made of zeros except for a unit value in

the jth-position of the diagonal, so that all these expected values mainly depend on the
characteristics of the distribution of the error terms e,.J=0,1,.., k, with w_ =0,

under symmetry of the distribution of the error terms e,. In any other case and from a
practical point of view when using the estimator @, ,(g,), the phenomenon known as
supernormality (see, €.g., Leybourne et.al. (1996)) implies that the residuals z,_,,4, tend

to be symmetrized for large sample sizes even if the true innovations are not. However,
in small or moderate samples we must not rely on this asymptotic property and perform
the computation of the required elements for those corrections.

Remark 3.3. As an alternative to the OLS-version of the test statistic in (3.9), we
consider the computation of the scaled partial sum of squared and centered FM-OLS

residuals, 4" =u —n“m/, @, as was detailed in section 2.1. Taking into account that

24



these estimates are consistent under cointegration with the same rates as with the OLS
estimation, and that the FM-OLS correction of the regression errors is given by

+ _ A A _ A~ r & : _
Z’[1‘ - ut - y’ku,nZk,t - Zt - (yku,n - yku) 8k,t - y,ku,an,nt s WIth Zt - ut - Vkusk,t and
Vi =Y =0,(1) under cointegration, then the scaled partial sum process of squared

and centered FM- OLS residuals can be decomposed as
[

n—1/2 - 1/22(

t=1

+(Vku » " Yi) { l/ZZ(Sktskt —2,)- [nr] _1/22(8kt8kt _zkk)} (yku » " Yi)
1/2-2k A+ 0! 7”] A
+n o, Z m, mmmnt N

n t=1

[nr]

. nrl o _inN
- 2(yku N yku { l/zz (8k M oku) ] —n l/zz (8k,tut - O-ku)}
~ nr| _
+ 2(yku n yku { 1/22 (8k tsk t zkk) [ ] 1/22(8k zak t zkk)} 3
t=1
_27’11/2_2Ké:1+[ (1= K)z I’ZI"] —(1 K)zm z j

+27’1_Ké;+( Uzzmmsk, M _1/2Zmntaktj(Vkun_yklt)+0 (l’l )

2

where 0> =n"' Y/ z’ and the last term 0,(n™) collects all the elements involving

A

functionals of F,_,, . Also, all the terms involving the FM-OLS estimation errors, o

no

are asymptotically negligible under cointegration, so that we can write
L] nr

n—l/Zz‘f}: — 1/22(2 -0 )+O (l’l 1/2) I/ZZ(Z -0 )+0 (1)

t=1 t=1 t=1
where the first term can be decomposed as

—1/2[m] 2 2N — —1/2[m] 2 2 [””’] 2NO 2 2
- [nr]
+V;m{ 1/2Z(Ek takt _zkk)_[nr] _1/2z(sk tskt - kk)}yku
_ 1/2[m] _ [”] w2 _
2Y, 41 Z(Sk M, —0) Z(Ektu 0,.)
[nr] [nr]
1”va+(yku ay,,) { I/ZZVCC(E )__r] _1/2ZVCC(E )}
[nr
_2y;cu {n_l/zz(sk,t t_olku)_%”_l/zz‘,(ek,t t_oku)}

t=1 t=1
with E, =g €  —-Z,, implying that the resulting limiting distribution under
cointegration will depend on some additional nuisance parameters such as y,, = Q.'w,,

and the number of integrated regressors through the dimensions of the vectors vec(E,),
K°x1, and €., —0,, kxl. The same result follows when using the residuals obtained

from any other asymptotically equivalent estimation method as, e.g., the IM-OLS

25



residuals. This result implies a clear advantage of the use of OLS residuals for the
computation of the proposed test statistic.

4. Some sources of size distortions and consistency analysis

The first part of this section is devoted to the analytic study of our test statistic in terms
of evaluating the effects of some different sources of size distortions in finite samples
caused by a highly persistent, but stationary, regression error term u, following an
AR(1) process with a root approaching unity at a moderate rate or, alternatively, by
introducing a local-to-unity representation for a moving average (MA) root. We
consider three of these types of representations that fall into the general class of
summable processes of order ranging from [0, 1) characterized by the fact that u,
locally behaves as a stationary sequence. The concept of a summable stochastic
processes has been recently formalized by Berenguer-Rico and Gonzalo (2014), where
for a zero-mean stochastic process (, the order of summability, Y, is the minimum real

number that makes n™"**Y' 3" {, bounded in probability, and it is denoted as S(y). It is

clear that for a standard stationary process, I(0) = S(0), while that for a integrated
process, I(1) = S(1). The second subsection deals with the consistency of the testing
procedure against the alternative of no cointegration when the regression error term
follows a fixed unit root process, although similar conclusions could be obtained under
a standard local-to-unity representation for the autoregressive coefficient.

4.1 Size distortions

As for the testing procedures for the null of cointegration based on measures of
excessive divergence of the partial sum of residuals from the estimation of the
cointegrating regression not consistent with the stationarity of the regression error
terms,” for our test statistic it is also expected that the main source of distortion of the
empirical size in finite samples comes from the treatment of serial correlation. Palma
and Zevallos (2004) study the correlation structure for the squares of a time series

satisfying a linear filter, such as u, =c(L)e, with e, a sequence of uncorrelated but not
necessarily independent variables, with mean zero, finite variance and kurtosis
n, = E[e')/a? <co. From their results we have that

yv<h>=zy3<h>+o:{ 20,3 (0, -DE S, 441

j=0 i=0

+2(n, - l)z z CiCrnCiCianPe (i- J)}
7=0 i=0

where Y, (h) = E[(u] =0’ )(u’, —0.)], with p, ,(Jj) the autocorrelation function of e’

which reduces to
y,(h) =2y.(h)+0.(n, —3)20, ¢, =2y, (h+a.(n, —3)(20, ,MZC j

under iid noise, with n, =3+(n, -3)g, (I)ZZ Oc the kurtosis of u,. These results

? For more detailed and exhaustive studies on these effects see, e.g., Carrion-i-Silvestre and Sansé (2006)
and Miiller (2005).
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imply that, in the case of a short-memory stationary filter with ¢, ~ ¢’ for some |c| < 1,

the decaying rate of the autocorrelation function of the squares is twice as fast as the
decaying rate of the autocorrelation function of the original series, which determines an
immediate impact on our results related to the computation of the long-run variances
and covariances involved in the construction of the test statistic in (3.9). Simulation
results, presented in Appendix C, seems to confirm this conjecture in terms of requiring

a relatively small value of the bandwidth parameter, ¢,, to obtain a very good
performance of the test statistic under stationary and strongly autocorrelated regression
errors.

-1/2 t A

Next we examine the expected behavior of the leading term in (3.9), n V=

n 2 ¥ (@} -6.,), under two different constructions characterizing the local-to-
stationarity behavior of the regression error terms.

4.1.1. The near stationary case

To introduce the effect of moderately serially correlated errors in a cointegrating
regression, Kurozumi and Hayakawa (2009) consider the framework proposed by
Giraitis and Phillips (2006), and Phillips and Magdalinos (2007a, b)'° where the AR
coefficient o is moderately close to 1. This can be modeled by the so-called m local-to-
unity system, definedas a =a, =1-A/m, , withA>0, m, - o,and m/n - Oasn -

. A convenient parameterization of m, is given by m, =n", with y 0 (0,1). By Lemma
3.2 in Phillips and Magdalinos (2007b) and Lemma 1(d) in Kurozumi and Hayakawa
(2009), u, =0,(m,*)=0,(n"?), and hence n™"*u, =0,(n""™"'*)=0,(1) for any value

y O (0, 1), representing an intermediate case between standard stationarity and non-

stationarity. Taking into account the following representations
[nr] [nr]
—_ /27 ,,~Y/2
(=a,) D, = 20, +a,n" [0 (uy ~t,)]
t=1 t=1
lnr] [nr] [nr]
2 2 — 2 1/2+d —(1/2+d 2 - 2 2
(l_an)zut _Zut +20(nn ' n e )Zut—lut +O(nny[n y(uo _u[nr])]
t=1 t=1 t=1

and

n n
-1 —_ ~h Y Y2 -1 -y/2 2
n z u,_u, =an (n g,,~—n z (n""u,) j

t=h+1 t=n—h+1
h n—=h
d-1/2 h=j —(1/2+d)
R TISEED YT
j=1 t=1

where 7' X0 (n”"?u,)? =0, (h/n) and 2" X wv, =0,(1), with d = y/2
when U, is an iid sequence, and d = 1/2 in the case of weakly dependent errors L, (see

Phillips and Magdalinos (2007b)), then we obtain the limiting results
1 Lnr] 1

T 2t = 2t = VB, () @.1)

t+j

and

' Giraitis and Phillips (2006) and Phillips and Magdalinos (2007a) study the properties of the estimator
of the first order autocorrelation for an observed univariate time series under near stationarity driven by
iid noise, while Phillips and Magdalinos (2007b) extend the analysis to the case of weakly dependent
stationary errors following a linear process.
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(l/mn)oj’n =

2= | Zf S (1206 4.2)

. 1+y
so that from (4.1), although stationary, u, is summable of order y [J (0, 1). Also, from

(2.10) and (4.1), we have that the normalized OLS estimation error of the model
parameters is given now by

-1
n n
A — . -lA — 12-vw' D _ _ -1 ' —(1/2+y)
en_mn @n—l’l Wn(en 9)‘(” zmntmntJ n Zmntut
t=1 =1

implying that the OLS estimator of B, in (2.4) consistently estimate the cointegrating
vector parameters but at a smaller rate than in the standard case, i.e.

n'" V(Bkn —B,)=0,(1). Thus, given the sequence of OLS residuals 4, =u, —n “m, O
where the index K takes now the value K =1/2 -y, we have that
[nr] [nr]
S =02, =Y o)
t=1 t=1

[nr]

(12— Ay nrl < , ~
+n 2 zy)@n( Zm m), ]n 1memmj@n (4.3)
-(1/2-2y) &' 7’””] 02
—ny (2 2y)en( 1/z+yz yzm y j

where the last two terms in (4.3) are asymptotically neghglble for y < 1/4, while that for
the first term we get

B e

t=1

+ain' (n_yug (1 —Mj -nY (u[znr] —Muj D (4.4)
n n
i o,

so that 27X’ -0,)=0,(n"""), and hence both n?XI"'d  and
n 2 3¥m@; - 67 ,) will diverge with the sample size. These results allows to explain

and quantify the size distortions occurred in the presence of highly correlated regression
error terms and reflected not only in the computation of the long-run variances and
covariances required to built these test statistics but also in the behavior of the CUSUM
and CUSUM of squares measures.

4.1.2. The case of a nearly integrated process with a local-to-unity MA root

As an alternative to the above construction, we next consider the formulation proposed
by Nabeya and Perron (1994) as follows

u, =ad,u,_, +0,

Ut - Zt + enzt—l
with o, =1-An™", 6, ==1+A,n™"? and {, a zero mean stationary sequence with finite
variance 0? = E[(?], where, in the limit, the AR and MA roots cancel and the process is
stationary. Simple manipulation of these terms allows to write u, as

— -1
ut _aoa; +anzt +bnEt
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with a, =u,a, +{,0, which is assumed to be zero, a, =a '(1-A,n""?), b =1-a,,
and § =a,& _ +{,, where n7"?§, = J, (r) =[re™™dB,(s) (see Phillips (1987b)).
Taking these results, together with the fact that +nb, — A,, then we have that
u,=0,(1) but n™2 XMy, =0,(n"?), so that u, is summable of order 1/2, with
TR ATTIEN N [ ,, (8)ds , implying that the OLS estimator of the cointegrating vector
is still consistently estimated at the usual rate #"?> (K = 0 in (2.10)), but with a very

different limiting distribution. Hence, all the CUSUM-type statistics described in
section 2.2 must diverge with the sample size given that when based on OLS residuals
we have n”' X4 =7 Yy —n7 YMIm! O, = 0,(1). Moreover, it is easy to show
that the sample variance of u, has the following weak limit 02, = 07 +A2 ]} Jx (s)ds
and n™"? X"} -0} ) =0, (n""?), which implies that the CUSUM of squares measure

for the sequence u, diverges with the sample size at the same rate as the CUSUM for

the levels. For this construction, the CUSUM of squares for the OLS residuals loses its
main attractive feature of being independent from the components of the estimated
model given that (3.4) is now given by

[nr] [nr]

1 2 2 1 2 2 A A [nr] <X A

- A - - _ r - T - ’

n Z(ut _Gu,n) =n Z(ut Gu,n) +en n zmntmnt n mntmm‘ en
t=1 t=1 t=1

n =1
[nr] n
Y- _ [nr]
20, (n Z mu, ——n m u,

t=1 n t=1
where n7' YX"w? -0 )= A([; Jx (s)ds -l Jx (s)ds) . This construction represents
an intermediate case between the near stationary formulation in 4.1.1 and the usual
local-to-unity parameterization that follows when o7 =0, and hence could be used to

evaluate the size performance of these test statistics in the vicinity of stationarity in
finite samples.

4.2 Power behavior and consistency

To study the power performance of the proposed test statistic, we follow Jansson’s
(2005) proposal that considers a useful modification of the standard » local-to-unity
system (that is, when m, = n) to parameterize a local moving average (MA) unit root
characterizing the behavior of the regression error term under near cointegration. To
that end, if we take the first difference of u, as Au, =alu, , +Av,, then it can be

rewritten as Au, =(1-pL)v, for a = 0 and p = 1. If instead of the fixed positive MA
unit root we consider a local-to-unity representation as p=p, =1=An"', for A > 0, then
the u, admits the representation u, =u, +(1-pL)X/ L, = a, +p,0, +(1-p,)V,, with

a, =u, —pu, and ¥, =2 v, then
/Z[W] /2 /2[711’] td /2
-1 —_ -1 -1 -1
w2y u, = an ]+ p,n Y 0, + (1-p,) ) (07
t=1 =1 =1

= B, ,(r) = B,(r) +A| B, (s)ds
under the necessary assumption a, =0 on the initial values, so that A = 0 corresponds to
usual results under standard cointegration. For any value of A > 0, the second term
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appearing in this limiting distribution determines a displacement of the limiting
distributions under cointegration corresponding to a certain degree of excessive
persistence of the regression error sequence. In any case, this framework does not cause
any change in the rates of consistent estimation of the model parameters or the
regression errors, so that the scaled partial sum of squared and centered OLS residuals
in the leading term of the test statistic in (3.9) is governed by the behavior of

S =0 S <) —Mn‘”i(uf o)
+(1 3/2{ Z( l/ZV) ] i(n—l/ZV;)Z}

t=1

+2pn<1—p,,)n”2{ ZVU ”r]n‘lizu,}

where 1-p, =An~' implying that the last two terms in the right-hand side of this

-1/2

expression are of order O,(n ") and hence asymptotically negligible, determining the

same weak limit result as in (3.7) irrespective of the value of A. This result can be
interpreted as a certain degree of robustness against this type of departure from the
standard stationarity situation or, alternatively, that this construction is only appropriate
to characterize local departures from the stationarity situation for the levels of the series.
In fact, given the expressions

=p207 +n (N (7)) +20p, (n7V)),)
and

=p,0,, +n” {n_m?\zn'lz (V) + 2?\pnﬂ_lz VtUt}

it is immediate to observe that u’ and 0 both asymptotically behave as U’ and O

v,n?

respectively. Alternatively, if we modify the assumption on the structure of the MA unit
rootas p=p, =1—An"", with A =2 0 and y O (0, 1), this allow us to accommodate this

structure for the squared series, implying that the CUSUM and CUSUM of squares
theoretical measures based on u, are now given by

[nr] [nr] [nr]
-1/2 — -1/2 1- -1 -1/2 — 1-
n E u =pn E L, +An y{n E (n Vt)}—Op(n )
t=1 t=1 =1

and
w2 2 —1/2[m] 2 o _[nr] ¥ 2 2
sz: Pryn Z(U,—OU)——H Z(Urou)
= n -
)\ 22 {n—llzi(n—l/zV) [””’] —12(’1—1/21/)2}

t=1
[nr] n
e nr] _
+2)\pnny”2{n1 Vu, - L ]nleU}

t=1
so that n~""? X"y diverges at the given rate for any value of y in the subset y 0 (0, 1)
and A > 0, due to the closer proximity to non-stationarity for any sample size implied by
this parameterization. Similarly »™"?X"'v, =0 (n™'"*) and diverging with the

sample size for any value of y in the interval 0 <y < 3/4, while that for 3/4 <y <1 the
last two terms in the right-hand side are again asymptotically negligible. Only when y
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takes exactly the value y = 3/4 we get
[r]

-1/2 _ —1/2[W] 2 2 [nr] _1ax 2 2
n v, =n Z(Ut —GU)——n Z(U, —-0,)
=1

" [nr]
Az{n—lz —1/2V) 7:17”] —12( —1/2V) }+O (n” 1/4)

t=1

with
n‘”z[ZV =V, (r)=V,(r) +\? {j BX(s) - rj Bz(s)}

where V() is as in (3.7), with B,(r) the weak limit of n™"'* X"J(u? —=07). We employ
this construction at the end of section 5 to numerically compare the power performance
of our test statistic with some other existing and popular testing procedures in practical
applications.

Finally we study the behavior of the proposed statistic under the alternative of no
cointegration, when the regression error term u, contains a unit root (i.e. o = 1). In this

case, the sequence of OLS residuals admits the representation as in (2.32), that is

Bkn kt_\/_(l @kn)(nomj 4.5)

k,nt

so that ﬁt:Op(\/ﬁ), and hence 7Y =R XMm, =0,(1), with

K, = (1,—(:);{’,1)' and m,, =(f], .M, ) . Next result establish the rates of divergence of
the different elements composing (3.9) under no cointegration and hence the divergence
rate of the proposed test statistic under the alternative, that is, its consistency property.

Proposition 4.1. Consistency rate under no cointegration.
Under the same conditions as in Proposition 3.1, but under a nonstationary behavior of
the regression error term u,, that is, under no cointegration with O = 1, we have that:

[nr]

(@) (1/~/n )Zv =0, (nJn)

(b) &, (q,) =0,(q,n"),and &, ,(q,) =0, (q,~n)

SO that wikn(Qn) = OP(an )’ and

(¢) €8, =0, (Jnlq, )

Proof. First, given the above representation for the sequence of OLS residuals under no
cointegration, we have that

[nr] [nr] n 1

w3 =0, ek,»{ i, szm}( : j

=1 t=1 n t=1 _ek,n

that clearly yields the result in (a). Second, given that ﬁf =0, (n), t=1, ..., n, and
6 =0 ,(n), then n~ Ly =0 (n ) and thus V’n(qn)=0p(n2qn) in (3.10) following
similar arguments as in Phillips (1991). Also, for the kernel estimate of the long-run
variance ®),,, given by

wkvn(q )=n ZZkt t+zw(hq ){ Z (Zk,z—h{}z +Zk,t{}t—h)}

t=h+1

tlt

we have that
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=>"Z, vec(th, i, )'(R, OR,) ~~n(n"'6)n™"* > Z,,
t=1

—_ —/Zn'\ A AT NG - -1a2 —/Zn'\

=Jn{n"*Y 7, vec(m,m’,)'(K, OR,)~(n"'62)n" ZZ,(,,}
t=1 =

where we use the representation 7° =nK m m’ R =n(K 0K )vec(m, m' ) for the

= =

squared OLS residuals, with X! Z,, =0,, for any m 2 1 and n"*Y. Z,,
=n""?¥ €, = O,(1) when the integrated regressors do not contain any deterministic

component, so that n”' X Z, , =0, (v/n). Similarly, for lag & = 1, ..., n-1, we can

write

sz,z—hv szthu -6 (ZZM z Aktj

t=h+1 t=h+1 t=n—h+1

where  n7 X, Z e =0, (n hy, yielding XL Zk,t—h{}t =n" X, Zk,t{}t—h
=0,(v/n), and hence &,,(q,)=0, (q,vn) and ¥, ,(q,)=Q; &, ,=0 (q,vn), so
that &

v.k,n

(4,)=0,( q,n°), and the leading term in the numerator of the test statistic
(3.9) is given by
n—l/ZVAt _ Vkv’n (qn)[n—l/Z(Xk,t - (t/n)Xk,n )]

1, 1 . -
= —7, _Wy'kv,n(qn)[n 1/2(Xk,t —(t/n)Xk,n)]}

=n 22+0A%M%

which implies the final result in (c¢). One final comment about the divergence rate
displayed by our testing procedure in part (c) of Proposition 4.1, which is the same as
for the CUSUM-type tests proposed by Xiao (1999), Xiao and Phillips (2002) and Wu
and Xiao (2008), and thus its power performance is comparable with that of these
alternative testing procedures for the same null hypothesis of cointegration.

5. Finite sample alternative distribution, size and power

The DGP used for the simulation experiment is based on u, =du,_ +U, and
N, =Nio T€,, &, =, te,, where EO,t = (Ut’e’k,t), ~1idN(0,,,,Z,,,), with

2, = ( 0 O-Ok) , and O-é,k = 0-3 _O-Okz;klo-ko
c)-kO Zkk

With these error terms we compute the OLS residuals from (2.4) without specifying any
particular value for the model parameters, where all the results are computed by
generating 5000 draws from the discrete time approximation (direct simulation) to the
limiting random variables based on n steps, with k=1, ..., 5, except for calculating the
quantiles of the null distribution with 20000 independent draws. Tables B.1 and B.2 in
Appendix B present these quantiles for different samples sizes and for the cases of no
deterministic term in the cointegrating regression, and for the inclusion of only a
constant term or a constant term and a linear trend component. From these results it is
remarkable the invariance of the null distribution of the test statistic to the structure and
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dimension of the estimated model even for very small sample sizes. Appendix C
presents the results for the finite sample-adjusted empirical size of our testing procedure
under quite general assumptions on the serial correlation of both the regression error
term and the errors driving the endogenous stochastic trend components (endogenous
integrated regressors), providing strong support for the theoretical robustness found in
section 4 even for very small values of the bandwidth parameter in the computation of
the kernel estimates of the long-run variances and covariances needed in the definition
of the statistic in (3.9).

Finally, the results on power performance are presented graphically. First, figure 3
displays the kernel estimates of the density function characterizing the distribution of
the CUSUM of squares statistic under the alternative hypothesis of no cointegration. For
different choices of the parameters determining the degree of endogeneity and serial
correlation of the integrated regressors, we observe a markedly different behaviour for
low, medium and high dimensional regression models in terms of %, the number of
integrated regressors.

Figure 3. Nonparametric kernel estimation of the density function of the CUSUM-of squares test
statistics computed under the alternative of no cointegration

Case A. No deterministic component, with sample size n =200, (O, ¢) = (0.75, 0.50),
and sample size-dependent deterministic bandwidth m,(d) = [d/(n/ 100)”4]

— Cs(k1.T) — Cs2.1)| 1.50)
CS(k3.T) —— CS(k4.T)| )
06k N —=- CS(5T)

— Cs(k1.T) — Cs2, 1)
CS(k3,T) —— CS(ka.T)|

007 05 10 13 20 23 30 33 40 45 50 55 60 65 70 =0 01 04 0 08 1o 12 14 16 is 20 22 d=38

Case B. No deterministic component, with sample size n = 1000, (O, ¢) = (0.75, 0.50),
and sample size-dependent deterministic bandwidth m,(d) = [d/(n/ 100)1/4]

— CS(k1,T) = CS(.T)
CS(k3T) —— CS(ka.T)|

- CS(kST)
0.20)

0.15

0.10)

0O 1 2 3 4 5 6 7 85 9 10 1 12 13 14 15 16 =0

Additionally, figures 4 and 5 display the power profile for relatively small, medium and
large samples sizes for different choices of the magnitude of the bandwidth parameter in
computing the kernel estimates of the long-run variances and covariances appearing in
(3.9) and (3.10).
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Figure 4. Power profile as a function of the number of integrated regressors (k), the magnitude of the
deterministic bandwidth parameter q,(d) =[d(n/ 100)*], and the degree of serial correlation in the

errors driving the stochastic trend components ()
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Sample size n = 200, bandwidth d = 2
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Figure 5. Power profile as a function of the number of integrated regressors (k), the magnitude of the
deterministic bandwidth parameter q,(d) =[d(n/ 100)*], and the degree of serial correlation in the

errors driving the stochastic trend components (Q)
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Power results displayed in figures 4, 5 correspond to the case of no deterministic
component in the estimated cointegrating regression. For the case of inclusion of a
constant term, or a constant term and a linear trend, the profiles are quite similar, but
with a slight loss of power, which is a feature commonly shared by many of the existing
testing procedures in this framework. Also, another common feature, also displayed



here is that the power is a decreasing function of the number of stochastic trends, k. For
high dimensional models, as can be seen from figure 3, the limiting distribution under
the alternative becomes right skewed. However, for low dimensional models and
moderate sample sizes, the power is quite high and can be compared favourably with
that of others existing testing procedures.

Finally, we consider the following generalized structure for describing the local non-

stationary behavior of the regression error terms Au, =(1-p,L)v,, where
U, =@, +e¢),, and p, =1-An", to compare the power performance of our test

statistic with the tests procedures proposed by Shin (1994), Xiao and Phillips (2002)
and Jansson (2005). For these tests the index Yy takes the unit value, y = 1, while for our
test we choose y = 3/4, the only way to make these tests comparable under this
construction. Figure 6 below represents the power profiles of these four tests for values
of A ranging from 0 to 30 in the case of including a constant term in the specification of
the cointegrating regression, k = 1 or 2 integrated regressors, and values of ¢, =0, 0.5,

0.75.

Figure 6. Rejection rates under the local-to-unity MA root for the Shin (ST), Xiao and Phillips (RT),
Jansson (QT(10)) and CUSUM of squares (CT) test statistics and a sample size n = 1000, with k = 1 (left)
and k = 2 (right) integrated regressors and a fixed constant term
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The numerical results displayed in these figures clearly show the superiority of our
testing procedures in terms of power, particularly for highly autocorrelated errors.

6. An application to the US aggregate consumption function and some
concluding remarks

To illustrate the performance of the proposed test statistic as compared some other
alternative testing procedures in the same framework of analysis, we use it to test for a
stable long-run relationship between consumption and income using US quarterly data
from 1947Q1 to 1991Q2 (rn = 178), with the series defined as RPC, Real total personal
consumption expenditure, RCNDS, Real consumption on non-durables and services,
and RDPI, Real total disposable personal income in 2009 dollars. All these series were
transformed into logs and are the same series used in Shin (1994) and McCabe et.al.
(1997), except that in that cases are expressed in 1982 dollars.

Table 2 bellow shows the results of our test statistic including, for purposes of
comparison, a simplified version to be used in the case of strictly exogenous regressors
and given by

CcS%(q,) = n—l/Z(b;’ln (qn)gll% |20V, (k)]

without the correction for endogeneity in (3.9), both in the numerator and denominator
of the test statistic.

We also include the results of Shin’s (1994)"" and McCabe et.al. (MLS) (1997) tests for
the null hypothesis of cointegration, where the MLS test is also based on a measure of

excessive fluctuation under cointegration in the sequence of regression errors u, similar

to that of Shin’s test, but with a parametric correction both for endogeneity and serially
correlated regression error terms.

The estimated values of our test statistic and the Shin’s test, (:’In (q9), are obtained for

certain different values of the bandwidth parameter to correct for serial correlation,
while that the MLS test is also computed for different values of p, the order of the
AR(p) model adjusted to the regression errors to obtain parametrically corrected error
terms free of remaining serial dependence. From these results, we observe that our
testing procedure clearly indicates evidence against the existence of a stable long-run
relationship between consumption and income, with a little or small effect of the
bandwidth choice. Shin establishes that each individual series is I(1), possibly with drift,
and thus the versions of the tests in panel B of Table 2 (with inclusion of a constant
term and a linear trend in the estimated regression model) seems more appropriate.
Overall, there is a substantial amount of agreement between the outcomes of these three
tests against the existence of a cointegration relationship between these variables.

" Formally, the general version of Shin’s (1994) test is based on the residuals from the Dynamic OLS
(DOLS) estimation of the cointegrating regression proposed by Saikkonen (1991), among others.
However, it is not difficult to check that it is also valid when using any other existing asymptotically
efficient testing estimator under endogenous regressors as the FM-OLS method by Phillips and Hansen.
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Table 2. Application to US Aggregate consumption data, 1947Q1-1991Q2 (n = 178)

A. Constant term S’n (p)
Bandwidth  CS,(q) CS)(q) C1,(q) p=1 2 3
RPC-RDPI q=1 4.157° 1.604% 1.136% 2264 2321*  0.699°
2 3.496% 1.395° 0.790°
5 2.695° 1.093 0.393°
10 2.278% 0.906 0.250°
RCNDS-RDPI qg=1 3.613% 1.536° 1.518° 2963%  3.028°  3.194°
2 3.505° 1.291° 1.0372
5 3.1592 0.935 0.477°
10 2.811° 0.765 0.281°
B. Constant term and linear trend S’n (p)
Bandwidth  CS,(q) CS,)(q) C1,(q) p= 2 3
RPC-RDPI q=1 4.088° 1.549° 0.306° 0.616°  0.586% 0.079
2 3.131% 1.364° 0.217%
5 2.489° 1.156 0.188°
10 2.397° 1.077 0.083
RCNDS-RDPI qg=1 4356 1.377° 0.374° 0.507°  0.739*  0.123°
2 4.088° 1.179°¢ 0.261°
5 3.648° 0.925 0.133°
10 3.274° 0.866 0.091

Notes. “ ™ ¢: Rejection at 1, 5, and 10%. CA’IH (g) is the Shin’s (1994) test based on FM-OLS estimates
and residuals, while S’n (p) is the McCabe, Leybourne and Shin (MLS) (1997) test.
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Appendix A. Sources of inconsistent estimation of a subset of coefficients of the
cointegration vector: Subcointegration and stationary stochastic regressors

Let us consider the cointegrating regression model in (2.4) written as f’t = B;{)A(k,t +tu,,,

A A

where Y, =1,,, X,,=m,,, and u,, are the OLS detrended observations of n,,,

m,, =n,+A. T, and u,, respectively, obtained by correcting for the trend

polynomial T, ,, with m,, =, m,  and scaling matrix I, , =W, C), . In the case

m,t 2
1
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with d_, =T, ~Q,,, Q... T, Next, we assume the situation where the scaled -

vector of stochastic trend components N, ,, is given by
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with B, , =T, , in the case of inclusion of , stationary regressors, u, ,, and
Bk,k — [;kl,kl ;)kl Jky j
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in the case where there are 4k, = 1 integrated but cointegrated regressors
(subcointegration), such that n, . =B, , n, , +u, . Thus, when A, =0, the k-vector

m, . can also be partitioned as
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the sample covariance matrix of the stationary sequence u, ,, such that

P —_ r . . .
2 .~ 2y = E[u u ], the covariance matrix of the stationary sequence u,_,, by

the weak law of large numbers under quite general conditions. Then, given that the
scaled and normalized OLS estimation error of B, = (B} ,B; )" can be represented as
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Under the assumption of cointegration we get Bkz’n B, -" %, 0., with
o,,=E[u,_u], while that ©,  weakly converges to a very different limiting
distribution as compared to the case of inclusion of only &, integrated regressors such as
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with A, =27, E[€, u, ], unless 0, , =0, . These results imply that the sequence of
OLS residuals are now given by
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where, under cointegration, only the last term is asymptotically negligible, that is
u, =u,, —ﬁ'kz),([}kz,n -B,)*0, (n”""?), determining very different limiting distributional

results for the scaled partial sum process 7" 20 . and for the rest of elements composing
the fluctuation-type statistics such as the kernel-based estimator of the long-run

variance, (305,”(6]”)
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Appendix B.

Table B.1. Quantiles of the null distribution under cointegration of the modified
CUSUM of squares test statistic, Cén. Number of integrated regressors, k.

Case of no deterministic component Case of inclusion of a constant term (m = 1)
Sample size, n k=1 2 3 4 5 k=1 2 3 4 5
n =100 0.01 0.3962 0.4003 0.4001 0.3983 0.3910 0.3994 0.3996 0.3973 03987 0.3974
0.025 0.4334 04371 04322 04325 0.4340 0.4360 0.4353 04354 04370 0.4367
0.05 04676 04713 04710 04728 0.4728 04731 04730 04741 04740 04751
0.10 0.5214 0.5214 0.5227 0.5250 0.5273 0.5222  0.5244  0.5251 0.5251  0.5257
0.25 0.6236 0.6241 0.6267 0.6303  0.6311 0.6254  0.6271  0.6284  0.6294  0.6310
0.50 0.7757 0.7794 0.7779 0.7812  0.7827 0.7735 0.7745  0.7767 0.7779  0.7807
0.75 09621 09643 09647 0.9723 0.9742 0.9631 09648 0.9633 0.9683 0.9715
090 1.1524 1.1554 1.1601 1.1639  1.1669 1.1579  1.1583 1.1605 1.1633  1.1667
095 1.2856 1.2832 1.2848 1.2833  1.2870 12714 1.2783 12783 1.2835 1.2869
0975 13803 1.3991 13909 1.3913 1.3970 1.3909 1.3953 1.4039 14017 14016
0.99 1.5086 1.5092 1.5142 15171 1.5174 1.5239  1.5238 1.5241 1.5309  1.5253
n =200 0.01 04102 04068 04074 0.4084 0.4100 0.4420  0.4009 0.4020 0.4024  0.4004
0.025 0.4465 0.4474 04490 0.4495 0.4466 0.4420  0.4406 0.4430 0.4429 0.4419
0.05 04886 04876 0.4864 04871 0.4860 0.4815 0.4808 0.4818 0.4815 0.4320
0.10 0.5358 0.5353 0.5376  0.5364 0.5378 0.5331 0.5340 0.5336  0.5332  0.5353
0.25 0.6390 0.6398 0.6396 0.6389  0.6411 0.6365 0.6369 0.6384  0.6402  0.6393
0.50 0.7858 0.7873 0.7888  0.7833  0.7888 0.7864  0.7871  0.7874  0.7878  0.7888
0.75 09731 09734 09738 09767 0.9775 0.9737 09733 09729 09738 0.9745
090 1.1719 1.1738 1.1746 1.1759 1.1784 11711 1.1722  1.1766  1.1757 1.1764
095 13029 13062 13072 13050 1.3073 12973 1.2996 13041 1.3035 1.3067
0975 1.4134 14112 14137 14168 1.4157 14183 14190 1.4224 14286 1.4317
0.99 1.5523 1.5498 1.5527 1.5573 1.5568 1.5703  1.5739 1.5772 1.5808 1.5859
n =500 0.01 04139 04146 04150 04147 04141 04167 04173 04172 04184 0.4191
0.025 0.4515 04522 04536 04537 04543 04569 0.4565 04571 0.4590 0.4582
0.05 04924 04922 04936 0.4938 0.4919 0.4956  0.4958 0.4952 0.4967 0.4972
0.10 0.5454 0.5444 0.5437 0.5442 0.5447 0.5488  0.5481 0.5499 0.5470  0.5483
025 0.6475 0.6479 0.6477 0.6481 0.6478 0.6497  0.6505 0.6508  0.6520  0.6520
0.50 0.7980 0.7981 0.7977 0.7987  0.8003 0.7992  0.7993 0.8005 0.8011 0.8014
0.75 0.9884 0.9900 0.9910 0.9899 0.9919 0.9898 0.9904 09899 0.9895 0.9887
090 1.1896 1.1903 1.1910 1.1907 1.1894 1.1838 1.1845 1.1858 1.1876  1.1891
095 13204 13193 13202 13225 1.3218 1.3118 1.3116 13104 1.3137 13131
0975 1.4353 14366 14371 14359 1.4368 14243 14254 14272 14264 14278
099 15778 1.5811 1.5787 1.5912  1.5888 1.5749 1.5767 1.5779 1.5738 1.5788
n=1000 0.01 04230 04238 04208 04225 0.4223 0.4229 04239 04235 0.4223 04235
0.025 0.4600 0.4606 04597 04610 0.4602 0.4609 04609 04614 04620 0.4626
0.05 04980 04973 0.4982 0.4987 0.4985 0.5012  0.5021 0.5021 0.5036  0.5035
0.10 0.5494 0.5501 0.5494  0.5499 0.5489 0.5534  0.5533  0.5533  0.5520 0.5531
0.25 0.6510 0.6516 0.6522  0.6523  0.6529 0.6551  0.6567 0.6570  0.6566  0.6570
0.50 0.8038 0.8042 0.8037 0.8044 0.8042 0.8077 0.8078 0.8071  0.8079  0.8069
0.75 0.9955 0.9950 0.9958 0.9961  0.9965 0.9952  0.9958 0.9962 0.9964  0.9966
0.90 1.2007 12003 1.1981 12011 1.2012 1.2017 1.2033 12027 1.2030 1.2042
095 1.3327 13328 1.3302 1.3306 1.3312 1.3364 1.3375 13385 1.3386 1.3382
0.975 14501 1.4474 14462 14461 1.4459 1.4549 14556 14554 14575 1.4569
0.99 1.6045 1.5999 1.5976 1.6040 1.6102 1.6009 1.6026 1.5996 1.6023 1.5992
n=2000 0.01 04260 04263 04263 04255 0.4250 0.4258 0.4289 0.4286 0.4285 0.4296
0.025 0.4633 04632 04615 04626 0.4621 04679 0.4684 04682 0.4681 0.4683
0.05 0.5029 0.5034 0.5028 0.5027 0.5027 0.5055 0.5058 0.5055 0.5056 0.5067
0.10 0.5566 0.5555 0.5551 0.5562  0.5551 0.5548 0.5543  0.5542  0.5550 0.5546
025 0.6621 0.6624 0.6617 0.6625 0.6620 0.6605 0.6603 0.6599 0.6601  0.6606
0.50 0.8144 0.8150 0.8151 0.8146 0.8153 0.8133  0.8133 0.8134 0.8141 0.8138
0.75 1.0040 1.0036 1.0038 1.0037 1.0031 1.0076  1.0069 1.0067 1.0068 1.0067
090 12070 1.2067 1.2071 1.2054 1.2061 1.2158 1.2154 12159 1.2144 1.2145
0.95 1.3440 13458 1.3467 13448 1.3445 1.3498 1.3496 13510 1.3526 1.3508
0975 1.4695 14653 14631 14659 1.4669 1.4710 14719 14728 14724 14722
0.99 1.6053 1.6048 1.6024 1.6095 1.6108 1.6142 1.6157 16184 1.6174 1.6173

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the limiting
random variables based on n steps.
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Table B.2. Quantiles of the null distribution under cointegration of the modified
CUSUM of squares test statistic, Cén . Number of integrated regressors, k.

Case of inclusion of a constant term and a linear trend (m = 2)

Sample size, n k=1 2 3 4 5
n=100 0.01 0.4003 0.4035 0.4029 0.4020 0.4014
0.025 0.4358 0.4399 0.4418 0.4411 0.4422
0.05 0.4757 0.4771 0.4793 0.4781 0.4788
0.10 0.5259 0.5273 0.5272 0.5285 0.5303
0.25 0.6287 0.6305 0.6311 0.6317 0.6336
0.50 0.7757 0.7748 0.7777 0.7789 0.7808
0.75 0.9587 0.9614 0.9636 0.9661 0.9661
0.90 1.1470 1.1493 1.1506 1.1489 1.1536
0.95 1.2720 1.2735 1.2725 1.2761 1.2752
0.975 1.3747 1.3715 1.3751 1.3791 1.3856
0.99 1.5084 1.5075 1.5096 1.5137 1.5205
n =200 0.01 0.4056 0.4054 0.4053 0.4073 0.4105
0.025 0.4440 0.4424 0.4428 0.4456 0.4453
0.05 0.4837 0.4828 0.4841 0.4847 0.4842
0.10 0.5361 0.5362 0.5368 0.5376 0.5385
0.25 0.6382 0.6382 0.6384 0.6401 0.6421
0.50 0.7857 0.7854 0.7877 0.7884 0.7884
0.75 0.9734 0.9743 0.9748 0.9776 0.9797
0.90 1.1714 1.1712 1.1720 1.1752 1.1761
0.95 1.3025 1.3009 1.3009 1.3025 1.3011
0.975 1.4158 1.4158 1.4148 1.4161 1.4194
0.99 1.5325 1.5414 1.5529 1.5558 1.5548
n=>500 0.01 0.4158 0.4178 0.4187 0.4163 0.4161
0.025 0.4554 0.4558 0.4579 0.4554 0.4561
0.05 0.4934 0.4938 0.4939 0.4941 0.4957
0.10 0.5434 0.5441 0.5448 0.5446 0.5447
0.25 0.6496 0.6498 0.6503 0.6502 0.6497
0.50 0.8009 0.8015 0.8017 0.8016 0.8027
0.75 0.9886 0.9889 0.9881 0.9899 0.9913
0.90 1.1947 1.1946 1.1948 1.1952 1.1957
0.95 1.3259 1.3273 1.3279 1.3274 1.3278
0.975 1.4469 1.4402 1.4439 1.4446 1.4451
0.99 1.6004 1.6008 1.5983 1.5987 1.6025
n=1000 0.01 0.4190 0.4195 0.4184 0.4199 0.4189
0.025 0.4580 0.4586 0.4582 0.4587 0.4584
0.05 0.4973 0.4968 0.4971 0.4982 0.4987
0.10 0.5499 0.5505 0.5491 0.5488 0.5495
0.25 0.6559 0.6559 0.6549 0.6555 0.6561
0.50 0.8060 0.8061 0.8057 0.8067 0.8059
0.75 0.9991 0.9998 1.0005 1.0007 1.0001
0.90 1.2034 1.2045 1.2047 1.2035 1.2048
0.95 1.3385 1.3395 1.3387 1.3416 1.3411
0.975 1.4592 1.4592 1.4580 1.4599 1.4615
0.99 1.5894 1.5890 1.5906 1.5916 1.5888
n=2000 0.01 0.4243 0.4241 0.4238 0.4253 0.4251
0.025 0.4654 0.4646 0.4644 0.4642 0.4636
0.05 0.5034 0.5036 0.5033 0.5034 0.5046
0.10 0.5527 0.5534 0.5529 0.5533 0.5531
0.25 0.6588 0.6590 0.6592 0.6602 0.6595
0.50 0.8129 0.8128 0.8129 0.8129 0.8128
0.75 1.0047 1.0046 1.0048 1.0041 1.0044
0.90 1.2106 1.2120 1.2114 1.2117 1.2103
0.95 1.3433 1.3449 1.3432 1.3427 1.3429
0.975 1.4718 1.4732 1.4716 1.4689 1.4706
0.99 1.6245 1.6227 1.6251 1.6189 1.6218

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the
limiting random variables based on 7 steps.
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Table B.3. Quantiles of the null distribution under cointegration of the modified
CUSUM of squares test statistic, an (m+q)

Order of the polynomial trend function T, =(T,,,.T, )’

Sample size, n m+qg=1 2 3 4 5
n =100 0.01 0.3497 0.3306 0.2958 0.2734 0.2558
0.025 0.3787 0.3597 0.3189 0.2922 0.2736
0.05 0.4074 0.3856 0.3398 03112 0.2895
0.10 0.4436 0.4177 0.3674 0.3329 0.3096
0.25 0.5146 0.4832 0.4179 0.3774 0.3464
0.50 0.6118 0.5729 0.4874 0.4323 0.3944
0.75 0.7232 0.6826 0.5678 0.4983 0.4503
0.90 0.8325 0.7982 0.6518 0.5647 0.5074
0.95 0.9040 0.8761 0.7064 0.6116 0.5445
0.975 0.9654 0.9469 0.7601 0.6490 0.5796
0.99 1.0384 1.0358 0.8229 0.7003 0.6172
n =200 0.01 0.3642 0.3416 0.3085 0.2867 0.2701
0.025 0.3944 0.3730 0.3328 0.3055 0.2875
0.05 0.4222 0.4000 0.3544 0.3248 0.3025
0.10 0.4601 0.4338 0.3817 0.3482 0.3233
0.25 0.5325 0.4994 0.4346 0.3926 0.3610
0.50 0.6275 0.5905 0.5025 0.4495 0.4109
0.75 0.7392 0.7007 0.5866 0.5169 0.4691
0.90 0.8495 0.8200 0.6733 0.5876 0.5292
0.95 0.9191 0.8949 0.7305 0.6324 0.5675
0.975 0.9845 0.9677 0.7841 0.6756 0.6022
0.99 1.0630 1.0613 0.8519 0.7326 0.6469
n =500 0.01 0.3728 0.3554 0.3220 0.2995 0.2835
0.025 0.4047 0.3849 0.3452 0.3189 0.3003
0.05 0.4344 0.4115 0.3690 0.3387 0.3168
0.10 0.4723 0.4454 0.3961 0.3624 0.3370
0.25 0.5431 0.5139 0.4479 0.4069 0.3759
0.50 0.6413 0.6050 0.5183 0.4643 0.4278
0.75 0.7532 0.7164 0.6021 0.5334 0.4866
0.90 0.8645 0.8330 0.6892 0.6034 0.5477
0.95 0.9363 0.9092 0.7495 0.6516 0.5893
0.975 0.9989 0.9782 0.8041 0.6970 0.6250
0.99 1.0803 1.0739 0.8686 0.7497 0.6743
n=1000 0.01 0.3813 0.3643 0.3302 0.3057 0.2899
0.025 0.4122 0.3935 0.3539 0.3261 0.3080
0.05 0.4394 0.4203 0.3752 0.3458 0.3242
0.10 0.4776 0.4542 0.4035 0.3688 0.3444
0.25 0.5514 0.5208 0.4556 0.4128 0.3831
0.50 0.6491 0.6150 0.5277 0.4713 0.4350
0.75 0.7648 0.7279 0.6120 0.5421 0.4951
0.90 0.8758 0.8493 0.6996 0.6133 0.5583
0.95 0.9446 0.9253 0.7614 0.6649 0.5990
0.975 1.0113 1.0022 0.8191 0.7089 0.6372
0.99 1.0843 1.0926 0.8834 0.7652 0.6877
n=2000 0.01 0.3864 0.3688 0.3383 0.3135 0.2959
0.025 0.4175 0.3976 0.3598 0.3324 0.3132
0.05 0.4477 0.4247 0.3803 0.3517 0.3299
0.10 0.4851 0.4582 0.4085 0.3751 0.3501
0.25 0.5584 0.5273 0.4615 0.4209 0.3884
0.50 0.6546 0.6197 0.5329 0.4798 0.4409
0.75 0.7674 0.7315 0.6182 0.5484 0.4998
0.90 0.8790 0.8526 0.7053 0.6206 0.5641
0.95 0.9520 0.9308 0.7653 0.6688 0.6046
0.975 1.0171 1.0111 0.8215 0.7119 0.6446
0.99 1.0974 1.1057 0.8895 0.7644 0.6909

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the
limiting random variables based on 7 steps.
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Appendix C. Finite sample empirical size.

Table C.1. Finite sample-adjusted empirical size at 5% nominal level. Case of no
deterministic component, an (k), Bartlett kernel and bandwidth q,(d) =[d(n/100)"*].
@®=0.50, O = 0.75

Number of integrated regressors, k
k=1 2 3 4 5
0.0516 0.0506 0.0414 0.0412 0.0378
0.0380  0.0388 0.0354 0.0298  0.0276
0.0352  0.0264 0.0230 0.0212 0.0168
0.0278  0.0230 0.0158 0.0184 0.0100
0.0210  0.0200 0.0172  0.0146 0.0114

Sample size, n
n =100 a=0.00

a=0.25 0.0658 0.0728 0.0616 0.0512  0.0454
0.0472  0.0390 0.0338 0.0290 0.0262
0.0426  0.0360 0.0278 0.0258 0.0214
0.0310  0.0228 0.0166  0.0132  0.0092
0.0158 0.0104 0.0126 0.0076  0.0086
a=0.50 0.1420 0.1462 0.1218 0.1166  0.1068
0.0574  0.0564 0.0524 0.0400 0.0394
0.0422  0.0334 0.0316 0.0290 0.0248
0.0304  0.0262 0.0230 0.0162  0.0126
0.0212  0.0150 0.0124 0.0106 0.0124
a=0.75 0.4394  0.3914 03476 03106  0.2846

0.1098  0.1034 0.0928 0.0870  0.0696
0.0586 0.0616  0.0538 0.0398 0.0314
0.0292  0.0264 0.0208 0.0144 0.0148
0.0154  0.0102  0.0090 0.0104 0.0074
0.0508 0.0446  0.0452 0.0456  0.0452
0.0434  0.0420 0.0366  0.0360 0.0330
0.0466  0.0440 0.0346 0.0300 0.0298
0.0318  0.0340  0.0290 0.0278  0.0222
0.0328 0.0242  0.0248 0.0200 0.0174

n =200 a=0.00

a=0.25 0.0698 0.0666 0.0642 0.0670 0.0632
0.0460 0.0464 0.0410 0.0412 0.0388
0.0408  0.0400 0.0384 0.0334 0.0276
0.0420  0.0306  0.0326  0.0276  0.0208
0.0300 0.0264 0.0250 0.0204 0.0158
a=0.50 0.1676  0.1726  0.1620  0.1582  0.1442
0.0798  0.0790  0.0668 0.0702  0.0648
0.0648  0.0546 0.0516 0.0462  0.0442
0.0370  0.0356  0.0376  0.0342  0.0268
0.0376  0.0294 0.0206 0.0178  0.0180
a=0.75 0.4766  0.4636  0.4388 0.4130 0.3880

0.1484  0.1506  0.1358 0.1264 0.1172
0.0902  0.0770  0.0764 0.0736  0.0680
0.0412  0.0414 0.0366  0.0330  0.0296
0.0256  0.0268 0.0276  0.0200  0.0140
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Table C.1. Finite sample-adjusted empirical size at 5% nominal level. Case of no
deterministic component, an (k), Bartlett kernel and bandwidth q,(d) =[d(n/100)"*].
@=0.50, oz, = 0.75 (continuation)

Number of integrated regressors, k
k=1 2 3 4 5
0.0434  0.0426 0.0424  0.0450 0.0486
0.0448  0.0462  0.0432  0.0420 0.0366
0.0466  0.0392 0.0394 0.0386  0.0382
0.0482 0.0388 0.0388  0.0400 0.0362
0.0402 0.0366 0.0318 0.0292  0.0250

Sample size, n
n =500 a=0.00

a=0.25 0.0730  0.0714 0.0740 0.0750  0.0660
0.0518 0.0530 0.0514 0.0488 0.0478
0.0478  0.0490  0.0450 0.0456  0.0482
0.0370  0.0368 0.0378 0.0354  0.0338
0.0372  0.0346  0.0352 0.0302  0.0294
a=0.50 0.1828 0.1878 0.1814 0.1794 0.1818
0.0848 0.0882 0.0846 0.0826  0.0818
0.0612  0.0628  0.0662 0.0592  0.0596
0.0408 0.0422  0.0394 0.0340 0.0330
0.0380  0.0360 0.0328 0.0296  0.0256
a=0.75 0.5758  0.5450 0.5546  0.5444  0.5282

0.1924  0.2010 0.1840 0.1862  0.1780
0.0862 0.0814 0.0874 0.0794 0.0752
0.0596  0.0598  0.0508 0.0522  0.0488
0.0418 0.0436  0.0394 0.0358 0.0382
0.0572  0.0540 0.0468 0.0436  0.0500
0.0488 0.0546  0.0522 0.0516  0.0498
0.0500 0.0512  0.0466  0.0498  0.0428
0.0422  0.0422  0.0400 0.0452  0.0404
0.0408 0.0432 0.0356 0.0368 0.0322

n=1000 a=0.00

a=0.25 0.0754  0.0756  0.0712  0.0708  0.0696
0.0612  0.0618  0.0628 0.0602  0.0538
0.0418 0.0414 0.0442 0.0404 0.0434
0.0436  0.0462 0.0416 0.0404 0.0394
0.0432  0.0320 0.0390 0.0328 0.0298
a=0.50 0.1968  0.1848  0.1980 0.1832  0.1782
0.0690 0.0652 0.0646 0.0678 0.0678
0.0382  0.0422  0.0350 0.0330  0.0296
0.0480  0.0490  0.0530 0.0480 0.0472
0.0416  0.0384 0.0404 0.0356  0.0350
a=0.75 0.5872  0.5898  0.5938  0.5784  0.5820

0.1640  0.1582  0.1544 0.1458 0.1452
0.0812 0.0742 0.0742 0.0748 0.0712
0.0588  0.0506 0.0482 0.0456  0.0426
0.0522  0.0532 0.0472 0.0402 0.0390
Notes. (a) This design corresponds to the situation of contemporaneous endogeneity between
integrated regressors and error correction terms when 0y, > 0 and o = 0, irrespective of the
value of @ that is (1/n) 2, E[n, u,1=(1/n) 2, E[N, 0,1 = E[w,,0,]=0,, . (b) All the results
were computed by generating 5000 draws from the discrete time approximation (direct
simulation) to the limiting random variables based on n steps.
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