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Abstract 
We propose a new and simple to compute semiparametric CUSUM-type statistic based on the sequence 

of centered and squared OLS (Ordinary Least Squares) residuals from the estimation of a single-equation 

cointegrating regression model as the basis to test the null hypothesis of cointegration against no 

cointegration. The main novelty of this testing procedure is that, besides very simple corrections for serial 

correlation and endogeneity of the integrated regressors and the only use of OLS residuals, the non-

standard limiting null distribution is invariant to the number and type of components appearing in the 

estimated regression. We derive such a limiting null distribution, establish its consistency rate under no 

cointegration and also present some numerical results to illustrate its finite-sample size and power 

properties. 
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1. Introduction 

Since the seminal contributions by Granger (1981) and Engle and Granger (1987), the 

literature on cointegration analysis has occupied a prominent place in the econometric 

analysis of multiple nonstationary time series. In macroeconometrics there are many 

examples where, given the nonstationary behaviour of the series involved, cointegration 

analysis plays a central role in examining their long-run joint behavior through the 

specification of a single cointegration relationship based on a regression equation. One 

of the questions that has received more attention, besides the issues on model 

specification and estimation, is the development of testing procedures with good size 

and power properties in finite samples to consistently discriminate between 

cointegration and no cointegration. There are many available parametric or 

semiparametric test statistics with such a good properties, but their tabulated limiting 

null distributions generally depend on the number and nature of the trending 

components appearing in the specification of the cointegrating regression model. 

Section 2 presents an extensive analysis of the specification and estimation methods 

available for the cointegrating regression model, under the assumption of the existence 

of at most one cointegration relationship among a set of k+1, k ≥ 1, integrated variables 
in the general case where the regressors are possibly endogenous and the generating 

mechanism for the observations of all these variables may contain a deterministic 

component usually parameterized as a polynomial time trend function of a certain order. 

On the basis of this estimation results, we also review some of the more commonly used 

testing procedures for cointegration in terms of the dependence of its limiting 

distributions on the model specification and the structure of the data generating process 

for the observations of the stochastic regressors, particularly relevant in the case of 

deterministically trending integrated regressors. 

Section 3 presents the main contribution of the paper in terms of a CUSUM of squares-

type statistic, that is relatively simple to compute and only requires the use of the OLS 

residuals, for testing the null hypothesis of cointegration in a single-equation 

cointegrating regression model admitting an arbitrary number of integrated regressors 

and a very general form of the deterministic trend component, and whose limiting null 

distribution is invariant to the structure of the components of the estimated model. The 

proposed testing procedure is robust to endogenous integrated regressors, and through a 

simulation experiment it can be verify that have good size and power properties. We 

conclude with a simple empirical illustration involving testing for cointegration in a low 

dimensional system given by an aggregate consumption function, using US quarterly 

macroeconomic data. 

 

 

2. The model, assumptions and some basic results 

It is assumed that the set of k+1, k ≥ 1, observed series ty , , 1, ,( ,..., )k t t k tx x ′=x , t = 1, ..., 

n, are generated by the following unobserved components model 

0, 0,

, , ,

t tt

k t k t k t

dy η     = +     
     x d ηηηη        (2.1) 

where 0,td  and , 1, ,( ,..., )k t t k td d ′=d  are the deterministic components, and 

0, ,( , )t t k t
′ ′= ηη ηη ηη ηη η  denotes the stochastic trend component given by 1t t t−= +η η εη η εη η εη η ε , with 



 2 

initial value 1/ 2

0 ( )po n=ηηηη ,
1
 and 0, ,( , )t t k t

′ ′= εε εε εε εε ε , a strictly stationary and ergodic zero-

mean vector error with a finite long-run covariance matrix, ′= + +ε ε ε εε ε ε εε ε ε εε ε ε εΩ Σ Λ ΛΩ Σ Λ ΛΩ Σ Λ ΛΩ Σ Λ Λ , 

[ ]t tE ′=εεεεΣ ε εΣ ε εΣ ε εΣ ε ε , 1 [ ]j t j tE∞
= − ′= ∑εεεεΛ ε εΛ ε εΛ ε εΛ ε ε , which is partitioned as 2

0 0 0([ , ] :[ , ] )k k kk
′ ′ ′= ωεεεεΩ ω ω ΩΩ ω ω ΩΩ ω ω ΩΩ ω ω Ω , 

with 0 0k k
′=ω ωω ωω ωω ω . Then, if there exists a k-vector kββββ  such that 

0,
0, ,

,

(1, ) t
t t k k t k t

k t

u
η ′ ′ ′= η − = − = 
 

β η β κ ηβ η β κ ηβ η β κ ηβ η β κ ηηηηη      (2.2) 

is stationary with continuous spectral density, then it is said that 0,tη  and ,k tηηηη  are 

cointegrated in the sense of Engle and Granger (1987), with cointegrating vector 

(1, )k′ ′= −κ βκ βκ βκ β , and 1

0k kk k

−=β Ω ωβ Ω ωβ Ω ωβ Ω ω .
2
 By combining (2.1) and (2.2) we get the regression 

equation 

,t t k k t t
y d u′= + +xββββ , 

based on the observed variables with 
0, ,t t k k t

d d ′= − dββββ  the deterministic component. 

Obviating in this paper the case of possible cancellation of similar components in this 

linear combination of the deterministic trend functions (which is called cotrending), to 

obtain an operative version of (2.2) based on the generating mechanism of the observed 

variables in (2.1) we need to introduce a particular but quite general assumption of the 

structure of the deterministic components in (2.1). Likewise, we need to formulate a 

convenient set of assumption for the generating mechanism and stochastic properties of 

the error terms driving the stochastic trend components in (2.1) and the equilibrium 

error term tu  in (2.2). These assumptions are presented below. 

Assumption 2.1. Deterministic components 

It is assumed that the deterministic trend components in (2.1), ,i td , can be factorized as 

0, 0, ,t m m td ′= α τα τα τα τ  and , , , , ,k t k m m t k q q t= +d A Aτ ττ ττ ττ τ , with k > q, where 1

, ( ,..., )mpp

m t t t ′=ττττ , 

1

, ( ,..., )m qm
pp

q t t t ++ ′=ττττ , with integer powers 0 ≤ p1 < ... < pm+q, and q ≥ 0, where, whenever 
the trend coefficient matrices , 1, ,( ,..., )k m m k m

′=A α αα αα αα α  and , 1, ,( ,..., )k q q k q
′=A α αα αα αα α  are non-

zero matrices, each column of the trend coefficient matrix ,k mA  contains a non-zero 

element, and ,k qA is full rank, i.e. ,Rank( )k q q k= <A . 

Assumption 2.2. Multivariate linear process for the error terms 

(A) The zero-mean k+1-vector 0, ,( , )t t k t
′ ′= υξ εξ εξ εξ ε  is strictly stationary and ergodic and 

follows a linear process as 0, ( )t tL= D eξξξξ , where 0, ,( , )t t k te ′ ′=e e  is a k+1-variate white 

noise process with zero mean, covariance matrix [ ]t t eE ′ =e e ΣΣΣΣ  > 0 and (2+m)th-order 

                                                 
1
 This general assumption on the initial value includes the case of any random variable with bounded 

second moments, and also includes the case of a fixed constant value. 
2
 In such a case, as discussed in Phillips (1986) and Phillips and Ouliaris (1990), the stationarity of the 

cointegrating error sequence 
t

u  given by (2.2) implies that the long-run variance of its first differences, 

t t t t
v u ′ ′= ∆ = ∆ =κ η κ εκ η κ εκ η κ εκ η κ ε , is zero, i.e. 2 [ ] 0

v j t t j
E v v∞

=−∞ −ω = ∑ = . Given that 2
0.

det( ) det( )
k kk

= ωεεεεΩ ΩΩ ΩΩ ΩΩ Ω , where 

0
kk

>ΩΩΩΩ  (excludes the possibility of additional cointegrating relationships among the stochastic trend 

components of the regressors), with 2 2 1 2 2
0. 0 0 0 0 0

(1 )
k k kk k k

−′ω = ω − = ω − ρω Ω ωω Ω ωω Ω ωω Ω ω , 2 2 1
0 0 0 0

( )
k k kk k

−′ρ = ωω Ω ωω Ω ωω Ω ωω Ω ω , the 

conditional long-run variance of 
0,t

ε  given 
,k t

εεεε , then 2 2
0.

0
v k

′ω = = ω =εεεεκ Ω κκ Ω κκ Ω κκ Ω κ , and hence εεεεΩΩΩΩ  is a singular 

covariance matrix. 
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finite moment, 2 2[| | ] [( ) ]m m

t t tE E+ +′= < ∞e e e  for some m ≥ 0. Also, for the infinite order 
polynomial matrix in the lag operator L, 0 0( ) ( ( ), ( ))j

j j kL L L L∞
= ′ ′= ∑ =D D d D , it is 

assumed that (1)D  has full rank, with coefficients satisfying the summability condition 
2

0 || ||a

j jj∞
=∑ <∞D , a ≥ 2, with 1/ 2|| || [ ( )]j j jTr ′=D D D . 

(B) The regression error term, tu , is given by 1t t tu u −= α + υ , with 0 ≤ α ≤ 1. 

Next, we make some additional comments on these assumptions. First, from 

Assumption 2.1 we have to mention that the leading cases in many applications are 

giving by the inclusion of only a constant term in the estimable form of the 

cointegrating regression, i.e. 
0t

d = α , or a constant and a linear trend, 
0 1t

d t= α + α , that 

correspond to the choice of m = 1 or 2, with 1 0p =  and 2 1p = , respectively. In any 

case, and under the general specification of a polynomial trend function component, it is 

necessary to introduce the scaling matrices 1

, diag( ,..., )mpp

mm n n n
−−=ΓΓΓΓ  and 

1

, diag( ,..., )m qm
pp

qq n n n ++ −−=ΓΓΓΓ  such that the components of the polynomial trend 

functions can be scaled to be bounded as , , , (0,1]mm nt mm n m t= ∈τ Γ ττ Γ ττ Γ ττ Γ τ  and 

, , , (0,1]qq nt qq n q t= ∈τ Γ ττ Γ ττ Γ ττ Γ τ , implying that certain functionals such as 1 [ ]

1 ,

nr

t m ntn−
=∑ ττττ  and 

1 [ ]

,[ ] 1 , ,

nr

mm nr t m nt m ntn−
= ′= ∑Q τ ττ ττ ττ τ  have well defined limits, such as 1 [ ]

1 , 0 ( )nr r

t m nt mn s ds−
=∑ → ∫τ ττ ττ ττ τ  

and ,[ ] 0( ) ( ) ( )r

mm nr mm m mr s s ds′→ = ∫Q Q τ ττ ττ ττ τ , with [x] the integer part of x and similarly for 

,q ntττττ . 

Second, from part (A) of Assumption 2.2 and the use of the well-known Beveridge-

Nelson (BN) decomposition ( ) (1) (1 ) ( )L L L= − −D D Dɶ , where 0( ) j

j jL L∞
== ∑D Dɶ ɶ , 

1j i j i

∞
= += ∑D Dɶ , j = 0, 1, ..., implies the following representation of the scaled partial sum 

process from 0,tξξξξ  

[ ] [ ]

0, 0 [ ]

1 1

(1/ ) (1)(1/ ) (1/ )( )
nr nr

t t nr

t t

n n n
= =

= + −∑ ∑D e e eɶ ɶξξξξ  

with ( ) (1)t t pL O= =e D eɶɶ  a well-defined stationary process, so that the last term is 

asymptotically negligible and 1/ 2 [ ]

1 0(1) ( ) ( )nr

t tn r−
=∑ ⇒ =D e B BM ΩΩΩΩ , 0≤ r ≤1 by the 

classical Donsker’s theorem, with ( ) ( ( ), ( ) )kr B r rυ ′ ′=B B  a (k+1)-dimensional Brownian 

motion with covariance matrix 0 (1) (1)e
′= ΣD DΩΩΩΩ . Once established this result, and 

taking into account that [ ]

0 1 1 0, 0sup |(1/ ) ( (1) )| 2max |(1/ ) | (1)nr

r t t t t n t pn n o≤ ≤ = ≤ ≤∑ − ≤ =D e eɶξξξξ , 

this also ensures that the partial sum process from 0,tξξξξ  satisfies a multivariate invariance 

principle such that 1/ 2 [ ]

1 0, ( )nr

t tn r−
=∑ ⇒ Bξξξξ .

3
 On the other hand, from part (B) and for any 

value 0 ≤ α < 1 (that is, under the cointegration assumption), we can define the k+1-
vector 

                                                 
3
 There could be some situations where this invariance principle is not enough, being necessary to have 

stronger approximations that involve explicit convergence rates. Thus, e.g., Park and Hahn (1999) prove 

that, under Assumption L, it is also verified that: (a) 
1/ 2 [ ]

0 1 1 0,
sup | ( (1) ) | ( )

nr a

r t t t p
n O n

− −
≤ ≤ =∑ − =D eξξξξ , and (b) 

1/ 2 [ ]

0 1 1
sup | (1) ( ) | ( )

nr a

r t t p
n r O n

− −
≤ ≤ =∑ − =D e B  for large n, where a = (m−2)/2m. This results imply that the 

convergence rate is faster if 
t
e  has higher moments, with an n→  as m→∞. 
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1

0

, ,

( )(1 )
( )

( )
t tt

t t
k t k tk t

u LL
L

L

− ′ − α υ   = = = =     
    

c e
C e

D e
ξξξξ εεεε εεεε     (2.3) 

with 1

0 0( ) (1 ) ( )L L L−= − αc d , that also satisfy the same summability conditions as for 

the coefficients in d0(L),
4
 which implies that the scaled partial sum of tξξξξ  also weakly 

converges to a well defined limit as for 0,tξξξξ , where now ( ) ( ( ), ( ) )u kr B r r ′ ′=B B  is a k+1-

vector Brownian process with covariance matrix (1) (1)e
′= ΣC CξξξξΩΩΩΩ , with 

1
0 0
(1) (1 ) (1)

(1)
(1) (1)k k

−′ ′ − α = =   
   

c d
C

D D
 

which implies that the long-run variance of tu  and covariance between tu  and ,k tεεεε  are 

given by 2 2 2(1 )u

−
υω = − α ω , and 1(1 )ku k

−
υ= − αω ωω ωω ωω ω , respectively, with 2

υω  and kυωωωω  the 

corresponding elements in 0ΩΩΩΩ . Furthermore, under the additional assumption of no 

cointegrated integrated regressors ,k tx , so that 0kk >ΩΩΩΩ , the Brownian process ( )uB r  

admits the decomposition 1

.( ) ( ) ( )u u k ku kk kB r B r r−′= + Bω Ωω Ωω Ωω Ω , with . .( ) ( )u k u k uB r W r= ω , 

where 2 2 1

.u k u ku kk ku

−′ω = ω − ω Ω ωω Ω ωω Ω ωω Ω ω  is the long-run variance of tu  conditional on ,k tεεεε , so that 

.[ ( ) ( )]k u k kE r B r =B 0  and hence the jointly Gaussian processes . ( )u kB r  and ( )k rB  are 

independent. The rest of this section is dedicated to complete the specification of the 

estimating cointegrating regression model and to the review the estimation of the model 

parameters with the final aim to obtain the residuals as the main tool used in the 

construction of many feasible statistics to test for cointegration. 

2.1. The cointegrating regression model and estimation 

Once stated the structure of the underlying deterministic components established in 

Assumption 2.1, and by combining (2.1)-(2.2) we obtain the following estimable 

version of the single-equation cointegrating regression model 

, ,t m m t k k t ty u′ ′= + +xα τ βα τ βα τ βα τ β        (2.4) 

where 0, ,m m k m k
′= − Aα α βα α βα α βα α β , that only incorporates the common structure of the 

deterministic components of each series under the assumption that ,k q k q
′− =A 0ββββ . Next, 

defining the complete vector of all the trending regressors in (2.4) as , ,( , )t m t k t
′ ′ ′=m xττττ , 

we must find a non-singular weighting matrix nW  such as t n nt=m W m , with 

, ,( , )nt m nt k nt
′ ′ ′=m m m  a triangular array with a well-defined limit [ ] ( )n nr r⇒m m , where 

( ) ( ( ), ( ))m kr r r′ ′ ′=m m m  is a full-ranked process, in the sense that 1

0 ( ) ( ) 0r r dr′∫ >m m  

a.s. Given the assumption on the structure of the deterministic component appearing in 

the cointegrating regression and the fact that the k-vector of stochastic regressors can be 

decomposed as 1 1

, , , , , ,k t k m mm n m nt kk n k nt

− −= +x A mΓ τ ΓΓ τ ΓΓ τ ΓΓ τ Γ , with , , , , ,( )k nt kk n k t k q q t= +m AΓ η τΓ η τΓ η τΓ η τ , then 

                                                 
4
 By writing D(L) as 

0
( ) ( ( ), ( ))

k
L L L′ ′=D d D , with 

0 0 0
( ) i

i i
L L∞

== ∑d d  and 
0

( ) i

k i ki
L L∞

== ∑D D , we have 

0 0 0 0 0
|| || ( ) ( )

a a a

j j j j j j kj kj
j j Tr j Tr

∞ ∞ ∞
= = =′ ′∑ = ∑ +∑D d d D D . Then, by the recurrence relation 

0 0, 0, 1j j j−= − αd c c  

for j ≥ 1, the first term above can be decomposed as 2

0 0 0 0 0, 0,
( ) (1 ) ( )

a a

j j j j j j
j Tr j Tr

∞ ∞
= =′ ′∑ = + α ∑d d c c  

2

0 0, 0, 1 0, 0, 1 0, 1 0,
( ) ( )

a

j j j j j j j j
Tr j Tr

∞ ∞
= = − −′ ′ ′+α ∑ − α∑ +c c c c c c , so that the summability condition on the 

coefficients Dj, and hence for d0j, implies that of 0 0, 0,
( )

a

j j j
j Tr

∞
= ′∑ c c . 
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a convenient choice for the weighting matrix ,kk nΓΓΓΓ  is 1

, ,kk n kk n kk

− ′= W CΓΓΓΓ , so that nW  is 

given by 
1

, ,
1 1

, , ,

mm n m k
n

k m mm n kk n

−

− −
 =  
 

0
W

A

ΓΓΓΓ
Γ ΓΓ ΓΓ ΓΓ Γ        (2.5) 

In the simplest case where , ,k q k q=A 0 , which also includes the situation where 

, ,k m k m=A 0 , then an obvious choice for the matrices composing the scaling matrix ,kk nΓΓΓΓ  

is ,kk n kkn=W I  and kk kk=C I , so that 

1

, ,
1 1/ 2

, , ,

mm n m k
n

k m mm n k kn

−

−
 =  
 

0
W

A I

ΓΓΓΓ
ΓΓΓΓ

       (2.6) 

where , ,( , )nt m nt k nt
′ ′ ′=m τ ητ ητ ητ η , with 1/ 2

, , ,k nt k nt k tn−= =m η ηη ηη ηη η  and , [ ] ( )k n nr k r⇒m B . On the 

other hand, when , ,k q k q≠A 0  with k > q and ,k qA  is a full rank matrix, so that there are 

any additional deterministic term not included in the polynomial trend function of the 

specified regression, Hansen (1992a, b) proposes to use the weighting matrix ,kk nΓΓΓΓ  

given by 

, , ,

1/ 2,
,, ,

qq n q k q k q

kk n
k k qk q q k q k qn

−
−

−− − −

′  
=   ′  

0 C

C0 I

ΓΓΓΓ
ΓΓΓΓ      (2.7) 

with 1

, , , ,( )k q k q k q k q

−′=C A A A , and 1/ 2
, , , ,( )k k q k k q k k q kk k k q

−
− − − −′=C A A AΩΩΩΩ  where ,k k q−A  is a 

full rank k×(k−q) matrix which spans the null space of ,k qA  such that 

, , ,k k q k q k q q− −′ =A A 0 , with , ,( , ) 0kk k q k k q−= >C C C  and well-defined. In this case, the k-

dimensional triangular array ,k ntm  is now given by 

1/ 2

, , , ,

,

, ,

q nt qq n k q k nt

k nt

k k q k nt

n

−

′ +
=  ′ 

C
m

C

τ Γ ητ Γ ητ Γ ητ Γ η
ηηηη

      (2.8) 

where , , ,q nt qq n q t=τ Γ ττ Γ ττ Γ ττ Γ τ , with weak limit 

, [ ]

( )
( )

( )

q

k n nr k
k q

r
r

r−

 
⇒ =  

 
m m

W

ττττ
      (2.9) 

where ,( ) ( )k q k k q kr r− −′=W C B  and satisfies the following distributional equivalence 

1/ 2
, , ,( ) ( ) ( ) ( )d

k q k k q kk k k q k q k q k qr r−
− − − − − −′= =W A A BM IΩ υΩ υΩ υΩ υ  

with 1/ 2
, , , ,( ) ( ) ( ) ( )d

k q k k q k k k q kk k k k q kk k k qr r r− − − − −′ ′ ′= = =A B A W BM A Aυ Ω Ωυ Ω Ωυ Ω Ωυ Ω Ω , so that the limit 

process ( )k rm  in (2.9) is full-ranked, which allows the derivation of a nondegenerate 

asymptotic theory, but with a different limit and implications as in the standard case of 

, ,k q k q=A 0 . 

This set of basic results allows for a convenient treatment of the asymptotic 

distributional aspects of the OLS estimators and residuals from (2.4) under a wide 

variety of situations concerning the underlying deterministic structure of the integrated 

regressors in (2.1) and its effects on the corresponding limiting distributions. Thus, 

given 1 1

1 1 1 1
ˆ ( ) ( )n n n n

n t t t t t t t t t t t ty u− −
= = = =′ ′= ∑ ∑ = + ∑ ∑mm m mm mθ θθ θθ θθ θ  as the OLS estimator of 

( , )m k
′ ′ ′=θ α βθ α βθ α βθ α β , we get that the scaled and normalized vector of OLS estimation errors 

from (2.4) is given by 



 6 

1

1 (1 )

1 1

ˆˆ ( )
n n

n n n nt nt nt t

t t

n n n u

−
κ − − −κ

= =

 ′ ′= − =  
 
∑ ∑W m m mΘ θ θΘ θ θΘ θ θΘ θ θ    (2.10) 

where , ,
ˆ ˆ ˆ( , )n m n k n

′ ′=Θ Θ ΘΘ Θ ΘΘ Θ ΘΘ Θ Θ , so that the normalized and scaled OLS estimators of mαααα  and 

kββββ  are 1

, , , , ,
ˆˆ ˆ[ ( )]m n mm n m n m k m k n knκ − ′= − − −AΘ Γ α α β βΘ Γ α α β βΘ Γ α α β βΘ Γ α α β β  and 1

, , ,
ˆˆ ( )k n kk n k n knκ −= −Θ Γ β βΘ Γ β βΘ Γ β βΘ Γ β β  

respectively, and with the exponent κ taking values ±1/2 depending on whether we 
assume cointegration or not. Thus, under cointegration (with κ = 1/2), and standard 
application of the weak limit of a sample covariance between the regression error and 

the k-vector of stochastic trend components, , , 1 ,k t k t k t−= +η η εη η εη η εη η ε , we get 

1/ 2 1

1 , 0 ( ) ( )n

t k nt t k u kun u r dB r−
=∑ ⇒ ∫ +Bη ∆η ∆η ∆η ∆ , with 0 ,[ ]ku j k t j tE u∞

= −= ∑∆ ε∆ ε∆ ε∆ ε  the one-sided long-

run covariance between tu  and ,k tεεεε . Then, the weak limit of the sample vector 

covariance in the last term of (2.10) is given by 

1 1
1/ 2

0 0
1

( )
( ) ( ) ( )

( )

n
m m

nt t u u
k kut

r
n u r dB r dB r

r
−

=

   
⇒ + = +   

   
∑ ∫ ∫

0
m m

m

ττττΦΦΦΦ ΦΦΦΦ   (2.11) 

where ( ) ( )k kr r=m B  and ku ku=Φ ∆Φ ∆Φ ∆Φ ∆  when , ,k q k q=A 0 , while that ( )k rm  is as in (2.9) 

with ,( , )ku q ku k k q−′ ′ ′= 0 CΦ ∆Φ ∆Φ ∆Φ ∆  in the case , ,k q k q≠A 0 . This last result implies that, besides 

the presence of nuisance parameters arising from the endogeneity of the stochastic 

regressors and the serial correlation in the regression error terms, the limiting null 

distribution of the OLS estimates of the model parameters strongly depends on the 

nature of the deterministic trend components in ,k tx , which means that a correct use of 

(2.11) requires to know the trend properties of these variables through the limiting 

representation of the k-vector ( )k rm . Despite these difficulties, another important result 

arising from (2.10) and (2.11) is the consistent estimation of all the model parameters in 

( , )m k
′ ′ ′=θ α βθ α βθ α βθ α β  under cointegration. Particularly, it is remarkable the superconsistent 

estimation, at the rate n, of the cointegrating vector kββββ  under cointegration, as can see 

from the representation 
1

1 1 (1 )

, , , , , , ,

1 1

1 (1 )

, ,

1

ˆˆ ˆ ˆ ˆ( )

ˆ ˆ

n n

k n kk n k n k k nt k nt k nt t m

t t

n

kk n k nt t

t

n n n u

n u

−
κ − − − −κ

= =

− − −κ

=

 ′= − =  
 

=

∑ ∑

∑

m m m

Q m

Θ Γ β βΘ Γ β βΘ Γ β βΘ Γ β β
  (2.12) 

with 1

, , , , ,
ˆ

k nt k nt km n mm n m nt

−= −m m Q Q ττττ  and 1 (1 )

, , , 1 ,

n

t m t m nt mm n j m nj ju u n n u−κ − − −κ
=′= − ∑Qτ ττ ττ ττ τ  the 

OLS detrended observations of ,k ntm  and tu , respectively, 
1

, 1 , ,

n

km n j k nj m njn−
= ′= ∑Q m ττττ , 

and where the second equality in (2.12) comes from the orthogonality between ,
ˆ

k ntm  

and ,m ntττττ , i.e. 1 , , ,
ˆn

t k nt m nt k m= ′∑ =m 0ττττ . Given that 1

, 0
ˆ ˆ ˆ ˆ( ) ( )kk n kk k kr r dr′⇒ = ∫Q Q m m , with 

1 1

0
ˆ ( ) ( ) ( ) ( ) (1) ( )k k k m mm mr r s s ds r−′= − ∫m m m Qτ ττ ττ ττ τ  the detrended version of the limit process 

( )k rm , then under cointegration we get 

( )1
1/ 2 1 1

, ,
0

ˆ ˆ ˆ( ) ( ) ( )kk n k n k kk k u kun r dB r− −− ⇒ +∫Q mΓ β β ΦΓ β β ΦΓ β β ΦΓ β β Φ     (2.13) 

in the general case, with 1 1

, 0
ˆ ˆ ˆ( ) ( ( ) ( ) )k n k kk k u kun r dB r−− ⇒ ∫ +Q Bβ β ∆β β ∆β β ∆β β ∆  when , ,k q k q=A 0  and 
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1/ 2 1
1, ,1 1

0
,,

ˆ( )
ˆ ˆ ( ) ( )

ˆ( )

qq n q n q q

kk kk k u
k k q kuk q n k q

n
r dB r

n

−
− −

−− −

 −   ′ ⇒ +    ′ −    
∫

0
C Q m

C

Γ β βΓ β βΓ β βΓ β β
∆∆∆∆β ββ ββ ββ β

 

if , ,k q k q≠A 0 , where ,
ˆ
k nββββ  has been partitioned as , , ,

ˆ ˆ ˆ( , )k n q n k q n−′ ′ ′=β β ββ β ββ β ββ β β . In the case of no 

cointegration when the regression error is unit-root nonstationary, also known as a 

spurious regression, and under our assumption on the generating mechanism of the 

dependent variable in the cointegrating regression such as 0, , 0,t m m t ty ′= + ηα τα τα τα τ , then 

equation (2.10) can be rewritten as 
1

1 (1 ) 1

0, , , 0,

1 1

11
1 (1 ), 0,

0,

1 1

ˆ( ) ( )
n n

n n n nt nt nt t m nt mm n m

t t

n n
mm n m

n nt nt nt t

t tk

n n n n

n n n

−
κ κ − − −κ −

= =
−−

κ − − −κ

= =

 ′ ′ ′ ′− = − + η + 
 

     ′ ′= − + + η    
     

∑ ∑

∑ ∑

W W m m m

W m m m
0

θ θ θ τ Γ αθ θ θ τ Γ αθ θ θ τ Γ αθ θ θ τ Γ α

Γ αΓ αΓ αΓ αθθθθ
 

so that 
1

, 0 1 (1 )

0,

1 1,

ˆ

ˆ

n n
m n m

n nt nt nt t

t tk n

n n n

−
κ − − −κ

= =

−   ′ ′= η   
  
∑ ∑W m m m

α αα αα αα α
ββββ

   (2.14) 

where 3/ 2 1

1 0, 0 0( ) ( )n

t nt tn r B r dr−
=∑ η ⇒ ∫m m , with 0 ( )B r  the weak limit of 1/ 2

0,[ ]nrn− η  

when κ = −1/2. Alternatively, given that tu  can also be written as 0, ,t t k k tu ′= η − mββββ  and 

(1 ) (1 ) 1

, , 0, , ,

1 1

ˆˆ ˆ
n n

k nt t k nt t kk n kk n k

t t

n u n n− −κ − −κ κ −

= =
= η −∑ ∑m m Q Γ βΓ βΓ βΓ β  

then (2.12) is now given by 

1 1 (1 ) 1 (1 )

, , , , 0, , , 0,

1 1

ˆ ˆ ˆˆ ˆ ˆ
n n

kk n k n kk n k nt t kk n k nt t

t t

n n nκ − − − −κ − − −κ

= =
= η = η∑ ∑Q m Q mΓ βΓ βΓ βΓ β    (2.15) 

with 1 1

0, 0, , , 1 , 0,
ˆ n

t t m nt mm n j m nj jn− −
=′η = η − ∑ ηQτ ττ ττ ττ τ , which implies inconsistent estimation of kββββ  

when , ,k q k q=A 0 , ,
ˆ (1)k n pO=ββββ , while that if , ,k q k q≠A 0  then we get 

1/ 2 1

, , 1 (1 )

, , 0,

1,

ˆ
ˆ ˆ

ˆ

n
qq n q n

kk kk n k nt t

tk q n

n
n

− −
− − −κ

=−

 
′= η 

 
 

∑C Q m
Γ βΓ βΓ βΓ β

ββββ
 

indicating that in this general case, even under no cointegration, some elements of kββββ  

can be still consistently estimated although we are dealing with a nonsense regression as 

k k=β 0β 0β 0β 0  by definition. As shown in Hansen (1992a, b), similar results and conclusions 

are attributed to asymptotically efficient estimates obtained when using, e.g., the Fully 

Modified OLS (FM-OLS) estimator proposed by Phillips and Hansen (1990) as a way 

to simultaneously correct for the two sources of finite-sample bias appearing in the last 

terms of (2.11) and 1 1 1 1

0 0 . 0( ) ( ) ( ) ( ) ( ) ( )·u u k k kk kur dB r r dB r r d r −′∫ = ∫ + ∫m m m B Ω ωΩ ωΩ ωΩ ω  caused by 

the endogeneity of the integrated regressors. Motivated by the fact that 
1/ 2 1

1 , 0 .
( ) ( )n

t k nt t k u k ku
n z r dB r− +

=∑ ⇒ ∫ +Bη ∆η ∆η ∆η ∆  under cointegration, where 
,t t ku k t

z u ′= − γ εγ εγ εγ ε  and 

ku ku kk ku

+ = −∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ , with 1

ku kk ku

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω  and 0 , ,[ ]kk j k t j k tE∞
= − ′= ∑∆ ε ε∆ ε ε∆ ε ε∆ ε ε , the FM-OLS 

estimator of the model parameters in (2.4) is given by 
1

,

,, 1 1

ˆˆ
ˆˆ

n n
mm n

n t t t t
ku nk n t t

y n

−+
+ +

++
= =

      ′= = −     
     

∑ ∑
0

m m m
ααααθθθθ ∆∆∆∆ββββ

 

where 
t
y+  are modified observations of the dependent variable defined as 
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, ,
ˆ ˆ

t t ku n k t t ty y u+ +′ ′= − = +z mγ θγ θγ θγ θ , with , ,
ˆ ˆ

t t ku n k tu u+ ′= − zγγγγ , where ,
ˆ
ku nγγγγ  and ,

ˆ
ku n

+∆∆∆∆  are 

consistent estimates of kuγγγγ  and ku

+∆∆∆∆  under the cointegration assumption. The usual 

choice are kernel-type plug-in estimators 1

, , ,
ˆˆ ˆ

ku n kk n ku n

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω  and , , , ,
ˆ ˆ ˆ ˆ

ku n ku n kk n ku n

+ = −∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ , 

where 1 1 1 1

, , , 0 , 1 ,
ˆ ˆˆ ˆ ˆ ( ) ( ) ( ) ( )n n

kk n kk n kk n j n kk n j n kk n
w jq j w jq j− − − −

= =′= + = ∑ +∑ −G GΩ ∆ ΛΩ ∆ ΛΩ ∆ ΛΩ ∆ Λ , with 

1

, 1 , ,
ˆ ˆ ˆ( ) n

kk n t j k t j k t
j n−

= + − ′= ∑G z z  and 
, ,

ˆ ˆ( ) ( )
kk n kk n

j j′− =G G , while 
, , ,

ˆ ˆˆ
ku n ku n uk n

′= +ω ∆ Λω ∆ Λω ∆ Λω ∆ Λ  where 

1 1

, 0 ,
ˆ ˆ( ) ( )n

ku n j n ku n
w jq j− −

== ∑ g∆∆∆∆  and 1 1

, 1 ,
ˆ ˆ( ) ( )n

uk n j n ku n
w jq j− −

=′ = ∑ −gΛΛΛΛ , based on the sample 

serial covariances 1

, 1 ,
ˆ ˆ ˆ( ) n

ku n t j k t j t
j n u−

= + −= ∑g z  and 1

, 1 ,
ˆ ˆ ˆ( ) n

ku n t j k t t j
j n u−

= + −− = ∑g z , although 

,
ˆ

ku n

+∆∆∆∆  can also be computed as 1 1 1

, 0 1 ,
ˆ ˆ ˆ( )n n

ku n j n t j k t j tw jq n z+ − − −
= = + −= ∑ ∑ z∆∆∆∆ , where 

, ,
ˆˆ ˆˆ

t t ku n k tz u ′= − zγγγγ . Both 
t
y+  and these estimators are based on the k-vector 

,
ˆ
k t

z  that 

represents the sequence of OLS residuals in the multivariate regression 

, , , ,k t k t k t k t k t k t= ∆ = ∆ + = +z x A Bτ ε τ ετ ε τ ετ ε τ ετ ε τ ε , with ( , )k k k=B A 0 , , ,( , )k k m k q=A A A , and 

, ,( , )t m t q t
′ ′ ′=τ τ ττ τ ττ τ ττ τ τ  in the case where the mechanism generating the stochastic regressors do 

contain deterministic components, while that when ,k t k=d 0 , or , ,1 0,k t k t= τd A  when 

m+q = 1 with p1 = 0, then , ,k t k t=z εεεε . Otherwise, for m+q > 1, the k-vector of OLS 

residuals is given by , , ,
ˆ
k t k t k nt= +z Fεεεε , with 1/ 2 1/ 2 1

, 1 ,( )n

k nt j k j nj n ntn n− − −
= ′= − ∑F Qε τ τε τ τε τ τε τ τ  or, 

alternatively as 1/ 2 1 1 1/ 2 1 1

, 1 , 1 ,( ) ( )n n

k nt j k nj nj n nt j k nj nj n ntn n n n− − − − −
= =′ ′= − ∑ ∆ = − ∑F Q Q dη τ τ η τη τ τ η τη τ τ η τη τ τ η τ , 

given that 1

nt ntn−∆ = dττττ , when based on the first difference of the k-vector of OLS 

residuals computed from the multivariate regression , ,k t k t k t= +x A τ ητ ητ ητ η , with 

1

1

n

n j nj njn−
= ′= ∑Q τ ττ ττ ττ τ . In both cases, it can be shown that 1/ 2

, ( )k nt pO n−=F  implying the 

consistent estimation of ,k tεεεε , the sequence of error terms driving the stochastic trend 

components of the integrated regressors. Similar to the OLS case, the scaled and 

normalized FM-OLS estimation error can be written as 
1

1 (1 ) 1

,1 1

ˆˆ ( ) ˆ

n n
m

n n n nt nt nt t n
ku nt t

n n n u n

−
+ κ + − − −κ + κ −

+
= =

    ′ ′= − = −   
    

∑ ∑
0

W m m m WΘ θ θΘ θ θΘ θ θΘ θ θ ∆∆∆∆  

where , , , , ,
ˆ ˆ( )t t ku k t ku n ku k t ku n k ntu u+ ′ ′ ′ ′= − − − − Fγ ε γ γ ε γγ ε γ γ ε γγ ε γ γ ε γγ ε γ γ ε γ , while that for the last term we have 

1

, , ,
ˆ ˆ

m m

n

ku n kk n ku n

n
n

κ −
+ κ +

   
=   

   

0 0
W

∆ Γ ∆∆ Γ ∆∆ Γ ∆∆ Γ ∆
 

with nW  the weighting matrix defined in (2.5), where , , ,
ˆ ˆ

kk n ku n ku nnκ + +=Γ ∆ ∆Γ ∆ ∆Γ ∆ ∆Γ ∆ ∆  in the case of 

cointegration (with κ = 1/2) when , ,k q k q=A 0 , and 

, , ,

, , 1/ 2

, ,

ˆ
ˆ

ˆ
qq n k q ku n

kk n ku n

k k q ku n

n
n

n

κ +
κ +

− +κ +
−

 ′
=   ′ 

C

C

Γ ∆Γ ∆Γ ∆Γ ∆
Γ ∆Γ ∆Γ ∆Γ ∆

∆∆∆∆
 

when , ,k q k q≠A 0 , where the first term is asymptotically negligible both under 

cointegration and no cointegration and the second term is just , ,
ˆ

k k q ku n

+
−′C ∆∆∆∆  under 

cointegration which allows to cancel the bias term kuΦΦΦΦ  in (2.11) as n→∞. Finally, given 

that 1 1

, , , ,
ˆ ˆˆ ˆ[ ( ) ]ku n ku kk n ku n ku kk n kk kk ku

− −− = − − −γ γ Ω ω ω Ω Ω Ω ωγ γ Ω ω ω Ω Ω Ω ωγ γ Ω ω ω Ω Ω Ω ωγ γ Ω ω ω Ω Ω Ω ω , with 1/ 2

,
ˆ ( )kk n kk pO n−− =Ω ΩΩ ΩΩ ΩΩ Ω  and 
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1/ 2

,
ˆ ( )ku n ku pO n−− =ω ωω ωω ωω ω  under cointegration and the correct detrending of the regressors, 

then we have 1/ 2( )t t pu z O n+ −= +  which provides the desired limit result free of nuisance 

parameters. As a by-product of this estimation, the sequence of FM-OLS residuals, 

defined as ˆ ˆˆ
t t t n t nt nu y u n+ + + + −κ += − = −m mθ Θθ Θθ Θθ Θ , can also be written as 1/ 2ˆ ( )t t pu z O n+ −= +  

under cointegration, where (1, )
t ku t
z ′= −γ ξγ ξγ ξγ ξ  with 

,
( , )

t t k t
u ′ ′=ξ εξ εξ εξ ε  so that the residual 

covariance of order h is decomposed as 

1 1 1/ 2

1 1

1
ˆ ˆ (1, ) ( )

n n

t h t ku t h t p
kut h t h

n u u n O n− + + − −
− −

= + = +

 ′ ′= − + − 
∑ ∑γ ξ ξγ ξ ξγ ξ ξγ ξ ξ γγγγ    (2.16) 

and hence the kernel-type estimator of the long-run variance of tu
+  based on these 

residuals can be written as 

2 1/ 2

,,

1
ˆ ( ) (1, ) ( ) ( )n ku n n pu n

ku

q q O n+
− ′ω = − + − 

ξξξξγ Ωγ Ωγ Ωγ Ω γγγγ  

where 
2 1

1 1, ,

,

1 1 1, ,

( ) ( / ) ( )
n n n

u n uk n

n n t t n t h t t t h

t h t hku n kk n

q n w h q n
−

− −
− −

= = = +

 ω ′ ′ ′= = + + 
 

∑ ∑ ∑ξξξξ
ωωωωΩ ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξ

ω Ωω Ωω Ωω Ω
 

which gives 2 2 1 1/ 2

. , , , , , ,,
ˆ ( ) ( ) ( ) ( )n u k n uk n ku kk n kk n ku n kk n ku pu n

q O n+
− −′ω = ω + − − +ω γ Ω Ω ω Ω γω γ Ω Ω ω Ω γω γ Ω Ω ω Ω γω γ Ω Ω ω Ω γ , where 

2 2 1

. , , , , ,u k n u n uk n kk n ku n

−ω = ω − ω Ω ωω Ω ωω Ω ωω Ω ω , so that , ,

p

ku n kk n ku k− → 0ω Ω γω Ω γω Ω γω Ω γ  and hence 2 2

.,
ˆ ( ) p

n u ku n
q+ω → ω , 

the long-run variance of tu  conditional on ,k tεεεε , under proper choice of the bandwidth, 

1/ 2( )nq o n= . 

Some other alternative estimation methods frequently used in practical applications, that 

also produce asymptotically efficient and equivalent results under proper choice of the 

required tuning parameters, are the canonical cointegrating regression (CCR) estimator 

by Park (1992), and the dynamic OLS (DOLS) estimator proposed by Phillips and 

Loretan (1991), Saikkonen (1991), and Stock and Watson (1993). The CCR estimation 

is similar in spirit to the FM-OLS estimation procedure but based on semiparametric 

transformations both of the dependent variable and the stochastic regressors in the 

cointegrating regression, while the DOLS estimator is based on the estimation of a 

dynamic version of the cointegrating regression model obtained by the addition of a 

number of leads and lags of , ,k t k t∆ =η εη εη εη ε  in the case where it is observed when ,k t k=d 0 .
5
 

Without going in further analysis of these last alternative estimation methods, it is 

important to remind that its usefulness crucially depends on the knowledge of the 

deterministic component which drive ,k tx  and the proper choice of different tuning 

parameters conditioning its performance in finite samples that could substantially differ 

from what expected asymptotically in some important situations. For some studies 

evaluating these finite-sample properties see, e.g., Gonzalo (1994), Montalvo (1995), 

and more recently Kurozumi and Hayakawa (2009) and the references therein. Also, for 

a more complete analysis of the properties of the FM-OLS estimator see, e.g., Phillips 

                                                 
5
 Formally, under some regularity conditions, the regression error term 

t
u  can be expressed as 

t t t
u r w= + , where 

, ,t j k j k t j
w

∞
=−∞ −′= ∑ π επ επ επ ε  with 

2

,
|| ||

j k j

∞
=−∞∑ < ∞ππππ  and 

,
[ ]

k t j t k
E r− = 0εεεε  for all j = 0, ±1, ±2, … 

Writing 
, ,

( )
q

t j q k j k t j t
u r q=− −′= ∑ +π επ επ επ ε , with 

| | , ,
( )

t t j q k j k t j
r q r > −′= +∑ π επ επ επ ε , then the augmented version of the 

cointegrating regression model is 
, , , ,
ˆ ( )

q q

t t j q k j k t j t j q k j k nt j
y r q=− − =− −′ ′ ′= +∑ + −∑m z Fθ π πθ π πθ π πθ π π , with 

,
ˆ
k t j−z  and 

,k nt j−F  as defined before. 
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(1995) in the cointegrating regression model and its extension to the estimation of a 

vector autoregression with some unit roots. 

To complete this section, we consider two additional estimation methods recently 

proposed that are mainly characterized by relying on fewer requirements thus making 

easiest the computation of the estimates. 

First, although not designed to deal with the specification of the cointegrating regression 

considered here, it is worth to consider the so-called AIV estimator proposed by Harris, 

et.al. (2002, 2003) in the context of a generalized version of the heteroskedastic 

cointegration model first introduced by Hansen (1992c). This estimator utilize an IV 

technique based on , ,( , )t s m t s k t s− − −′ ′ ′=m xττττ , with s > 0, as an instrument designed to obtain 

consistent estimates of the model parameters when the regression error term can contain 

a certain type of highly persistent component only with a proper choice of the lag 

parameter s. This AIV estimator is then given by 
1

1 1

ˆ ( )
n n

n t s t t s t

t s t s

s y

−

− −
= + = +

 ′=  
 
∑ ∑m m mθθθθ  

with associated scaled and normalized estimation error  
1

1 (1 )

( ) ( )

1 1

ˆˆ ( ) ( ( ) )
n n

n n n n t s nt n t s t

t s t s

s n s n n u

−
κ − − −κ

− −
= + = +

 ′ ′= − =  
 

∑ ∑W m m mΘ θ θΘ θ θΘ θ θΘ θ θ  

From (2.3), the standard BN decomposition of the linear process describing the 

generating mechanism of the regression error term under cointegration, 0 ( )t tu L′= c e , of 

the form 0,t t tu u u= − ∆ ɶ , with 0, 0 (1)t tu ′= c e , 1/ 2 [ ]

1 0, ( )nr

t t un u B r−
=∑ ⇒  and 0 ( )t tu L′= c eɶɶ , 

allows to decompose the second term in the right hand side above as 

(1 ) 1/ 2 1/ 2

( ) 0, ( 1)

1 1 1
1/ 2

1 ( 1)

( )

( )

n n s n s

n t s t nt t s n t nt t s

t s t t

n s n n s n

n u n u n u

n u u

− −
− −κ − −

− + + +
= + = =

−
− +

= + −

+ −

∑ ∑ ∑m m m m

m m

ɶ

ɶ ɶ

 

where the last term is 1/ 2( )pO n− , while that for the first term we can write 

1/ 2

( 1)

1

1
,1/ 2

1 1

, , 1 , , ,1

1 1/ 2

,

1

1/ 2 1 1 1 1/ 2

, , 1 , , ,

1 1

( )

( )

n s

n t nt t s

t

n s
m nt

t s

kk n k t k q qq n q ntt

n s

m nt t s

t

n s n s

kk n k t t s k q qq n q nt t s

t t

n u

n
n u

n

n n u

n n u n n u

−
−

+ +
=

−−
−

+− −
+=

−
− −

+
=

− −
− − − −

+ + +
= =

−

 
=  + 

 
 
 =

  + 
 

∑

∑

∑

∑ ∑

m m

d

A d

d

A d

ɶ

ɶ

ɶ

ɶ ɶ

Γ ε ΓΓ ε ΓΓ ε ΓΓ ε Γ

Γ ε ΓΓ ε ΓΓ ε ΓΓ ε Γ

 
 
 
   

   
   

 

where we have used the fact that 1

, ( 1) ,m n t m ntn−
+∆ = dττττ  and 1

, ( 1) ,q n t q ntn−
+∆ = dττττ , with ,m ntd  

collecting terms of the form 
1

( / ) jpt n
−
 for j = 1, .., m such that 1 11

, ( ,..., )mpp

m nt r r
−− ′→d  

uniformly in r and similarly for ,q ntd  (see Hansen (1992a), equation (A.1)). By Theorem 

1 and Lemma 2 in Harris, et.al. (2003), with s→∞ at least as fast as n1/a, such as 
( )bns s o n= =  1/a ≤ b < 1, a ≥ 2 (see Assumption 2.2(A)), then , 1[ ]k t t s kE u+ + → 0ɶεεεε  when 

s→∞, and hence 1 1/ 2
1 , 1 ( )n s

t k t t s pn u O n− − −
= + +∑ =ɶεεεε  given that 1/ 2

1 , 1
n s
t k t t sn u− −
= + +∑ ɶεεεε  weakly 

converges to a Brownian process (see Theorem 3 in Harris, et.al. (2003)), implying that 

all the terms above are asymptotically negligible in the case of standard stationary 
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cointegration, i.e. 1/ 2
1 ( 1)( ) (1)n s

t n t nt t s pn u o− −
= + +∑ − =m m ɶ  as n→∞. To complete the result, 

as we can write 1/ 2 1/ 2 1/ 2
1 0, 1 0, 1 , 0,( )n s n s n s

t nt t s t nt t t n t s nt t sn u n u n u− − − − − −
= + = = + +∑ = ∑ − ∑ − +m m m m  

1/ 2( / )pO s n , then we get 1/ 2 1
1 0, 0 ( ) ( )n s

t nt t s un u r dB s− −
= +∑ ⇒ ∫m m , implying that under 

standard stationary cointegration the use of the AIV estimator allows to eliminate the 

bias term kuΦΦΦΦ  appearing in the limiting distribution in (2.11), but does not allows to 

completely correct for the endogeneity of the regressors.  

Second, Vogelsang and Wagner (2014) propose the so-called Integrated Modified OLS 

(IM-OLS) estimator which is based on the OLS estimation of a simple modification, 

free of tuning parameters, of all the regressors appearing in the cointegrating regression 

model (2.4). The proposed transformation consists on taking partial sums of the 

variables in (2.4) and augmenting the resulting specification with the addition of the 

original observations of the stochastic regressors in such a way that the integrated 

modified version of the cointegrating regression is of the form 

, , ,t m m t k k t k k t tS Z′ ′ ′= + + +S S xα β γα β γα β γα β γ       (2.17) 

where 1

t

t j jS y== ∑ , , 1 ,

t

m t j m j== ∑S ττττ , , 1 ,

t

k t j k j== ∑S x , and ,t t k k tZ U ′= − xγγγγ , with 

1

1 ( )t

t j j pU u O n −κ
== ∑ =  for all t = 1, …, n. In more compact form, the IM cointegrating 

regression can be written as t t tS Z′= +gθθθθ  where now ( , , )m k k
′ ′ ′ ′=θ α β γθ α β γθ α β γθ α β γ , and 

, , ,( , , )t m t k t k t
′ ′ ′ ′=g S S x , and the IM-OLS estimator is obtained by applying the OLS 

estimation method, i.e. 1 1

1 1 1 1( ) ( )n n n n

n t t t t t t t t t t t tS Z− −
= = = =′ ′= ∑ ∑ = + ∑ ∑g g g g g gɶθ θθ θθ θθ θ . Choi and 

Ahn (1995) also propose the OLS estimation of a simplified version of (2.17) in the 

case where the deterministic component characterizing the observations of the 

deterministically trending integrated regressors ,k tx  is such as , , ,k t k m m t=d A ττττ  so that 

, ,k q k q=A 0 , but without the addition of ,k tx  as regressors and with the partial sums of ty  

and ,k tx  replaced by the integrated versions of the CCR transformation of such 

variables. Following the same line of analysis as from the estimation of (2.4), we can 

express the vector of regressors tg  as 

1

, ,

1 1

, , , , ,

1 1

, , , , ,

1

, , , , , ,

1 1

, , , , , , ,

1
,, , , ,

mm n m nt

t k m mm n m nt kk n k nt

k m mm n m nt kk n k nt

mm n m k m k m nt m m m k

k m mm n kk n k k k nt k m k k

k ntk m k k kk n k m m

n

n n

n

n n

−

− −

− −

−

− −

−

 
 = + 
 + 
  
  = +  

    

S

g A S M

A m

0 0 S 0 0

A 0 M 0 0

m0 0 A

ΓΓΓΓ
Γ ΓΓ ΓΓ ΓΓ Γ
Γ τ ΓΓ τ ΓΓ τ ΓΓ τ Γ

ΓΓΓΓ
Γ ΓΓ ΓΓ ΓΓ Γ

Γ ΓΓ ΓΓ ΓΓ Γ

,

,1

, ,

1, 2,

m nt

k nt

m n k k

n nt n nt

−

 
  
  
  

 
= +

m
0

W g W m

ττττ
 (2.18) 

where 1

, 1 ,

t

m nt j m njn−
== ∑S ττττ  and 1

, 1 ,

t

k nt j k njn−
== ∑M m , so that the components of the IM-

OLS estimation error can be decomposed as 

1 1 1

1, 3, 3,

1 1 1 1

1

3, 3, 1,

1

n n n n

t t n nt nt nt nt n n nt nt

t t t t

n

n nt nt n n

t

n n n n

n

− − −

= = = =

−

=

′ ′ ′ ′ ′= + +


′ ′+ 


∑ ∑ ∑ ∑

∑

g g W g g g m W W m g

W m m W W

 (2.19) 

and 
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2 1 (1 ) 1 (1 )

1, 3,

1 1 1

( ) ( )
n n n

t t n nt t n nt t

t t t

Z n n n Z n n Z−κ − − −κ − − −κ

= = =

 = + 
 

∑ ∑ ∑g W g W m  (2.20) 

where the weighting matrix 1

3, 1, 2,n n n

−=W W W  is of the form 

, ,

3, , ,

1

, , , ,

m m m k

n k m k k

kk n k m mm n k k

−

 
 =  
 
 

0 0

W 0 0

A 0Γ ΓΓ ΓΓ ΓΓ Γ
 

with the k×m matrix 1

, , ,kk n k m mm n

−
AΓ ΓΓ ΓΓ ΓΓ Γ  being asymptotically negligible when m = 1 with p1 

= 0 (that is, when the cointegrating regression (2.4) only contains a constant term) 

irrespective of whether ,k qA  is zero or not, but diverges with the sample size for any 

other specification of the deterministic component in the regression model thus failing 

to provide finite limiting results for the terms in brackets in (2.19)-(2.20). Additionally, 

for the scaled regression error (1 )

tn Z− −κ  in (2.20) we have the following decomposition 

(1 ) (1 ) (1/ 2 ) (1 ) 1

,t t k k nt k k n ntn Z n U n n− −κ − −κ − −κ − −κ −′ ′= − − Aγ η γ Γ τγ η γ Γ τγ η γ Γ τγ η γ Γ τ    (2.21) 

with , ,( , )k k m k q=A A A , , ,diag( , )n mm n qq n=Γ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ , and , ,( , )nt m nt k nt
′ ′ ′=τ τ ττ τ ττ τ ττ τ τ , so that the last 

term involving the normalized polynomial trend function underlying the observations of 

the stochastic regressors ,k tx  will vanish asymptotically only in the case m = 1, q = 0 

and p1 = 0, that is when ,k td  only contains k constant terms, , ,1 11 1( ,..., )k t k k
′= = α αd A , 

both under cointegration (κ = 1/2) and no cointegration (κ = −1/2). In any other case (m 
> 1, pm > 0) and under cointegration, this term will diverges with the sample size and 

dominates the other two components. This analysis implies that the standard 

formulation of the IM cointegrating regression in (2.17) is not appropriate to deal with a 

deterministic component ,k td  including more than k constant terms. The extension of 

this formulation to the general case considered in Assumption 2.1 and some required 

modifications of the IM-OLS estimation method is not considered in the present paper 

and it is still under development by the author. The original specification in Vogelsang 

and Wagner (2014) corresponds to the case ,k k m q+=A 0 , so that the components in ntg  

are 1

, , 1 ,

t

k nt k nt j k njn−
== = ∑M H ηηηη , , ,k nt k nt=m ηηηη , and ,t t k k tZ U ′= − γ ηγ ηγ ηγ η , with 0,t n nt=g W g , 

where the weighting matrix is 1 3/ 2 1/ 2

0, , , ,diag( , , )n mm n k k k kn n n−=W I IΓΓΓΓ , providing the 

following representation for the IM-OLS estimation error of the model parameters 

1

(1 ) 1 1 (1 )

0,

1 1

( ) ( )
n n

n n n nt nt nt t

t t

n n n n Z

−
− −κ − − − −κ

= =

 ′ ′= − =  
 
∑ ∑W g g gɶɶΘ θ θΘ θ θΘ θ θΘ θ θ   (2.22) 

where , , ,( , , )
k kn m n n n

′ ′ ′ ′=ɶ ɶ ɶ ɶ
β γβ γβ γβ γΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θ  with components given by 1

, , ,( )m n mm n m n mnκ −= −ɶ ɶΘ Γ α αΘ Γ α αΘ Γ α αΘ Γ α α , 

1/ 2

, ,( )
k n k n kn +κ= −ɶɶ

ββββΘ β βΘ β βΘ β βΘ β β  and (1/ 2 )

, ,( )
k n k n kn− −κ= −ɶ ɶγγγγΘ γ γΘ γ γΘ γ γΘ γ γ , which makes evident that this 

estimation method provides the same consistency rates for the estimators of mαααα  and kββββ  

under cointegration that the usual estimates. Also, taking into account that 
1/ 2

[ ] .( ) ( ) ( )nr u k k u kn Z B r r B r− ′⇒ − =Bγγγγ  under cointegration and the definition of the 

centering parameter for ,k n
ɶγγγγ  as 1

k ku kk ku

−= =γ γ Ω ωγ γ Ω ωγ γ Ω ωγ γ Ω ω  in case of endogeneity, then the 

limiting distribution of the estimates is given by 
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( ) 1
1 1

.
0 0
( ) ( ) ( ) ( )n u kr r dr r B r dr

−

′⇒ ∫ ∫g g gɶΘΘΘΘ      (2.23) 

wnere ( ) ( ( ), ( ), ( ))m k kr r r r′ ′ ′ ′=g g g B , with 0( ) ( )r

m mr s ds= ∫g ττττ  and 0( ) ( )r

k kr s ds= ∫g B , so 

that the limiting result in (2.23) has a compound normal limit distribution with nuisance 

parameters that can be cancelled through scaling. Also, Theorem 2 in Vogelsang and 

Wagner (2014) gives an alternative representation for the second term in the right hand 

side of (2.23) as 1 1

0 . 0 .( ) ( ) [ (1) ( )] ( )u k u kr B r dr r dB r∫ = ∫ −g G G , where 0( ) ( )rr s ds= ∫G g . An 

important result stated in Proposition 2 by these authors is that the IM-OLS estimates 

are almost asymptotically efficient in the sense that are asymptotically less efficient than 

FM-OLS, although its conditional asymptotic covariance matrix ignores the impact of 

the long-run variance estimators on the sampling behavior of these estimates. An 

important by-product of the IM-OLS estimation is that the first difference of the 

residuals, 1

t t nt nZ Z n −κ ′= − gɶ ɶΘΘΘΘ , can be written as 

,

, , ,

,

(1, ) ( , )

k

m n

t t k n t m nt k nt

n

z Z n−κ
 

′ ′ ′= ∆ = − −   
 

ɶ
ɶ ɶɶ

ɶ
ββββ

ΘΘΘΘ
γ ξ τ ηγ ξ τ ηγ ξ τ ηγ ξ τ η

ΘΘΘΘ
    (2.24) 

where 1/ 2
, ,kk n k nn −κ= + ɶɶ γγγγγ γ θγ γ θγ γ θγ γ θ , with ,k n

ɶ
γγγγθθθθ  denoting the last k components of (2.22). This 

result provides a similar result to (2.16) for the residual autocovariances and the kernel-

type estimator of the long-run variance computed from (2.24) under cointegration (κ = 
1/2), given by 2 1/ 2

, , , ,( ) (1, ) ( )(1, ) ( )z n n k n n n k n pq q O n−
ξ′ ′ ′ω = − − +ɶ ɶ ɶγ Ω γγ Ω γγ Ω γγ Ω γ 6

, so that as n→∞ we get 
2 2 2 2 2

, . . .( ) (1 ) (1 )
k k k kz n n z u k u k kk u kq − ′ ′ω ⇒ ω = ω + ω = ω +ɶ ɶɶ γ γ γ γγ γ γ γγ γ γ γγ γ γ γθ Ω θ θ θθ Ω θ θ θθ Ω θ θ θθ Ω θ θ θ  with 1/ 2

.k ku k kk

−= ωɶ
γ γγ γγ γγ γθ Ω θθ Ω θθ Ω θθ Ω θ  the last 

k random components of (2.23), implying that 2

, ( )z n nqωɶ  is inconsistent for 2

.u kω  with 

2 2

.z u kω > ω .  

Once analyzed the properties of some alternative estimation methods of the 

cointegrating regression model, it is important to remind the important role played by 

the structure of the deterministic component underlying the generating mechanism of 

the observations of the stochastic regressors, characterizing the limiting results both 

under cointegration and no cointegration in terms of the weak limit of the normalized k-

dimensional vector , , , , ,( )k nt kk n k t k q q t= +m AΓ η τΓ η τΓ η τΓ η τ  given in equation (2.9) when , ,k q k q≠A 0  

and these trend components are omitted from the estimated regression model. Other 

important situation that conditions all these results is given by the inclusion of a subset 

of stationary and/or cointegrated variables as regressors in ,k tx . These two cases are 

quite different but produces similar results in terms of the properties of the estimates of 

the corresponding parameters, mainly in relation to the rate of consistency and the 

resulting limiting distribution of the estimates, as can be seen, e.g., in Theorem 5.3 in 

Park and Phillips (1989) and Theorem 4.1 in Phillips (1995). Either of these cases 

represents the situation where some of the parameters in ( , )m k
′ ′ ′=θ α βθ α βθ α βθ α β  cannot be 

consistently estimated even under the cointegration assumption. This is the case where 

there exist a certain number 1 ≤ k2 < k of cointegrating relationships among the set of k 
integrated regressors (subcointegration) or, alternatively, when there are k2 out of k of 

such stochastic regressors that are not I(1) and behave like stationary variables. 

                                                 
6
 Specifically we have 

2 2

, , , , , , ,,
ˆ( ) ( ) 2 ( )

k k kz n n n n ku n kk n ku n kk n nu n
q q+ ′ ′ω = ω − θ − + θ θɶ ɶ ɶɶ γ γ γγ γ γγ γ γγ γ γω Ω γ Ωω Ω γ Ωω Ω γ Ωω Ω γ Ω , where the terms 

involving the elements in 
,
( )

n n
qξξξξΩΩΩΩ  will converge to the corresponding population counterparts under 

traditional bandwidth assumptions. 
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Appendix A presents, in a unified framework, these two possible situations that can 

occur in some practical applications where the main result is that only the set of 

parameters related to the remaining k1 integrated and no cointegrated regressors can be 

consistently estimated. This general result will substantially modify both the above 

analysis as well as some results in the next section, except in the particular case where 

the stochastic component characterizing the behavior of the stationary regressors or the 

error terms characterizing the cointegrating relationship among the two sets of 

stochastic integrated regressors are contemporaneously uncorrelated with the regression 

errors tu , as it is assumed in McCabe et.al. (1997). 

2.2. Residual-based tests for cointegration 

This part of the section reviews some of the more commonly used testing procedures to 

test for the existence of a single cointegration relationship in the framework of the 

cointegrating regression model. This is not an exhaustive study of these procedures, but 

aims to analyze the behaviour of some of these test statistics, both for testing the null of 

no cointegration against the alternative of cointegration or for these same hypothesis in 

reverse order, with particular emphasis in the impact of the number and nature of the 

trending regressors appearing in the cointegrating regression on the limiting 

distributions of these test statistics. In what follows we consider the OLS versions of 

these test statistics based on the sequence of OLS residuals, ˆˆ
t t t nu y ′= −m θθθθ , that from 

(2.4), (2.10) and (2.12) can also be represented in either of the two following forms 

, , ,
ˆ ˆˆˆ

t t nt n t m k nt k nu u n u n−κ −κ′ ′= − = −m mΘ ΘΘ ΘΘ ΘΘ Θ ,     (2.25) 

which shows that although being consistent estimators of the regression error terms 

under cointegration, i.e., 1/ 2ˆ ( )t t pu u O n−= +  when κ = 1/2, some other properties will 
depend on the model’s dimension and the structure of the underlying deterministic trend 

component of the stochastic regressors. Thus, the limiting distribution under 

cointegration of many different functionals based on the sequence of OLS residuals, 

such as the partial sum given by 1 1

1 1 1
ˆ ˆˆ ( )t t t

t j j j j j nj nU u u n n−κ −
= = = ′= ∑ = ∑ − ∑ m ΘΘΘΘ , will also 

depend on these features. A wide variety of semiparametric and parametric statistics, 

both for testing the null hypothesis of cointegration against no cointegration (as, e.g., 

the ones proposed by Shin (1994)
7
, ,

ˆ ( )n mCI k , Xiao (1999) and Wu and Xiao (2008), 

,
ˆ ( )n mR k , and Xiao and Phillips (2002), ,

ˆ ( )n mCS k , that will be presented below) and for 

testing the reserved hypothesis (see, e.g., the residual-based statistics proposed in 

Phillips (1987a) and Phillips and Ouliaris (1990)), exploit the information content of 

these residuals and their limiting distributions basically depends on the number and 

nature of the stochastic and deterministic trend components contained in the estimated 

cointegrating regression. However, it could be quite common to use in practice a wrong 

set of critical values if we only rely on the specification of the cointegrating regression 

without paying special attention to the structure of ,k td . Also, Hansen (1990) indicates 

some other important consequences of this dependence upon dimensionality. Given part 

                                                 
7
 This testing procedure was also independently proposed by Harris and Inder (1994) and Leybourne and 

McCabe (1994), and consists on adapting the so-called KPSS test for the null of stationarity of a 

univariate series by Kwiatkowski et.al. (1992) to the regression errors of a cointegrating regression 

model. 
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B of Assumption 2.2, the AR(1) structure of the regression error tu  is transferred to the 

OLS residuals such as 

1
ˆ ˆ
t t tu u −= α + ε          (2.26) 

where the error term tε  is can be written as ( 1)
ˆ( )t t nt n t nn−κ

−′ ′ε = υ − − αm m ΘΘΘΘ  with 

( 1) (1 )nt n t nt nt−− α = − α + α∆m m m m , so that the OLS estimator of α, given by 

1

1 1 1
(1/ 2 )1 1 1

2 2 2 (3/ 2 ) 2 2
1

1 1 1

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ

n n n

t t t t t t

t t t
n n n n

t n t n t
t t t

u u u n u

n

u u u n u u

−
− − −

− −κ= = =

− −κ
−

= = =

ε ε
α = = α + = α +

 − + − + 
 

∑ ∑ ∑

∑ ∑ ∑
 (2.27) 

with 0
ˆ 0u = , does not converge to a constant, but stays random in the limit in the case of 

no cointegration (i.e., when α = 1 with κ = −1/2). In this case, taking into account that 
1/ 2 1/ 2

[ ] [ ] [ ]
ˆˆ (1)nr nr n nr n pn u n u O− − ′= − =m ΘΘΘΘ  weakly converges to the random limit 

1/ 2

[ ] 1
ˆ ( ) ( )nr un u B r r− ⇒ −m ΘΘΘΘ , with 1ΘΘΘΘ  the limiting distribution under no cointegration of 

the OLS estimates of θθθθ, 1 1 1

1 0 0( ( ) ( ) ) ( ) ( )us s ds s B s ds−′= ∫ ∫m m mΘΘΘΘ  (see also equation 

(2.14)), the limiting distribution of many statistics constructed from ˆtu  to test the null 

hypothesis of a unit root (no cointegration) can be show to depend upon this random 

element, and hence on m, q and k, that is on the number and type of trend components in 

the system. A detailed inspection of the sample covariance in the numerator of the last 

equality of (2.27) gives the representation 

1 1 (1/ 2 ) 1/ 2

1 1 , 1

1 1 1

2 (1 ) 1

, 1 , , 1

1 1

(1 )

,

ˆˆ

ˆ ˆ

ˆ

n n n

t t t t n n t t

t t t

n n

n n t t n t n t n

t t

n t n

n u n u n n

n n u n

n u

− − − +κ −
− − −

= = =

− κ − −κ −
− −

= =
− −κ

′ε = υ − υ

 ′ ′− − 
 

+ α

∑ ∑ ∑

∑ ∑

m

m m m

m

ΘΘΘΘ

Θ ΘΘ ΘΘ ΘΘ Θ  

so that under cointegration (κ = 1/2) we have 1 1 1

1 1 1 1
ˆ ( )n n

t t t t t t pn u n u O n− − −
= − = −∑ ε = ∑ υ + , 

which implies that ˆ (1)n pOα − α =  and 2

, 1
ˆ ˆ( [ ]) (1)n u n t t pn E u O−

−α − α − σ υ = , where 

2 1 2 2

, 1
ˆ ˆn p

u n t t un u−
=σ = ∑ → σ  and 1 0 0, 0, 1[ ]t t j j e jE u ∞

− = +′υ = ∑ c dΣΣΣΣ . This implies that the 

asymptotic behavior of ˆ nα  is model-free and only depends on the dynamics of the 

regression error term. The same applies to the well-known Z tests proposed by Phillips 

and Ouliaris (1990) (PO), given by the normalized estimation error 1, ,
ˆˆ ˆ( ( ) 1)n n nZ n ε= α λ −  

and the pseudo-T ratio test statistic 2 2 1/ 2

2, , 1 1 ,
ˆˆ ˆ ˆˆ( / ) ( ( ) 1)n

n n t t n nZ u −
ε = − ε= ω ∑ α λ − , where 

2 2

, , ,
ˆˆ ˆ 2 ( )n n n nqε ε εω = σ + λ , with 2 1 2

, 1
ˆˆ n

n t tn−
ε =σ = ∑ ε  and 1 1

, 1 1
ˆ ˆ ˆ( ) ( / )n n

n n h n t h t h tq w h q n− −
ε = = + −λ = ∑ ∑ ε ε  

( 1
ˆ 0ε = ) are computed from the sequence of OLS residuals in (2.26), i.e. 

(1/ 2 ) 1/ 2

1 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) [ ( )]t t n t t t n t t nu u u n u n− −κ −κ

− − −ε = − α = ε − α − α = ε − α − α , and ,
ˆˆ ( )n nεα λ  is the 

bias-corrected estimator of α, 2

, 1 1 , 1 1
ˆ ˆˆ ˆ ˆ ˆ( ) ( ( ))/n n

n n t t t n n t tu u q uε = − ε = −α λ = ∑ − λ ∑ . These limiting 

distributions under non-stationarity shift away from the origin as the dimensionality of 

the model increases. Thus larger values for these test statistics are needed for rejection, 

implying that smaller estimated AR(1) parameters are needed with an expected 

reduction in the power, particularly in small and even moderate sample sizes with 
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moderately large systems. 

When focusing on testing the null hypothesis of cointegration, we found a quite similar 

effect as the one described by Hansen (1990) for the semiparametric statistics based on 

measures of no excessive fluctuation in the series of residuals compatible with the null 

hypothesis of stationarity of the regression error terms cited above, which are given by 

the following functionals 

2

, 2 2
1,

1ˆ ˆ( )
ˆ ( )

n

n m t

tu n n

CI k U
n q =

=
ω ∑        (2.28) 

, 1,...,

,

1ˆ ˆ ˆ( ) max | ( / ) |
ˆ ( )

n m t n t n

u n n

R k U t n U
q n

== −
ω

    (2.29) 

and 

, 1,...,

,

1ˆ ˆ( ) max | |
ˆ ( )

n m t n t

u n n

CS k U
q n

==
ω

     (2.30) 

with 2 1 1 1

, ( 1) | | 1 | |
ˆ ˆ ˆ( ) ( )n n

u n n h n n t h t t hq w hq n u u− − −
=− − = + −ω = ∑ ∑ , and , ,

ˆˆ ( ) ( )n m n mR k CS k=  for m ≥ 1 when 
the deterministic term appearing in the estimated cointegrating regression contains at 

least a constant term, so that ˆ 0nU = . The main component of all these statistics used to 

find empirical evidence compatible with a stationary behavior of the regression error 

term is the CUSUM-type fluctuation measure given by 
[ ] [ ] [ ]

1/ 2 1/ 2 1/ 2 (1 ) 1

[ ]

1 1 1

ˆ ˆˆ
nr nr nr

nr t t nt n

t t t

n U n u n n u n− − −κ − −κ −

= = =

 ′= = − 
 

∑ ∑ ∑m ΘΘΘΘ  

which, under cointegration, has the following limiting distribution representation 

( ) ( )1
1 1

1/ 2

[ ]
0 0 0

ˆ ( ) ( ) ( ) ( ) ( ) ( )
r

nr u un U B r s ds s s ds s dB s
−

− ′ ′⇒ − +∫ ∫ ∫m m m m ΦΦΦΦ  (2.31) 

that, besides the dependence on the bias term ( , )m ku
′ ′= 0Φ ΦΦ ΦΦ ΦΦ Φ , is a function of the 

deterministic and stochastic trend components in the system through the random vector 

( ) ( ( ), ( ))m kr r r′ ′ ′=m mττττ . As a numerical illustration of the dependence on model’s 

dimensionality even in the simplest case, Table 1 below presents the finite-sample 

quantiles of the null distribution under cointegration of the OLS versions of the test 

statistics ,
ˆ ( )n mCI k  and ,

ˆ ( )n mR k , for a sample size of n = 250 observations and 10000 

independent replications under the assumption of strictly exogenous stochastic 

regressors. 

Table 1. Finite-sample quantiles of the null distribution under cointegration for the fluctuation-type test 

statistics. Case of no deterministic component and k = 1, ..., 5 integrated regressors 

Significance Shin (1994) Test Xiao (1999), Wu and Xiao (2008) Test 
Level k = 1 2 3 4 5 k = 1 2 3 4 5 

0.01 0.0289 0.0254 0.0218 0.0192 0.0175 0.4008 0.3810 0.3633 0.3466 0.3357 

0.025 0.0356 0.0305 0.0266 0.0233 0.0207 0.4365 0.4155 0.3938 0.3742 0.3587 

0.05 0.0442 0.0368 0.0317 0.0277 0.0249 0.4731 0.4448 0.4250 0.4036 0.3851 

0.1 0.0586 0.0470 0.0398 0.0340 0.0307 0.5191 0.4892 0.4635 0.4398 0.4206 

0.25 0.0978 0.0758 0.0634 0.0528 0.0461 0.6126 0.5735 0.5410 0.5110 0.4856 

0.5 0.1993 0.1510 0.1197 0.0982 0.0832 0.7496 0.6995 0.6558 0.6140 0.5798 

0.75 0.4410 0.3299 0.2514 0.2072 0.1707 0.9251 0.8577 0.7977 0.7488 0.7007 

0.9 0.8780 0.6469 0.4804 0.3863 0.3184 1.1141 1.0302 0.9561 0.8874 0.8321 

0.95 1.2598 0.9326 0.6863 0.5491 0.4407 1.2470 1.1504 1.0629 0.9881 0.9219 

0.975 1.6199 1.2346 0.9254 0.7438 0.5989 1.3725 1.2622 1.1487 1.0784 1.0196 

0.99 2.2143 1.6575 1.2705 1.0106 0.8169 1.5261 1.4331 1.3007 1.1949 1.1278 

A quick inspection of these results reveals a quite similar effect as the one described by 
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Hansen (1990) for testing procedures of the null of no cointegration, which is the 

requirement of fluctuations of lower magnitude for models of largest dimension for not 

rejection of the null hypothesis of cointegration, resulting in an expected loss of power 

for high dimensional systems as a consequence of the very different shape of these 

distributions depending on k, the number of integrated regressors. Also, Figure 1 below 

displays these distributions through kernel-density estimation of the OLS-based 

fluctuation-type test statistics with strictly exogenous integrated regressors, where it can 

be appreciate that irrespective of the value of k, these are right skewed distributions and 

are more concentrated for increasing values of k. 

Figure 1. Kernel-density estimates of the null distribution under cointegration of fluctuation-type tests 

statistics. Case of no deterministic component and k = 1, …, 5 integrated regressors 
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To complete these results in the alternative situation of no cointegration, that is when 

the regression errors tu  is also an I(1) process with α = 1 in Assumption 2.2(B) and κ = 
−1/2, the normalized OLS estimator of kββββ  can also be written as 

1

1/ 2 1 3/ 2

, , , , , , 0,

1 1

ˆˆ ˆ ˆ ˆ ˆ(1/ )
n n

k n kk n k n k nt k nt k nt t

t t

n n n

−
− − −

= =

 ′= = η 
 

∑ ∑m m mΘ Γ βΘ Γ βΘ Γ βΘ Γ β  

where 1/ 2 3/ 2 1

0, 0, 1 0, , , ,
ˆ ( )n

t t j j m nj mm n m ntn n− −
= ′η = η − ∑ η Qτ ττ ττ ττ τ  are the OLS detrended observations 
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of the dependent variable 0, , 0,t m m t ty ′= + ηα τα τα τα τ , so that the OLS residuals can be 

alternatively represented as 

0,

0, , , ,
,

ˆ
ˆ ˆˆ ˆˆ (1, )

ˆ
nt

t t k n k t k n
k nt

u n
η ′ ′= η − = −  

 
m

m
β Θβ Θβ Θβ Θ      (2.32) 

and their scaled partial sum admits the representation 
[ ] [ ]

0,1/ 2 1/ 2 1

[ ] ,
,1 1

ˆ
ˆ ˆˆ (1, ) ( )

ˆ

nr nr
nt

nr t k n p
k ntt t

n U n u n n O n− − −

= =

 η  ′= = − =  
  

∑ ∑ m
ΘΘΘΘ  

which is a fundamental partial result for determining the consistency of these testing 

procedures under no cointegration, but with the limitations described before. For a more 

detailed analysis of all these results see, e.g., the work by Phillips (1989). Figure 2 

below displays the kernel-density estimation of the distribution of the OLS-based Shin’s 

(1994) test under the alternative of no cointegration, with similar shapes as under 

cointegration for different number of integrated regressors. 

Figure 2. Kernel-density estimates of the alternative distribution under no cointegration of fluctuation-

type tests statistics. Case of no deterministic component and k = 1, …, 5 integrated regressors 
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This represents an important difference with respect to, e.g. the PO tests, where the 

limiting distribution under the alternative hypothesis does not depend on the 

characteristics of the estimated model. Some other existing cointegration tests, such as 

the Choi and Ahn (1995) LM-type statistics and the statistic proposed by Jansson 

(2005), also display the same characteristics although we do not consider their study in 

this paper. 

Also, besides these theoretical considerations, in practical applications it is worth to 

mention the effects on the size and power properties of the methods used to adjust for 

serial correlation and endogeneity of the stochastic regressors. 

Finally, much of these results are also of application in more complex models allowing 

to capture some non-linear effects characterizing the potential cointegrating 

relationship, such as, e.g., structural breaks affecting the parameters of (2.4). Thus, 

augmenting the specification of the basic cointegrating regression (2.4) as 

0 1 0 0( ) ( )t t t t t t ty h u u′ ′ ′= + τ + = τ +m m Aθ θ θθ θ θθ θ θθ θ θ  

where 0 ( , )m k
′ ′ ′=θ α βθ α βθ α βθ α β , 1 ( , )m k

′ ′ ′=θ λ πθ λ πθ λ πθ λ π , 0 1( , )′ ′ ′=θ θ θθ θ θθ θ θθ θ θ , and 
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0
0

( )
( )
t

t
t th

 τ =  τ 

m
A

m
 

with 0 0( ) ( [ ])th I t nτ = > τ  the indicator function of the break point in the sample, where 

0 (0,1)τ ∈  is the true break fraction, this model allows for systematic, abrupt and 

permanent changes in the values of the model parameters. This general formulation 

allows for a great variety of different specifications with changes affecting the trend 

function and/or the cointegrating vector. In the case of an unknown break point, the 

estimating model is given by ( )t t ty e′= τ +Aθθθθ , with regression errors defined as 

1 0( ( ) ( ))t t t t te u h h′= + τ − τmθθθθ  so that the scaled OLS estimation error is given by 

1

1

1

(1 ) 1

0 1

1 1

ˆ( ) ( ) ( )

( ) ( ) ( ( ) ( ))

n

n n nt nt

t

n n

nt t nt nt t t n

t t

n n

n u n h h n

−
κ −

=

− −κ − κ

= =

 ′− = τ τ 
 
 ′ ′× τ + τ τ − τ 
 

∑

∑ ∑

D A A

A A m W

θ θθ θθ θθ θ

θθθθ
 

with scaling matrix diag( , )n n n=D W W , and 

1

, ,

1 1

,

( )m n m k m k

n

kk n k

n n

−
κ κ

−

′ +
′ =   

 

A
W

Γ λ πΓ λ πΓ λ πΓ λ π
θθθθ

Γ πΓ πΓ πΓ π
 

Both in the case of a known break point, i.e. τ = τ0, or with a wrong determination of the 
break fraction with relatively small changes in the magnitude of the shifts in the model 

parameters such as 1nnκ ′W θθθθ  is asymptotically negligible, then all the model parameters 
are consistently estimated by OLS under cointegration, but with the same nuisance 

parameters as in the linear case affecting their limiting null distribution. 

With all these results in mind, but still relying on the usefulness of the information 

contained in the sequence of OLS residuals, next section will present a new testing 

procedure that overcome many of the difficulties discussed above. 

3. A new CUSUM of squares test statistic 

In the context of testing for stationarity of a univariate time series, Xiao and Lima 

(2007) consider, as an extended source of information for determining this type of 

behavior, the existence of excessive fluctuations in the bivariate process ( , )t t ntu v ′=z , 

where 2 2

,nt t u nv u= − σ , with 2 1 2

, 1

n

u n t tn u−
=σ = ∑ . In order to define a proper measure of 

excessive fluctuation in these two series, these authors propose to built the scaled partial 

sum of tz  as 

1/ 2 [ ][ ]
1/ 2 1

1/ 2 [ ] 2 2

1 1 ,( )

nrnr
t tt

nr
ntt t t u n

n uu
n

v n u

−
− =

−
= =

 ∑  =    ∑ − σ   
∑      (3.1) 

Under stationarity (i.e., under cointegration if tu  were the regression errors in (2.4)), the 

scaled partial sum of centered and squared errors admits the decomposition 
[ ] [ ]

1/ 2 1/ 2 1/ 2

1 1 1

[ ]nr nr n

nt t t

t t t

nr
n v n v n v

n

− − −

= = =

= −∑ ∑ ∑      (3.2) 

with 2 2

t t uv u= − σ , that under quite general assumptions weakly converges to a well-

defined limiting distribution. On the other hand, under non-stationarity (i.e., under no 

cointegration) we have that 
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[ ]
1 1 1/ 2 1

[ ]
5/ 2 [ ]1

1 2 1 2[ ]
1 1/ 2 2 1 2 , ,1

, 1 1

1

( ) ( )

[ ]

[( ) ]

nr

nr t p
nr ntt

nr
nt n t n tt

t u n t t

t

n n n u O n
u

n nr
v n u n u

n n u n n

− − − −

− =
− −

− − −=
= =

=

  
   

     = =   −     − σ   
 

∑
∑ ∑ ∑∑

 

(3.3) 

where 1/ 2

,n t tu n u−= , so that the behavior under non-stationarity is dominated by the 

second component, reflecting the violation of the covariance stationarity assumption 

induced by the unit root. This result give us the idea to define the empirical version of 

(3.2) based on the squared and centered OLS residuals as the basis for building a 

relatively simple to compute statistic to test the null hypothesis of cointegration. First, 

given the sequence of OLS residuals in equation (2.25), ˆˆ
t t nt nu u n−κ ′= − m ΘΘΘΘ , we have 

that the scaled partial sum of squared and centered residuals is given by 

[ ] [ ]
1/ 2 1/ 2 2 2

,

1 1

[ ] [ ]
1/ 2 1/ 2 2 1 1

1 1 1

[ ]
1/ 2 2 (1 ) (1 )

1 1

ˆ ˆ ˆ( )

[ ]ˆ ˆ

[ ]ˆ2

nr nr

t t u n

t t

nr nr n

nt n nt nt nt nt n

t t t

nr n

n nt t nt t

t t

n v n u

nr
n v n n n

n

nr
n n u n u

n

− −

= =

− − κ − −

= = =

− κ − −κ − −κ

= =

= − σ

 ′ ′ ′= + − 
 

 ′− − 
 

∑ ∑

∑ ∑ ∑

∑ ∑

m m m m

m m

Θ ΘΘ ΘΘ ΘΘ Θ

ΘΘΘΘ

 (3.4) 

with 2 1 2

, 1
ˆ ˆn

u n t tn u−
=σ = ∑  the OLS-based residual variance. Note that this functional, 

1/ 2 [ ] 1/ 2 [ ] 2 2

1 1 ,
ˆ ˆ ˆ( )nr nr

t t t t u nn v n u− −
= =∑ = ∑ − σ , is the base to built the cumulative sum (CUSUM) of 

squares statistics used to test for structural stability in linear regression models with 

stationary regressors and errors (see Deng and Perron (2008) for a recent review of the 

conditions required on these components to obtain consistent results). In a non-

stationary framework, Lee et.al. (2003) study its properties to test for a variance change 

in a unstable AR(q) model while Nielsen and Sohkanen (2011) also generalize it use to 

the case of a non-stationary autoregressive distributed lag model with deterministic time 

trends. For the cointegrated regression model proposed by Maekawa et.al. (1996), with 

cointegrated regressors and inconsistent OLS estimation of the model parameters, Lu 

et.al. (2008) studied how to built a CUSUM of squares statistic for testing structural 

stability based on the first difference of OLS residuals. When using (3.4) for the 

purpose of testing for cointegration, taking κ = 1/2, the behaviour of (3.4) is 
asymptotically equivalent to that of (3.2), that is 

[ ] [ ]
1/ 2 1/ 2 1/ 2

1 1

ˆ ( )
nr nr

t nt p

t t

n v n v O n− − −

= =

= +∑ ∑ , 

so that the limiting distribution of (3.4) under cointegration will be invariant to the 

structure and nature of the regressors in (2.4). In order to correctly characterize this 

limiting null distribution, we have to consider an augmented version of the error vector 

tξξξξ  given in (2.3) as ,( , , )t t t k tu v ′ ′=ζ εζ εζ εζ ε , so that under the assumptions stated on the 

generating mechanism of tξξξξ  it also satisfies an invariance principle such as 
[ ] [ ]

1/ 2 1/ 2 2 2 1/ 2

1 1
,

( )
( ) ( ) ( )

( )

nr nr t u

t t u v

t t
k t k

u B r
n n u r B r r

r

− −

= =

   
   = − σ ⇒ = =

     
∑ ∑ B W

B
ζ ζ ζζ ζ ζζ ζ ζζ ζ ζζ Ωζ Ωζ Ωζ Ω

εεεε
  (3.5) 

with covariance matrix 
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where ku uk
′=ω ωω ωω ωω ω  and 2 2

0 , 1 ,[ ] [ ]kv vk h k t h t h k t t hE u E u∞ ∞
= − = −′= = ∑ +∑ω ω ε εω ω ε εω ω ε εω ω ε ε  is the long-run 

covariance between ,k tεεεε  and 2 2

t uu − σ . By the upper triangular Cholesky decomposition 

of ζζζζΩΩΩΩ , we have that 

2
1 1
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1/ 2 2 1/ 2

. . .
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where 2 2 2

. (1 )u k u ukω = ω − ρ  and 2 2 2 2

. (1 )v k v vk v kv kv
′ω = ω − ρ = ω − ω γω γω γω γ , with 1

kv kk kv

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω , are the 

long-run variances of tu  and 
2 2

t t uv u= − σ  conditional on ,k tεεεε , respectively, and hence 

( )vB r  in (3.5) can be decomposed as .( ) ( ) ( )v v k v kv kB r W r r′= ω + Bγγγγ . 

Following, e.g., Phillips and Solo (1992), and Ibragimov and Phillips (2008), for a 

univariate stationary sequence tu  given by a linear process on an iid or martingale 

difference sequence et, such as 0( )t t i i t iu c L e c e∞
= −= = ∑ , with 0( ) i

i ic L c L∞
== ∑ , 

2

0i iic∞
=∑ < ∞ , (1) 0c ≠ , and 2

0[| | ]mE e + < ∞ , m > 2, the limiting behaviour of the sample 
covariance is given by 
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= += ∑ , 0ic =  for i < 0, 

and 2 2 2 2 2 4 2
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0 0 0 1(1) [( ) ] 4 (1)e e s sg E e g∞
=ω = − σ + σ ∑  

for h = 0 with (1) (1)s sg g− = . 

In our case, from Assumption 2.2 we have 0 0 0,( )t t j j t ju L ∞
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where 0 0, 0, 0 ,( ) ( ) i i

i j j i j j i jL L L∞ ∞
= + == ∑ ⊗ = ∑g c c g , with , 0, 0,( )i j j i j+= ⊗g c c  for i, j = 0, 1, 

…, so that the scaled partial sum process of tv  can be expressed as 
[ ] [ ] [ ]

1/ 2 1/ 2 1/ 2

0, ,

1 0 1 1 0 1

vec( ) 2 vec( )
nr nr nr

t j t j t j e s j t j t j s

t j t s j t

n v n n
∞ ∞ ∞

− − −
− − − − −

= = = = = =

′ ′ ′ ′= − +∑ ∑ ∑ ∑∑ ∑g e e g e eΣΣΣΣ  

(3.6) 
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By application of a multivariate version of the invariance principle for the sample 

variances 1/ 2 [ ]

1 vec( )nr

t t j t j en−
= − −′∑ −e e ΣΣΣΣ  and covariances 1/ 2 [ ]

1 vec( )nr

t t j t j sn−
= − − −′∑ e e  above 

defined in terms of the iid sequence te  and under cointegration, (3.6) will have a well-

defined limiting distribution given by the Brownian process ( )vB r  appearing in (3.5), so 

that 
[ ] [ ]

1/ 2 1/ 2 1/ 2

1 1

ˆ ( ) ( ) ( ) (1)
nr nr

t nt p v v v

t t

n v n v O n V r B r rB− − −

= =

= + ⇒ = −∑ ∑    (3.7) 

where ( )vV r  a first-level Brownian Bridge process based on ( )vB r , with long-run 

variance 

2

0

1

(1) [vec( )vec( ) ] 4 (1) [vec( )vec( ) ] (1)v t t e t t e i t t t t i

i

E E
∞

=

′ ′ ′ ′ ′ ′ ′ ′ω = − − + ∑g e e e e g e e e e gΣ ΣΣ ΣΣ ΣΣ Σ  

where 0 0[vec( )vec( ) ]t t t t e eE ′ ′ ′ = ⊗e e e e Σ ΣΣ ΣΣ ΣΣ Σ , 0 2 2 2

0 1diag( , ,..., )e k= σ σ σΣΣΣΣ  and 2 2

,[ ]j j tE eσ = , and 

[vec( )vec( ) ]t t e t t eE ′ ′ ′− −e e e eΣ ΣΣ ΣΣ ΣΣ Σ  is a square (k+1)
2×(k+1)2 matrix involving the fourth-

order central moments 2 2 2

,[( ) ]j j t jE eη = − σ , j = 0, 1, …, k, and products of distinct 

variances 2 2

j iσ σ , j, i = 0, 1, … k, j ≠ i. Also, given 1/ 2

ζζζζΩΩΩΩ , the limiting distribution in (3.7) 

admits the decomposition 

.( ) ( ( ) (1)) ( ( ) (1))v v k v v kv k kV r W r rW r r′= ω − + −B Bγγγγ     (3.8) 

with 1/ 2[ ( ) ( )] [ ( ) ( )]k v kk k v kE r W r E r W r= =B W 0ΩΩΩΩ . Thus, taking together (3.4), (3.7) and 

(3.8), we define our test statistic as the maximum absolute fluctuation of a modified 

version of the CUSUM of squared and centered OLS residuals statistic as 

, , ,
1,...,

1. ,

1ˆ ˆˆmax ( )( ( / ) )
ˆ ( )

t

n j kv n n k t k n
t n

jv k n n

CS v q t n
n q = =

′= − −
ω ∑ x xγγγγ    (3.9) 

where 2 2

. , , , ,
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )v k n n v n n kv n n kv n nq q q q′ω = ω − ω γω γω γω γ  is a plug-in kernel estimate of 2

.v kω , the 

long-run variance of 2 2

t t uv u= − σ  conditional on ,k tεεεε  under cointegration, given by 

1
2 1

, | |

( 1) | | 1

ˆ ˆ ˆ( ) ( / )
n n

v n n n t h t

h n t h

q w h q n v v
−

−
−

=− − = +

ω = ∑ ∑      (3.10) 

with 1

, , ,
ˆˆ ˆ( ) ( ) ( )kv n n kk n n kv n nq q q−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω , and 

1
1 1

, , , ,

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( / ) ( )
n n n

kv n n k t t n k t h t k t t h

t h t h

q n v w h q n v v
−

− −
− −

= = = +
= + +∑ ∑ ∑z z zωωωω  

the kernel-based estimators of the corresponding variances and covariances, with kernel 

function w(·) and bandwidth 
n

q .
8
 It is assumed that both components of these estimators 

satisfy the regularity conditions stated in Jansson (2002) in order to obtain consistent 

estimates of the corresponding parameters under the assumption of cointegration.  

Next Proposition 3.1 establish the limiting null distribution of (3.9) in the cases 

,k t k=d 0  or, at most, , ,1k t k k= ≠d A 0  (that is m = 1 and q = 0) relating to the structure of 

                                                 
8
 Observe that, alternatively, the conditional long-run variance estimator 

2

. ,
ˆ ( )

v k n n
qω  can also be computed 

as 
2 1 1 1

. , ( 1) | | 1 , | |,
ˆ ˆ ˆ( ) ( )( )

n n

v k n n j n n t j t k t j k
q w jq n v v

− − −
=− − = + −ω = ∑ ∑ , with 

, , ,
ˆˆ ˆ ˆ( )

t k t kv n n k t
v v q′= − zγγγγ  a Fully Modified (FM)-

type correction of 2 2ˆ ˆ ˆ
t t n
v u= − σ . 
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the deterministic component underlying the observed integrated regressors. 

Proposition 3.1. Limiting null distribution of the maximum absolute fluctuation of the 

modified CUSUM of squares statistic based on OLS residuals. 

Under Assumption 2.2 and (3.5), with finite four moments for the innovations driving 

the linear process for tu , and with a kernel function and bandwidth parameter 

satisfying the conditions stated in Jansson (2002), then under cointegration and 

integrated regressors containing at most a constant term the limiting distribution of the 

modified CUSUM of squares statistic in (3.9) is given by 

[0,1]
ˆ sup | ( ) (1) |n r v vCS W r rW∈⇒ −       (3.11) 

which is the supremum of the absolute value of a standard (first-level) Brownian 

Bridge, ( ) ( ) (1)v v vJ r W r rW= − . 

Proof. This result follows directly from the above results, standard application of the 

Continuous Mapping Theorem, the consistency of the kernel estimates of the long-run 

variances and covariances, i.e., 2 2

. , .
ˆ ( ) p

v k n n v kqω → ω  and , ,
ˆ ( ) p

kv n n kv nq →γ γγ γγ γγ γ , and the fact 

that , , , , , ,( / ) ( / ) ( / )k t k n k t k n k t k nt n t n t n− = − + −x x d dη ηη ηη ηη η , with , ,( / )k t k n kt n− =d d 0  and 

1/ 2 1/ 2

, ,( ( / ) ) ( )k t k nn t n O n− −− =d d  when the deterministic component underlying the 

generating mechanism of the regressors contains at most a constant term. 

Next we make some comments on this basic result. The first one refers to an important 

limitation of this result in more general situations related to the structure of the 

deterministic component underlying the observed deterministically trending integrated 

regressors when m > 1, in which case we propose the convenient modification required 

to account for this characteristics. The second one has to do with the correction for 

endogeneity in (3.9), and in particular with the computation of the correction factor 

, , ,
ˆ ( )( ( / ) )kv n n k t k nq t n′ −x xγγγγ  and the conditional long-run variance 2

. ,
ˆ ( )v k n nqω  which depend 

on the long-run covariance ,
ˆ ( )kv n nqωωωω . Finally, the third comment refers to the properties 

of the CUSUM of squares measure based on the sequence of residuals obtained from 

alternative estimation methods other than OLS such as, e.g., FM-OLS estimates. 

Remark 3.1. Given the general representation for the deterministically trending 

integrated regressors given in (2.1) and Assumption 2.1, , , , ,( / ) ( / )k t k n k t k nt n t n− = −x x η ηη ηη ηη η  

k t+A d , with 1( / )t t n n ntt n −= − =d dτ τ Γτ τ Γτ τ Γτ τ Γ  and ( / )nt nt nnt n= −d τ ττ ττ ττ τ , so that the leading term in 

the numerator of (3.9) can be decomposed as 

1/ 2 1/ 2

, , , , , ,

1 1
1/ 2 1

,

ˆ ˆˆ ˆ( )( ( / ) ) ( )( ( / ) )

ˆ ( )

t t

j kv n n k t k n j kv n n k nt k nn

j j

kv n n k n nt

n v q t n n v q t n

q n

− −

= =
− −

 
′ ′− − = − − 

 
′−

∑ ∑x x

A d

γ γ η ηγ γ η ηγ γ η ηγ γ η η

γ Γγ Γγ Γγ Γ
 

where 1 1 1

, ,diag( , )n m n q n

− − −=Γ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ , which is clearly dominated by the last term for m > 1. 

Thus, if we define 1
ˆ ˆt

t j jV v== ∑  and , , , ,
ˆ ˆ ˆ ( )( ( / ) )t k t kv n n k t k nV V q t n′= − −x xγγγγ , then ,

ˆ
t kV  is taken 

as the dependent variable in the auxiliary regression 

,
ˆ
t k t tV s′= +dαααα          (3.12) 

where , , ,
ˆ ˆ ( )( ( / ) )t t kv n n k t k ns V q t n′= − −γ η ηγ η ηγ η ηγ η η , with limiting distribution under cointegration 
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given by 1/ 2

[ ] . ( )nr v k vn s J r− ⇒ ω . Computing the sequence of OLS residuals from (3.12) 

as 
1

1/ 2 1 3/ 2

,

1 1

ˆ ˆˆ
n n

t t k t n t nt nj nj nj j

j j

s V s n n n s

−

− −

= =

 
′ ′ ′= − = −  

 
∑ ∑d d d d dαααα  

then we propose to modify the test statistic in (3.9) as 

1,...,
. ,

1ˆ ˆ( ) max | |
ˆ ( )

n t
t n

v k n n

CS m q s
n q =

+ =
ω

      (3.13) 

with limiting distribution under cointegration given by the supremum of a demeaned 

Brownian Bridge process such as 

( ) 1
1 1

[0,1]
0 0

ˆ ( ) sup ( ) ( ) ( ) ( ) ( ) ( )n r v vCS m q J r r s s ds s J s ds
−

∈ ′ ′+ ⇒ − ∫ ∫τ τ τ ττ τ τ ττ τ τ ττ τ τ τ  (3.14) 

which depends on the order of the polinomial trend function , ,( , )t m t q t
′ ′ ′=τ τ ττ τ ττ τ ττ τ τ , but not on 

the number of integrated regressors, k. The quantiles of the limiting distribution in 

(3.14) are tabulated and presented in Table B.3 in Appendix B for different sample sizes 

and assumed orders for tττττ , with m+q = 1, ..., 5. 

Remark 3.2. Given the definition of the long-run covariance between ,k tεεεε  and 2 2

t uu − σ , 

2 2

0 , 1 ,[ ] [ ]kv h k t h t h k t t hE u E u∞ ∞
= − = −= ∑ +∑ω ε εω ε εω ε εω ε ε , under the linear process assumption for the 

sequence ,( , )t t k tu ′ ′=ξ εξ εξ εξ ε  in (2.3) and the iid property of 0, 1, ,( , ,..., )t t t k te e e ′=e , we have 

that 

2

, , 0,

0

[ ] [ vec( ) ]k t h t k j t t t h j

j

E u E
∞

− +
=

′ ′=∑D e e e gεεεε  

and 

2

, , 0,

0

[ ] [ vec( ) ]k t t h k h j t t t j

j

E u E
∞

− +
=

′ ′=∑D e e e gεεεε  

where the (k+1)
2×(k+1) matrix [vec( ) ]t t tE ′ ′e e e  is of the form 

3 (1,1) 3 (2,2) 3 ( 1, 1)

0, 1 1, 1 , 1[vec( ) ] ( [ ] , [ ] ,..., [ ] )k k

t t t t k t k k t kE E e E e E e + +
+ + +′ ′ ′=e e e I I I  

with ( , )

1

j j

k+I , j = 1, 2, …, k+1 a square k+1 matrix made of zeros except for a unit value in 

the jth-position of the diagonal, so that all these expected values mainly depend on the 

characteristics of the distribution of the error terms ,j te , j = 0, 1, ..., k, with kv k= 0ωωωω  

under symmetry of the distribution of the error terms te . In any other case and from a 

practical point of view when using the estimator ,
ˆ ( )kv n nqωωωω , the phenomenon known as 

supernormality (see, e.g., Leybourne et.al. (1996)) implies that the residuals ,
ˆ ˆ,k t tuz  tend 

to be symmetrized for large sample sizes even if the true innovations are not. However, 

in small or moderate samples we must not rely on this asymptotic property and perform 

the computation of the required elements for those corrections. 

Remark 3.3. As an alternative to the OLS-version of the test statistic in (3.9), we 

consider the computation of the scaled partial sum of squared and centered FM-OLS 

residuals, ˆˆ
t t nt n

u u n+ + −κ +′= − m ΘΘΘΘ , as was detailed in section 2.1. Taking into account that 
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these estimates are consistent under cointegration with the same rates as with the OLS 

estimation, and that the FM-OLS correction of the regression errors is given by 

, , , , , ,
ˆ ˆ ˆˆ ( )t t ku n k t t ku n ku k t ku n k ntu u z+ ′ ′ ′= − = − − −z Fγ γ γ ε γγ γ γ ε γγ γ γ ε γγ γ γ ε γ , with ,t t ku k tz u ′= − γ εγ εγ εγ ε  and 

,
ˆ (1)ku n ku po− =γ γγ γγ γγ γ  under cointegration, then the scaled partial sum process of squared 

and centered FM-OLS residuals can be decomposed as 
[ ] [ ]

1/ 2 1/ 2 2 2

1 1

[ ]
1/ 2 1/ 2

, , , , , ,

1 1

[ ]
1/ 2 2 1 1

1 1

ˆ ( )

[ ]
ˆ ˆ( ) ( ) ( ) ( )

[ ]ˆ ˆ

ˆ2(

nr nr

t t n

t t

nr n

ku n ku k t k t kk k t k t kk ku n ku

t t

nr n

n nt nt nt nt n

t t

ku

n v n z

nr
n n

n

nr
n n n

n

− + −

= =

− −

= =

− κ + − − +

= =

= − σ

 ′ ′ ′+ − − − − − 
 

 ′ ′ ′+ − 
 

−

∑ ∑

∑ ∑

∑ ∑m m m m

γ γ ε ε Σ ε ε Σ γ γγ γ ε ε Σ ε ε Σ γ γγ γ ε ε Σ ε ε Σ γ γγ γ ε ε Σ ε ε Σ γ γ

Θ ΘΘ ΘΘ ΘΘ Θ

γγγγ
[ ]

1/ 2 1/ 2

, , ,

1 1

[ ]
1/ 2 1/ 2

, , , , ,

1 1

[ ]
1/ 2 2 (1 ) (1 )

1

[ ]
) ( ) ( )

[ ]
ˆ2( ) ( ) ( )

[ ]ˆ2

nr n

n ku k t t ku k t t ku

t t

nr n

ku n ku k t k t kk k t k t kk ku

t t

nr

n nt t nt

t

nr
n u n u

n

nr
n n

n

nr
n n z n

n

− −

= =

− −

= =

− κ + − −κ − −κ

=

 ′− − − − 
 
 ′ ′ ′+ − − − − 
 

′− −

∑ ∑

∑ ∑

∑m m

γ ε σ ε σγ ε σ ε σγ ε σ ε σγ ε σ ε σ

γ γ ε ε Σ ε ε Σ γγ γ ε ε Σ ε ε Σ γγ γ ε ε Σ ε ε Σ γγ γ ε ε Σ ε ε Σ γ

ΘΘΘΘ
1

[ ]
1/ 2 1/ 2

, , ,

1 1

[ ]ˆ ˆ2 ( ) ( )

n

t

t

nr n

n nt k t nt k t ku n ku p

t t

z

nr
n n n O n

n

=

−κ + − − −κ

= =

 
 
 

 ′ ′ ′+ − − + 
 

∑

∑ ∑m mΘ ε ε γ γΘ ε ε γ γΘ ε ε γ γΘ ε ε γ γ

 

where 2 1 2

1

n

n t tn z−
=σ = ∑  and the last term ( )pO n−κ  collects all the elements involving 

functionals of 
,k nt

F . Also, all the terms involving the FM-OLS estimation errors, ˆ n

+ΘΘΘΘ , 

are asymptotically negligible under cointegration, so that we can write 
[ ] [ ] [ ]

1/ 2 1/ 2 2 2 1/ 2 1/ 2 2 2

1 1 1

ˆ ( ) ( ) ( ) (1)
nr nr nr

t t n p t n p

t t t

n v n z O n n z o− + − − −

= = =
= − σ + = − σ +∑ ∑ ∑  

where the first term can be decomposed as 
[ ] [ ]

1/ 2 2 2 1/ 2 2 2 1/ 2 2 2

1 1 1

[ ]
1/ 2 1/ 2

, , , ,

1 1

[ ]
1/ 2 1/ 2

, ,

1 1

[ ]
( ) ( ) ( )

[ ]
( ) ( )

[ ]
2 ( ) ( )

nr nr n

t n t u t u

t t t

nr n

ku k t k t kk k t k t kk ku

t t

nr

ku k t t ku k t t ku

t t

nr
n z n u n u

n

nr
n n

n

nr
n u n u

n

− − −

= = =

− −

= =

− −

= =

− σ = − σ − − σ

 ′ ′ ′+ − − − 
 

′− − − −

∑ ∑ ∑

∑ ∑

∑

γ ε ε Σ ε ε Σ γγ ε ε Σ ε ε Σ γγ ε ε Σ ε ε Σ γγ ε ε Σ ε ε Σ γ

γ ε σ ε σγ ε σ ε σγ ε σ ε σγ ε σ ε σ

[ ] [ ]
1/ 2 1/ 2 1/ 2

1 1 1

[ ]
1/ 2 1/ 2

, ,

1 1

[ ]
( ) vec( ) vec( )

[ ]
2 ( ) ( )

n

nr nr n

nt ku ku t t

t t t

nr n

ku k t t ku k t t ku

t t

nr
n v n n

n

nr
n u n u

n

− − −

= = =

− −

= =

 
 
 

 ′ ′= + ⊗ − 
 

 ′− − − − 
 

∑

∑ ∑ ∑

∑ ∑

E Eγ γγ γγ γγ γ

γ ε σ ε σγ ε σ ε σγ ε σ ε σγ ε σ ε σ

 

with , ,t k t k t kk
′= −E ε ε Σε ε Σε ε Σε ε Σ , implying that the resulting limiting distribution under 

cointegration will depend on some additional nuisance parameters such as 1

ku kk ku

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω  

and the number of integrated regressors through the dimensions of the vectors vec(Et), 

k
2×1, and ,k t t kuu −ε σε σε σε σ  k×1. The same result follows when using the residuals obtained 
from any other asymptotically equivalent estimation method as, e.g., the IM-OLS 
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residuals. This result implies a clear advantage of the use of OLS residuals for the 

computation of the proposed test statistic. 

4. Some sources of size distortions and consistency analysis 

The first part of this section is devoted to the analytic study of our test statistic in terms 

of evaluating the effects of some different sources of size distortions in finite samples 

caused by a highly persistent, but stationary, regression error term tu  following an 

AR(1) process with a root approaching unity at a moderate rate or, alternatively, by 

introducing a local-to-unity representation for a moving average (MA) root. We 

consider three of these types of representations that fall into the general class of 

summable processes of order ranging from [0, 1) characterized by the fact that tu  

locally behaves as a stationary sequence. The concept of a summable stochastic 

processes has been recently formalized by Berenguer-Rico and Gonzalo (2014), where 

for a zero-mean stochastic process tζ  the order of summability, γ, is the minimum real 
number that makes (1/ 2 )

1

n

t tn− +γ
=∑ ζ  bounded in probability, and it is denoted as S(γ). It is 

clear that for a standard stationary process, I(0) = S(0), while that for a integrated 

process, I(1) = S(1). The second subsection deals with the consistency of the testing 

procedure against the alternative of no cointegration when the regression error term 

follows a fixed unit root process, although similar conclusions could be obtained under 

a standard local-to-unity representation for the autoregressive coefficient. 

4.1 Size distortions 

As for the testing procedures for the null of cointegration based on measures of 

excessive divergence of the partial sum of residuals from the estimation of the 

cointegrating regression not consistent with the stationarity of the regression error 

terms,
9
 for our test statistic it is also expected that the main source of distortion of the 

empirical size in finite samples comes from the treatment of serial correlation. Palma 

and Zevallos (2004) study the correlation structure for the squares of a time series 

satisfying a linear filter, such as ( )t tu c L e=  with te  a sequence of uncorrelated but not 

necessarily independent variables, with mean zero, finite variance and kurtosis 
4 4[ ]/e t eE eη = σ < ∞ . From their results we have that 

2 4 2 2 2 2

,2

0 0 0

,2

0 0

( ) 2 ( ) 2 ( 1) ( )

2( 1) ( )

v u e e j j h e j i e

j j i

e j j h i i h e

j i

h h c c c c h i j

c c c c i j

∞ ∞ ∞

+
= = =

∞ ∞

+ +
= =


γ = γ + σ − η + η − ρ + −




+ η − ρ − 


∑ ∑∑

∑∑
 

where 2 2 2 2( ) [( )( )]v t u t h uh E u u −γ = − σ − σ , with ,2 ( )e jρ  the autocorrelation function of 2

te , 

which reduces to  

2 4 2 2 2 4 2 2 4

0 0 0

( ) 2 ( ) ( 3) 2 ( ) ( 3) /v u e e j j h u e u j j h j

j j j

h h c c h c c c
∞ ∞ ∞

+ +
= = =

 
γ = γ + σ η − = γ + σ η −  

 
∑ ∑ ∑  

under iid noise, with 2 4

0 03 ( 3) (1)u e j jg c− ∞
=η = + η − ∑  the kurtosis of tu . These results 

                                                 
9
 For more detailed and exhaustive studies on these effects see, e.g., Carrion-i-Silvestre and Sansó (2006) 

and Müller (2005). 
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imply that, in the case of a short-memory stationary filter with j
jc c∼  for some |c| < 1, 

the decaying rate of the autocorrelation function of the squares is twice as fast as the 

decaying rate of the autocorrelation function of the original series, which determines an 

immediate impact on our results related to the computation of the long-run variances 

and covariances involved in the construction of the test statistic in (3.9). Simulation 

results, presented in Appendix C, seems to confirm this conjecture in terms of requiring 

a relatively small value of the bandwidth parameter, nq , to obtain a very good 

performance of the test statistic under stationary and strongly autocorrelated regression 

errors. 

Next we examine the expected behavior of the leading term in (3.9), 1/ 2

1
ˆt

j jn v−
=∑ =  

1/ 2 2 2

1 ,
ˆ ˆ( )t

j t u nn u−
=∑ − σ , under two different constructions characterizing the local-to-

stationarity behavior of the regression error terms. 

4.1.1. The near stationary case 

To introduce the effect of moderately serially correlated errors in a cointegrating 

regression, Kurozumi and Hayakawa (2009) consider the framework proposed by 

Giraitis and Phillips (2006), and Phillips and Magdalinos (2007a, b)
10
 where the AR 

coefficient α is moderately close to 1. This can be modeled by the so-called m local-to-
unity system, defined as 1 /m nmα = α = − λ , with λ > 0, nm  → ∞, and /nm n  → 0 as n → 

∞. A convenient parameterization of nm  is given by nm nγ= , with γ ∈ (0,1). By Lemma 
3.2 in Phillips and Magdalinos (2007b) and Lemma 1(d) in Kurozumi and Hayakawa 

(2009), 1/ 2 / 2( ) ( )t p n pu O m O nγ= = , and hence 1/ 2 (1 ) / 2( ) (1)t p pn u O n o− − −γ= =  for any value 

γ ∈ (0, 1), representing an intermediate case between standard stationarity and non-
stationarity. Taking into account the following representations 

[ ] [ ]

/ 2 / 2
0 [ ]

1 1

(1 ) [ ( )]
nr nr

n t t n nr

t t

u n n u uγ −γ

= =
− α = υ + α −∑ ∑  

[ ] [ ] [ ]
2 2 2 1/ 2 (1/ 2 ) 2 2 2

1 0 [ ]

1 1 1

(1 ) 2 [ ( )]
nr nr nr

d d

n t t n t t n nr

t t t

u n n u n n u u+ − + γ −γ
−

= = =

 − α = υ + α υ + α − 
 

∑ ∑ ∑  

and 

1 2 1 / 2 2

,

1 1

1/ 2 (1/ 2 )

1 1

( )
n n

h

t h t n u n t

t h t n h

h n h
d h j d

n t t j

j t

n u u n n n n u

n n u

− γ −γ − −γ
−

= + = − +
−

− − − +
+

= =

 = α σ − 
 

+ α υ

∑ ∑

∑ ∑
 

where 1 / 2 2

1( ) ( / )n

t n h t pn n u O h n− −γ
= − +∑ =  and (1/ 2 )

1 (1)d n h

t t t j pn u O− + −
= +∑ υ = , with d = γ/2 

when tυ  is an iid sequence, and d = 1/2 in the case of weakly dependent errors tυ  (see 
Phillips and Magdalinos (2007b)), then we obtain the limiting results 

[ ] [ ]

1/ 2
1 1

1 1
(1/ ) ( )

nr nr

t t

t tn

u u B r
m n n

υ+γ
= =

= ⇒ λ∑ ∑      (4.1) 

and 

                                                 
10
 Giraitis and Phillips (2006) and Phillips and Magdalinos (2007a) study the properties of the estimator 

of the first order autocorrelation for an observed univariate time series under near stationarity driven by 

iid noise, while Phillips and Magdalinos (2007b) extend the analysis to the case of weakly dependent 

stationary errors following a linear process. 
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2 2 2 2

, 1
1 1

1 1
(1/ ) (1/2 )

·

n n
p

n u n t t

t tn

m u u
m n n

υ+γ
= =

σ = = → λ ω∑ ∑     (4.2) 

so that from (4.1), although stationary, tu  is summable of order γ ∈ (0, 1). Also, from 
(2.10) and (4.1), we have that the normalized OLS estimation error of the model 

parameters is given now by 
1

1 1/ 2 1 (1/ 2 )

1 1

ˆˆ ( )
n n

n n n n n nt nt nt t

t t

m n n n u

−
− −γ − − +γ

= =

 ′ ′= = − =  
 
∑ ∑W m m mɶΘ Θ θ θΘ Θ θ θΘ Θ θ θΘ Θ θ θ  

implying that the OLS estimator of ββββk in (2.4) consistently estimate the cointegrating 

vector parameters but at a smaller rate than in the standard case, i.e. 
1

,
ˆ( ) (1)k n k pn O−γ − =β ββ ββ ββ β . Thus, given the sequence of OLS residuals ˆˆ

t t nt nu u n−κ ′= − m ΘΘΘΘ  

where the index κ takes now the value 1/ 2κ = − γ , we have that 
[ ] [ ]

1/ 2 2 2 1/ 2 2 2

,

1 1

[ ]
(1/ 2 2 ) 1 1

1 1

[ ]
(1/ 2 2 ) 1/ 2 1/ 2

1 1

ˆ ˆ( ) ( )

[ ]ˆ ˆ

[ ]ˆ2

nr nr

t u n t n

t t

nr n

n nt nt nt nt n

t t

nr n

n nt t nt t

t t

n u n u

nr
n n n

n

nr
n n u n u

n

− −

= =

− − γ − −

= =

− − γ +γ +γ

= =

− σ = − σ

 ′ ′ ′+ − 
 
 ′− − 
 

∑ ∑

∑ ∑

∑ ∑

m m m m

m m

Θ ΘΘ ΘΘ ΘΘ Θ

ΘΘΘΘ

 (4.3) 

where the last two terms in (4.3) are asymptotically negligible for γ < 1/4, while that for 
the first term we get 

[ ] [ ]
1/ 2 2 2 1/ 2 2 2

,

1 1

2 1/ 2 2 2 2

0 [ ]

[ ]
(1/ 2 ) (1/ 2 )

1 1

1 1

( ) ( )
2 (1 /2 )

[ ] [ ]
1

[ ]
2

nr nr

t n t n

t t

n nr n

nr n
d d d

n t t t t

t t

n
n u n

n

nr nr
n n u n u u

n n

nr
n n u n u

n

γ
− −

υγ
= =

γ− −γ −γ

− + − +
− −

= =

− σ = υ − σλ − λ 
    + α − − −    

    
 + α υ − υ  

 

∑ ∑

∑ ∑

 (4.4) 

so that 1/ 2 [ ] 2 2

1 ( ) ( )nr d

t t n pn u O n− γ+
=∑ − σ = , and hence both 1/ 2 [ ]

1
ˆnr

t tn u−
=∑  and 

1/ 2 [ ] 2 2

1 ,
ˆ ˆ( )nr

t t u nn u−
=∑ − σ  will diverge with the sample size. These results allows to explain 

and quantify the size distortions occurred in the presence of highly correlated regression 

error terms and reflected not only in the computation of the long-run variances and 

covariances required to built these test statistics but also in the behavior of the CUSUM 

and CUSUM of squares measures. 

4.1.2. The case of a nearly integrated process with a local-to-unity MA root 

As an alternative to the above construction, we next consider the formulation proposed 

by Nabeya and Perron (1994) as follows 

1t n t tu u −= α + υ  

1t t n t−υ = ζ + θ ζ  

with 1

11n n−α = − λ , 1/ 2

21n n−θ = − + λ  and tζ  a zero mean stationary sequence with finite 
variance 2 2[ ]tEζσ = ζ , where, in the limit, the AR and MA roots cancel and the process is 

stationary. Simple manipulation of these terms allows to write tu  as 

1

0

t

t n n t n tu a a b−= α + ζ + ξ  
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with 0 0 0n na u= α + ζ θ  which is assumed to be zero, 1 1/ 2

2(1 )n na n− −= α − λ , 1n nb a= − , 

and 1t n t t−ξ = α ξ + ζ , where 1

1

( )1/ 2
[ ] 0( ) ( )r sr
nrn J r e dB s−λ −−

λ ζξ ⇒ = ∫  (see Phillips (1987b)). 

Taking these results, together with the fact that 2nnb → λ , then we have that 

(1)t pu O=  but 1/ 2 [ ] 1/ 2
1 ( )nr

t t pn u O n−
=∑ = , so that tu  is summable of order 1/2, with 

1

1 [ ]
1 2 0 ( )nr r

t tn u J s ds−
= λ∑ ⇒ λ ∫ , implying that the OLS estimator of the cointegrating vector 

is still consistently estimated at the usual rate 1/ 2n  (κ = 0 in (2.10)), but with a very 
different limiting distribution. Hence, all the CUSUM-type statistics described in 

section 2.2 must diverge with the sample size given that when based on OLS residuals 

we have 1 [ ] 1 [ ] 1 [ ]
1 1 1

ˆˆ (1)nr nr nr
t t t t t nt n pn u n u n O− − −
= = = ′∑ = ∑ − ∑ =m ΘΘΘΘ . Moreover, it is easy to show 

that the sample variance of tu  has the following weak limit 1

2 2 2 1 2
, 2 0 ( )u n J s dsζ λσ ⇒ σ + λ ∫ , 

and 1/ 2 [ ] 2 2 1/ 2
1 ,( ) ( )nr

t t u n pn u O n−
=∑ − σ = , which implies that the CUSUM of squares measure 

for the sequence tu  diverges with the sample size at the same rate as the CUSUM for 

the levels. For this construction, the CUSUM of squares for the OLS residuals loses its 

main attractive feature of being independent from the components of the estimated 

model given that (3.4) is now given by 
[ ] [ ] [ ]
1 2 2 1 2 2 1 1

, ,

1 1 1 1

[ ]
1 1

1 1

[ ]ˆ ˆˆ ˆ( ) ( )

[ ]ˆ2

nr nr nr n

t u n t u n n nt nt nt nt n

t t t t

nr n

n nt t nt t

t t

nr
n u n u n n

n
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n u n u

n

− − − −

= = = =

− −

= =

 ′ ′ ′− σ = − σ + − 
 

 ′− − 
 

∑ ∑ ∑ ∑

∑ ∑

m m m m

m m

Θ ΘΘ ΘΘ ΘΘ Θ

ΘΘΘΘ
 

where 
1 1

1 [ ] 2 2 2 2 1 2
1 , 2 0 0( ) ( ( ) ( ) )nr r

t t u nn u J s ds r J s ds−
= λ λ∑ − σ ⇒ λ ∫ − ∫ . This construction represents 

an intermediate case between the near stationary formulation in 4.1.1 and the usual 

local-to-unity parameterization that follows when 2 0ζσ = , and hence could be used to 

evaluate the size performance of these test statistics in the vicinity of stationarity in 

finite samples. 

4.2 Power behavior and consistency 

To study the power performance of the proposed test statistic, we follow Jansson’s 

(2005) proposal that considers a useful modification of the standard n local-to-unity 

system (that is, when mn = n) to parameterize a local moving average (MA) unit root 

characterizing the behavior of the regression error term under near cointegration. To 

that end, if we take the first difference of tu  as 1t t tu u −∆ = α∆ + ∆υ , then it can be 
rewritten as (1 )t tu L∆ = − ρ υ  for α = 0 and ρ = 1. If instead of the fixed positive MA 
unit root we consider a local-to-unity representation as 11n n−ρ = ρ = − λ , for λ ≥ 0, then 
the tu  admits the representation 

1

0 0(1 ) t

t i t iu u L −
= −= + − ρ ∑ υ = 0 (1 )n t n ta V+ ρ υ + − ρ , with 

0 0 0a u= − ρυ  and 1

t

t j jV == ∑ υ , then 

[ ] [ ] [ ]
1/ 2 1/ 2 1/ 2 1/ 2

0

1 1 1

,
0

[ ] (1 ) ( )

( ) ( ) ( )

nr nr nr

t n t n t

t t t

r

n u a n nr n n V

B r B r B s ds

− − − −

= = =

λ υ υ υ

= + ρ υ + − ρ

⇒ = + λ

∑ ∑ ∑

∫
 

under the necessary assumption 0 0a =  on the initial values, so that λ = 0 corresponds to 
usual results under standard cointegration. For any value of λ > 0, the second term 
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appearing in this limiting distribution determines a displacement of the limiting 

distributions under cointegration corresponding to a certain degree of excessive 

persistence of the regression error sequence. In any case, this framework does not cause 

any change in the rates of consistent estimation of the model parameters or the 

regression errors, so that the scaled partial sum of squared and centered OLS residuals 

in the leading term of the test statistic in (3.9) is governed by the behavior of 
[ ] [ ]

1/ 2 2 1/ 2 2 2 1/ 2 2 2

1 1 1

[ ]
2 3/ 2 1 1/ 2 2 1 1/ 2 2

1 1
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1/ 2 1 1
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( ) ( )
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n n n V n n V
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υ υ
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− − − −

= =

− −

= =

 = ρ υ − σ − υ − σ 
 

 + − ρ − 
 
 + ρ − ρ υ − υ 
 

∑ ∑ ∑

∑ ∑

∑ ∑

 

where 11 n n−− ρ = λ  implying that the last two terms in the right-hand side of this 

expression are of order 1/ 2( )pO n−  and hence asymptotically negligible, determining the 

same weak limit result as in (3.7) irrespective of the value of λ. This result can be 
interpreted as a certain degree of robustness against this type of departure from the 

standard stationarity situation or, alternatively, that this construction is only appropriate 

to characterize local departures from the stationarity situation for the levels of the series. 

In fact, given the expressions 
2 2 2 1/ 2 1 2 1/ 2 1/ 2( ( ) 2 ( ) )t n t t n t tu n n n V n V− − − −= ρ υ + λ + λρ υ  

and 

2 2 2 1 1/ 2 2 1 1/ 2 1

, ,

! !

( ) 2
n n
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n n n n V n V− − − − −
υ
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 σ = ρ σ + λ + λρ υ 
 

∑ ∑  

it is immediate to observe that 2

tu  and 2

,u nσ  both asymptotically behave as 2

tυ  and 2

,nυσ , 

respectively. Alternatively, if we modify the assumption on the structure of the MA unit 

root as 1n n−γρ = ρ = − λ , with λ ≥ 0 and γ ∈ (0, 1), this allow us to accommodate this 
structure for the squared series, implying that the CUSUM and CUSUM of squares 

theoretical measures based on tu  are now given by 
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and 
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so that 1/ 2 [ ]

1

nr

t tn u−
=∑  diverges at the given rate for any value of γ in the subset γ ∈ (0, 1) 

and λ > 0, due to the closer proximity to non-stationarity for any sample size implied by 
this parameterization. Similarly 1/ 2 [ ] 2 3/ 2

1 ( )nr

t nt pn v O n− − γ+
=∑ =  and diverging with the 

sample size for any value of γ in the interval 0 < γ < 3/4, while that for 3/4 < γ < 1 the 
last two terms in the right-hand side are again asymptotically negligible. Only when γ 
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takes exactly the value γ = 3/4 we get 
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with 

{ }[ ]
1

1/ 2 2 2 2

,
0 0

1

( ) ( ) ( ) ( )
nr

r

nt v v

t

n v V r V r B s r B s−
λ υ υ

=
⇒ = + λ −∑ ∫ ∫  

where ( )vV r  is as in (3.7), with ( )vB r  the weak limit of 1/ 2 [ ] 2 2

1 ( )nr

t tn−
= υ∑ υ − σ . We employ 

this construction at the end of section 5 to numerically compare the power performance 

of our test statistic with some other existing and popular testing procedures in practical 

applications. 

Finally we study the behavior of the proposed statistic under the alternative of no 

cointegration, when the regression error term tu  contains a unit root (i.e. α = 1). In this 
case, the sequence of OLS residuals admits the representation as in (2.32), that is 

0,

0, , , ,
,

ˆ
ˆ ˆˆ ˆˆ (1, )

ˆ
nt

t t k n k t k n
k nt

u n
η ′ ′= η − = −  

 
m

m
β Θβ Θβ Θβ Θ      (4.5) 

so that ˆ ( )t pu O n= , and hence 3/ 2 [ ] 1 [ ]

1 1
ˆ ˆˆ (1)nr nr

t t n t nt pn u n O− −
= =′∑ = ∑ =mκκκκ , with 

,
ˆˆ (1, )n k n

′ ′= −κ Θκ Θκ Θκ Θ  and 0, ,
ˆ ˆ ˆ( , )nt nt k nt

′ ′= ηm m . Next result establish the rates of divergence of 

the different elements composing (3.9) under no cointegration and hence the divergence 

rate of the proposed test statistic under the alternative, that is, its consistency property. 

Proposition 4.1. Consistency rate under no cointegration. 

Under the same conditions as in Proposition 3.1, but under a nonstationary behavior of 

the regression error term tu , that is, under no cointegration with α = 1, we have that: 

(a) 
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(b) 2 2
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. ,
ˆ ( ) ( )v k n n p nq O q nω = , and 

(c) ˆ ( / )n p nCS O n q=  

Proof. First, given the above representation for the sequence of OLS residuals under no 

cointegration, we have that 
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that clearly yields the result in (a). Second, given that 2ˆ ( )t pu O n= , t = 1, ..., n, and 

2ˆ ( )n pO nσ = , then 1 2 2

1
ˆ ( )n

t t pn v O n−
=∑ =  and thus 2 2

,
ˆ ( ) ( )v n n p nq O n qω =  in (3.10) following 

similar arguments as in Phillips (1991). Also, for the kernel estimate of the long-run 

variance kvωωωω , given by 
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we have that 
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where we use the representation 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( )vec( )t n nt nt n n n nt ntu n n′ ′ ′ ′ ′ ′= = ⊗m m m mκ κ κ κκ κ κ κκ κ κ κκ κ κ κ  for the 

squared OLS residuals, with 1 ,
ˆn

t k t k=∑ =Z 0 , for any m ≥ 1 and 1/ 2

1 ,
ˆn

t k tn−
=∑ Z  

1/ 2

1 , (1)n
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== ∑ =εεεε  when the integrated regressors do not contain any deterministic 

component, so that 1

1 ,
ˆ ˆ ( )n
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=∑ =Z . Similarly, for lag h = 1, ..., n−1, we can 

write 
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. ,
ˆ ( ) ( )v k n n p nq O q nω = , and the leading term in the numerator of the test statistic 

(3.9) is given by 
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which implies the final result in (c). One final comment about the divergence rate 

displayed by our testing procedure in part (c) of Proposition 4.1, which is the same as 

for the CUSUM-type tests proposed by Xiao (1999), Xiao and Phillips (2002) and Wu 

and Xiao (2008), and thus its power performance is comparable with that of these 

alternative testing procedures for the same null hypothesis of cointegration. 

5. Finite sample alternative distribution, size and power 

The DGP used for the simulation experiment is based on 1t t tu u −= α + υ  and 

, , 1 ,k t k t k t−= +η η εη η εη η εη η ε , , , 1 ,k t k t k t−= φ + eε εε εε εε ε , where 0, , 1 1( , ) ( , )t t k t k kiidN + +′ ′= υ e 0∼ξ Σξ Σξ Σξ Σ , with 

2

0 0
1

0

k
k

k kk
+

 σ=  
 

σσσσΣΣΣΣ σ Σσ Σσ Σσ Σ , and 2 2 1

0. 0 0 0k k kk k

−σ = σ − σ Σ σσ Σ σσ Σ σσ Σ σ  

With these error terms we compute the OLS residuals from (2.4) without specifying any 

particular value for the model parameters, where all the results are computed by 

generating 5000 draws from the discrete time approximation (direct simulation) to the 

limiting random variables based on n steps, with k = 1, …, 5, except for calculating the 

quantiles of the null distribution with 20000 independent draws. Tables B.1 and B.2 in 

Appendix B present these quantiles for different samples sizes and for the cases of no 

deterministic term in the cointegrating regression, and for the inclusion of only a 

constant term or a constant term and a linear trend component. From these results it is 

remarkable the invariance of the null distribution of the test statistic to the structure and 
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dimension of the estimated model even for very small sample sizes. Appendix C 

presents the results for the finite sample-adjusted empirical size of our testing procedure 

under quite general assumptions on the serial correlation of both the regression error 

term and the errors driving the endogenous stochastic trend components (endogenous 

integrated regressors), providing strong support for the theoretical robustness found in 

section 4 even for very small values of the bandwidth parameter in the computation of 

the kernel estimates of the long-run variances and covariances needed in the definition 

of the statistic in (3.9). 

Finally, the results on power performance are presented graphically. First, figure 3 

displays the kernel estimates of the density function characterizing the distribution of 

the CUSUM of squares statistic under the alternative hypothesis of no cointegration. For 

different choices of the parameters determining the degree of endogeneity and serial 

correlation of the integrated regressors, we observe a markedly different behaviour for 

low, medium and high dimensional regression models in terms of k, the number of 

integrated regressors. 

Figure 3. Nonparametric kernel estimation of the density function of the CUSUM-of squares test 

statistics computed under the alternative of no cointegration 

 

 

 

 

Additionally, figures 4 and 5 display the power profile for relatively small, medium and 

large samples sizes for different choices of the magnitude of the bandwidth parameter in 

computing the kernel estimates of the long-run variances and covariances appearing in 

(3.9) and (3.10). 

 

 

 

 

 

 

 

 

 

Case B. No deterministic component, with sample size n = 1000, (σkυ, φ) = (0.75, 0.50), 
and sample size-dependent deterministic bandwidth mn(d) = [d/(n/100)

1/4
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Case A. No deterministic component, with sample size n = 200, (σkυ, φ) = (0.75, 0.50), 
and sample size-dependent deterministic bandwidth mn(d) = [d/(n/100)
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Figure 4. Power profile as a function of the number of integrated regressors (k), the magnitude of the 

deterministic bandwidth parameter 1/ 4( ) [ ( /100) ]
n

q d d n= , and the degree of serial correlation in the 

errors driving the stochastic trend components (φ) 

 

 

Figure 5. Power profile as a function of the number of integrated regressors (k), the magnitude of the 

deterministic bandwidth parameter 1/ 4( ) [ ( /100) ]
n

q d d n= , and the degree of serial correlation in the 

errors driving the stochastic trend components (φ) 

 

 

Power results displayed in figures 4, 5 correspond to the case of no deterministic 

component in the estimated cointegrating regression. For the case of inclusion of a 

constant term, or a constant term and a linear trend, the profiles are quite similar, but 

with a slight loss of power, which is a feature commonly shared by many of the existing 

testing procedures in this framework. Also, another common feature, also displayed 
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here is that the power is a decreasing function of the number of stochastic trends, k. For 

high dimensional models, as can be seen from figure 3, the limiting distribution under 

the alternative becomes right skewed. However, for low dimensional models and 

moderate sample sizes, the power is quite high and can be compared favourably with 

that of others existing testing procedures. 

Finally, we consider the following generalized structure for describing the local non-

stationary behavior of the regression error terms (1 )t n tu L∆ = − ρ υ , where 

0 1 0,t t te−υ = φ υ + , and 1n n−γρ = − λ , to compare the power performance of our test 

statistic with the tests procedures proposed by Shin (1994), Xiao and Phillips (2002) 

and Jansson (2005). For these tests the index γ takes the unit value, γ = 1, while for our 
test we choose γ = 3/4, the only way to make these tests comparable under this 
construction. Figure 6 below represents the power profiles of these four tests for values 

of λ ranging from 0 to 30 in the case of including a constant term in the specification of 
the cointegrating regression, k = 1 or 2 integrated regressors, and values of 0φ  = 0, 0.5, 

0.75. 

Figure 6. Rejection rates under the local-to-unity MA root for the Shin (ST), Xiao and Phillips (RT), 

Jansson (QT(10)) and CUSUM of squares (CT) test statistics and a sample size n = 1000, with k = 1 (left) 

and k = 2 (right) integrated regressors and a fixed constant term 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

 
(a) 

0
( , ) (0,0)φ φ =  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

 
(b) 

0
( , ) (0.5,0.5)φ φ =  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

ST

RT

QT(10)

CT

 
(c) 

0
( , ) (0.75,0.25)φ φ =  



 36

The numerical results displayed in these figures clearly show the superiority of our 

testing procedures in terms of power, particularly for highly autocorrelated errors. 

6. An application to the US aggregate consumption function and some 

concluding remarks 

To illustrate the performance of the proposed test statistic as compared some other 

alternative testing procedures in the same framework of analysis, we use it to test for a 

stable long-run relationship between consumption and income using US quarterly data 

from 1947Q1 to 1991Q2 (n = 178), with the series defined as RPC, Real total personal 

consumption expenditure, RCNDS, Real consumption on non-durables and services, 

and RDPI, Real total disposable personal income in 2009 dollars. All these series were 

transformed into logs and are the same series used in Shin (1994) and McCabe et.al. 

(1997), except that in that cases are expressed in 1982 dollars. 

Table 2 bellow shows the results of our test statistic including, for purposes of 

comparison, a simplified version to be used in the case of strictly exogenous regressors 

and given by 

0 1/ 2 1

, 1 ,
1,...,

ˆ ˆ ˆ( ) ( ) max | ( ) |t

n n v n n j j p
t n

CS q n q v k− −
==

= ω ∑  

without the correction for endogeneity in (3.9), both in the numerator and denominator 

of the test statistic. 

We also include the results of Shin’s (1994)
11
 and McCabe et.al. (MLS) (1997) tests for 

the null hypothesis of cointegration, where the MLS test is also based on a measure of 

excessive fluctuation under cointegration in the sequence of regression errors tu  similar 

to that of Shin’s test, but with a parametric correction both for endogeneity and serially 

correlated regression error terms. 

The estimated values of our test statistic and the Shin’s test, ˆ ( )nCI q , are obtained for 

certain different values of the bandwidth parameter to correct for serial correlation, 

while that the MLS test is also computed for different values of p, the order of the 

AR(p) model adjusted to the regression errors to obtain parametrically corrected error 

terms free of remaining serial dependence. From these results, we observe that our 

testing procedure clearly indicates evidence against the existence of a stable long-run 

relationship between consumption and income, with a little or small effect of the 

bandwidth choice. Shin establishes that each individual series is I(1), possibly with drift, 

and thus the versions of the tests in panel B of Table 2 (with inclusion of a constant 

term and a linear trend in the estimated regression model) seems more appropriate. 

Overall, there is a substantial amount of agreement between the outcomes of these three 

tests against the existence of a cointegration relationship between these variables. 

 

 

 

 

 

                                                 
11
 Formally, the general version of Shin’s (1994) test is based on the residuals from the Dynamic OLS 

(DOLS) estimation of the cointegrating regression proposed by Saikkonen (1991), among others. 

However, it is not difficult to check that it is also valid when using any other existing asymptotically 

efficient testing estimator under endogenous regressors as the FM-OLS method by Phillips and Hansen. 
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Table 2. Application to US Aggregate consumption data, 1947Q1-1991Q2 (n = 178) 

A. Constant term      ˆ ( )
n

S p   

 

Bandwidth 
ˆ ( )
n

CS q  0ˆ ( )
n

CS q   ˆ ( )
n

CI q  1p =  2 3 

RPC-RDPI 1q =  4.157 a 1.604 a  1.136 a 2.264 a 2.321 a 0.699 a 

 2 3.496 a 1.395 b  0.790 a    

 5 2.695 a 1.093  0.393 c    

 10 2.278 a 0.906  0.250 c    

RCNDS-RDPI 1q =  3.613 a 1.536 b  1.518 a 2.963 a 3.028 a 3.194 a 

 2 3.505 a 1.291 c  1.037 a    

 5 3.159 a 0.935  0.477 b    

 10 2.811 a 0.765  0.281 c    

B. Constant term and linear trend     ˆ ( )
n

S p   

 

Bandwidth 
ˆ ( )
n

CS q  0ˆ ( )
n

CS q   ˆ ( )
n

CI q  1p =  2 3 

RPC-RDPI 1q =  4.088 a 1.549 b  0.306 a 0.616 a 0.586 a 0.079 

 2 3.131 a 1.364 b  0.217 a    

 5 2.489 a 1.156  0.188 c    

 10 2.397 a 1.077  0.083    

RCNDS-RDPI 1q =  4.356 a 1.377 b  0.374 a 0.507 a 0.739 a 0.123 b 

 2 4.088 a 1.179 c  0.261 a    

 5 3.648 a 0.925  0.133 b    

 10 3.274 a 0.866  0.091    

Notes. 
a, b, c

: Rejection at 1, 5, and 10%. ˆ ( )
n

CI q  is the Shin’s (1994) test based on FM-OLS estimates 

and residuals, while ˆ ( )
n

S p  is the McCabe, Leybourne and Shin (MLS) (1997) test. 

 

 

References 

Berenguer-Rico, V., J. Gonzalo (2014). Summability of stochastic processes. A generalization of 

integration for non-linear processes. Journal of Econometrics, 178(2), 331-341. 

Carrion-i-Silvestre, J.L., A. Sansó (2006). A guide to the computation of stationarity tests. Empirical 

Economics, 31(2), 433-448. 

Choi, I., B.C. Ahn (1995). Testing for cointegration in a system of equations. Econometric Theory, 11(5), 

952-983. 

Deng, A., P. Perron (2008). The limit distribution of the CUSUM of squares test under general mixing 

conditions. Econometric Theory, 24(3), 809-822. 

Engle, R.F., C.W.J. Granger (1987). Co-integration and error correction: representation, estimation, and 

testing. Econometrica, 55(2), 251-276. 

Giraitis, L., P.C.B. Phillips (2006). Uniform limit theory for stationary autoregression. Journal of Time 

Series Analysis, 27(1), 51-60. 

Gonzalo, J. (1994). Five alternative methods of estimating long-run equilibrium relationships. Journal of 

Econometrics, 60(1-2), 203-233. 

Granger, C.W.J. (1981). Some properties of time series data and their use in econometric model 

specification. Journal of Econometrics, 16(1), 121-130. 

Hansen, B.E. (1990). A powerful, simple test for cointegration using Cochrane-Orcutt. Working paper 

n.230, Rochester Center for Economic Research (RCER), University of Rochester. 

Hansen, B.E. (1992a). Efficient estimation and testing of cointegrating vectors in the presence of 

deterministic trends. Journal of Econometrics, 53(1-2), 87-121. 

Hansen, B.E. (1992b). Tests for parameter instability in regressions with I(1) processes. Journal of 

Business and Economic Statistics, 20(1), 45-59. 

Hansen, B.E. (1992c). Heteroskedastic cointegration. Journal of Econometrics, 54(1-3), 139-158. 

Harris, D., B. Inder (1994). A Test of the Null Hypothesis of Cointegration. In Nonstationary Time Series 

Analysis and Cointegration, edited by C. P. Hargreaves.Oxford Univeristy Press, 133-152. New York. 

Harris, D., B. McCabe, S. Leybourne (2002). Stochastic cointegration: estimation and inference. Journal 

of Econometrics, 111(2), 363-384. 

Harris, D., B. McCabe, S. Leybourne (2003). Some limit theory for autocovariances whose order depends 

on sample size. Econometric Theory, 19(5), 829-864. 



 38

Ibragimov, R., P.C.B. Phillips (2008). Regression asymptotics using martingale convergence methods. 

Econometric Theory, 24(4), 888-947. 

Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econometric Theory, 

18(6), 1449-1459. 

Jansson, M. (2005). Tests of the null hypothesis of cointegration based on efficient tests for a unit MA 

root. In Andrews, D.W.K. and J.H. Stock (Eds): Identification and Inference for Econometric Models: 

Essays in Honor of T.J. Rothenberg, Chapter 15, 357-374. Cambridge University Press, Cambridge. 

Jansson, M. (2005). Tests of the null hypothesis of cointegration based on efficient tests for a unit MA 

root. In D.W.K Andrews and J.H. Stock (Eds.): Identification and Inference in Econometric Models. 

Essays in Honour of T.J. Rothenberg, Chapter 15, 357-374. Cambridge University Press, Cambridge. 
Kurozumi, E., K. Hayakawa (2009). Asymptotic properties of the efficient estimators for cointegrating 

regression models with serially dependent errors. Journal of Econometrics, 149(2), 118-135. 

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, Y. Shin (1992). Testing the null hypothesis of stationarity 

against the alternative of a unit root: How sure are we that economic time series have a unit root?. 

Journal of Econometrics, 54(1-3), 159-178. 

Lee, S., O. Na, S. Na (2003). On the CUSUM of squares test for variance change in nonstationary and 

nonparametric time series models. Annals of the Institute of Statistical Mathematics, 55(3), 467-485. 

Leybourne, S. J., B.P.M. McCabe (1994). A Simple Test for Cointegration. Oxford Bulletin of 

Economics and Statistics, 56(1), 97-103. 

Leybourne, S.J., B.P.M. McCabe, A.R. Tremayne (1996). Can economic time series be differenced to 

stationarity?. Journal of Business and Economic Statistics, 14(4), 435-446. 

Lu, X., K. Maekawa, S. Lee (2008). The CUSUM of squares test for the stability of regression models 

with non-stationary regressors. Economics Letters, 100(2), 234-237. 

Maekawa, K. T. Yamamoto, Y. Takeuchi, M. Hatanaka (1996). Estimation in dynamic regression with an 

integrated process. Journal of Statistical Planning and Inference, 49(2), 279-393. 

McCabe, B.P.M., S.J. Leybourne, Y. Shin (1997). A parametric approach to testing the null of 

cointegration. Journal of Time Series Analysis, 18(4), 395-413. 

Montalvo, J.G. (1995). Comparing cointegrating regression estimators: Some additional Monte Carlo 

results. Economics Letters, 48(), 229-234. 

Müller, U.K. (2005). Size and power of tests of stationarity in highly autocorrelated time series. Journal 

of Econometrics, 128(2), 195-213. 

Nabeya, S., P. Perron (1994). Local asymptotic distribution related to the AR(1) model with dependent 

errors. Journal of Econometrics, 62(2), 229-264. 

Nielsen, B., J.S. Sohkanen (2011). Asymptotic behavior of the CUSUM of squares test under stochastic 

and deterministic time trends. Econometric Theory, 27(4), 913-927. 

Palma, W., M. Zevallos (2004). Analysis of the correlation structure of square time series. Journal of 

Time Series Analysis, 25(4), 529-550. 

Park, J.Y. (1992). Canonical cointegrating regressions. Econometrica, 60(1), 119-143. 

Park, J.Y., P.C.B. Phillips (1989). Statistical inference in regressions with integrated processes: Part 2. 

Econometric Theory, 5(1), 95-131. 

Park, J.Y., S.B. Hahn (1999). Cointegrating regressions with time varying coefficients. Econometric 

Theory, 15(5), 664-703. 

Phillip, P.C.B., V. Solo (1992). Asymptotics for linear processes. The Annals of Statistics, 20(2), 971-

1001. 

Phillips, P.C.B. (1987a). Time series regression with a unit root. Econometrica, 55(2), 277-301. 

Phillips, P.C.B. (1987b). Towards a unified asymptotic theory for autoregression. Biometrika, 74(3), 535-

547. 

Phillips, P.C.B. (1989). Partially identified econometric models. Econometric Theory, 5(2), 181-240. 

Phillips, P.C.B. (1991). Spectral regression for cointegrated time series. In: Barnett, W., J. Powell, G. 

Tauchen (Eds.), Nonparametric and Semiparametric Methods in Econometrics and Statistics. 

Cambridge University Press, Cambridge. 

Phillips, P.C.B. (1995). Fully modified least squares and vector autoregression. Econometrica, 63(5), 

1023-1078. 

Phillips, P.C.B., B.E. Hansen (1990). Statistical inference in instrumental variables regression with I(1) 

processes. The Review of Economic Studies, 57(1), 99-125. 

Phillips, P.C.B., M. Loretan (1991). Estimating long-run economic equilibria. The Review of Economic 

Studies, 58(3), 407-436. 

Phillips, P.C.B., S. Ouliaris (1990). Asymptotic properties of residual based tests for cointegration. 

Econometrica, 58(1), 165-193. 



 39

Phillips, P.C.B., T. Magdalinos (2007a). Limit theory for moderate deviations from a unit root. Journal of 

Econometrics, 136(1), 115-130. 

Phillips, P.C.B., T. Magdalinos (2007b). Limit theory for moderate deviations from a unit root under 

weak dependence. In: Phillips, G.D.A., E. Tzavalis (Eds.), The Refinement of Econometric Estimation 

and Test Procedures: Finite Sample and Asymptotic Analysis, Chapter 5, 123-162. Cambridge 

University Press, Cambridge 

Saikkonen, P. (1991). Asymptotically efficient estimation of cointegration regressions. Econometric 

Theory, 7(1), 1-21. 

Shin, Y. (1994). A residual-based test of the null of cointegration against the alternative of no 

cointegration. Econometric Theory, 10(1), 91-115. 

Stock, J.H., M.W. Watson (1993). A simple estimator of cointegrating vectors in higher order integrated 

systems. Econometrica, 61(4), 783-820. 

Vogelsang, T.J., M. Wagner (2014). Integrated modified OLS estimation and fixed-b inference for 

cointegrating regressions. Journal of Econometrics, 178(2), 741-760. 

Wu, G., Z. Xiao (2008). Are there speculative bubbles in stock markets? Evidence from an alternative 

approach. Statistics and its Interface, 1, 307-320. 

Xiao, Z. (1999). A residual based test for the null hypothesis of cointegration. Economics Letters, 64(2), 

133-141. 

Xiao, Z., L.R. Lima (2007). Testing covariance stationarity. Econometric Reviews, 26(6), 643-667. 

Xiao, Z., P.C.B. Phillips (2002). A CUSUM test for cointegration using regression residuals. Journal of 

Econometrics, 108(1), 43-61. 

 

 

Appendix A. Sources of inconsistent estimation of a subset of coefficients of the 

cointegration vector: Subcointegration and stationary stochastic regressors 

Let us consider the cointegrating regression model in (2.4) written as , ,
ˆ ˆ
t k k t t mY u′= +Xββββ , 

where 0,
ˆ ˆ
t tY = η , , ,

ˆ ˆ
k t k t=X m , and ,t mu  are the OLS detrended observations of 0,tη , 

, , , ,k t k t k q q t= +m Aη τη τη τη τ , and tu , respectively, obtained by correcting for the trend 

polynomial ,m tττττ , with 1

, , ,
ˆ ˆ

k t kk n k nt

−=m mΓΓΓΓ  and scaling matrix 1

, ,kk n kk n kk

− ′= W CΓΓΓΓ . In the case 

, ,k q k q=A 0 , where 1/ 2

, ,kk n k kn−= IΓΓΓΓ , we have 1

, , , , , ,
ˆ ˆ

k nt k nt k nt km n mm n m nt

−= = −m Q Qη η τη η τη η τη η τ , while 

that in the general case , ,k q k q≠A 0  we have 

1/ 2

, , , ,

,

, ,

ˆ
ˆ

ˆ
q nt q n k q k nt

k nt

k k q k nt

n

−

′ +
=  ′ 

d C
m

C

Γ ηΓ ηΓ ηΓ η
ηηηη

 

with 1

, , , , ,q nt q nt qm n mm n m nt

−= −d Q Qτ ττ ττ ττ τ . Next, we assume the situation where the scaled k-

vector of stochastic trend components ,k ntηηηη  is given by 

11

2 2

,,

1/ 2, ,
, ,

k ntk nt
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in the case where there are k2 ≥ 1 integrated but cointegrated regressors 
(subcointegration), such that 
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where, under cointegration, only the last term is asymptotically negligible, that is 

2 2 2

1/ 2

, , ,
ˆˆ ˆ ( ) ( )t t m k t k n k pu u O n−′= − − +u β ββ ββ ββ β , determining very different limiting distributional 

results for the scaled partial sum process 1/ 2 ˆ
tn U−  and for the rest of elements composing 

the fluctuation-type statistics such as the kernel-based estimator of the long-run 

variance, 2

,
ˆ ( )u n nqω  
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Appendix B. 
 

Table B.1. Quantiles of the null distribution under cointegration of the modified 

CUSUM of squares test statistic, ˆCSn . Number of integrated regressors, k. 

 Case of no deterministic component  Case of inclusion of a constant term (m = 1) 
Sample size, n k = 1 2 3 4 5  k = 1 2 3 4 5 

n = 100 0.01 0.3962 0.4003 0.4001 0.3983 0.3910  0.3994 0.3996 0.3973 0.3987 0.3974 

 0.025 0.4334 0.4371 0.4322 0.4325 0.4340  0.4360 0.4353 0.4354 0.4370 0.4367 
 0.05 0.4676 0.4713 0.4710 0.4728 0.4728  0.4731 0.4730 0.4741 0.4740 0.4751 

 0.10 0.5214 0.5214 0.5227 0.5250 0.5273  0.5222 0.5244 0.5251 0.5251 0.5257 

 0.25 0.6236 0.6241 0.6267 0.6303 0.6311  0.6254 0.6271 0.6284 0.6294 0.6310 
 0.50 0.7757 0.7794 0.7779 0.7812 0.7827  0.7735 0.7745 0.7767 0.7779 0.7807 

 0.75 0.9621 0.9643 0.9647 0.9723 0.9742  0.9631 0.9648 0.9633 0.9683 0.9715 

 0.90 1.1524 1.1554 1.1601 1.1639 1.1669  1.1579 1.1583 1.1605 1.1633 1.1667 
 0.95 1.2856 1.2882 1.2848 1.2883 1.2870  1.2714 1.2783 1.2783 1.2835 1.2869 

 0.975 1.3803 1.3991 1.3909 1.3913 1.3970  1.3909 1.3953 1.4039 1.4017 1.4016 

 0.99 1.5086 1.5092 1.5142 1.5171 1.5174  1.5239 1.5238 1.5241 1.5309 1.5253 

n = 200 0.01 0.4102 0.4068 0.4074 0.4084 0.4100  0.4420 0.4009 0.4020 0.4024 0.4004 

 0.025 0.4465 0.4474 0.4490 0.4495 0.4466  0.4420 0.4406 0.4430 0.4429 0.4419 

 0.05 0.4886 0.4876 0.4864 0.4871 0.4860  0.4815 0.4808 0.4818 0.4815 0.4820 
 0.10 0.5358 0.5353 0.5376 0.5364 0.5378  0.5331 0.5340 0.5336 0.5332 0.5353 

 0.25 0.6390 0.6398 0.6396 0.6389 0.6411  0.6365 0.6369 0.6384 0.6402 0.6393 

 0.50 0.7858 0.7873 0.7888 0.7883 0.7888  0.7864 0.7871 0.7874 0.7878 0.7888 
 0.75 0.9731 0.9734 0.9738 0.9767 0.9775  0.9737 0.9733 0.9729 0.9738 0.9745 

 0.90 1.1719 1.1738 1.1746 1.1759 1.1784  1.1711 1.1722 1.1766 1.1757 1.1764 

 0.95 1.3029 1.3062 1.3072 1.3050 1.3073  1.2973 1.2996 1.3041 1.3035 1.3067 
 0.975 1.4134 1.4112 1.4137 1.4168 1.4157  1.4183 1.4190 1.4224 1.4286 1.4317 

 0.99 1.5523 1.5498 1.5527 1.5573 1.5568  1.5703 1.5739 1.5772 1.5808 1.5859 

n = 500 0.01 0.4139 0.4146 0.4150 0.4147 0.4141  0.4167 0.4173 0.4172 0.4184 0.4191 

 0.025 0.4515 0.4522 0.4536 0.4537 0.4543  0.4569 0.4565 0.4571 0.4590 0.4582 
 0.05 0.4924 0.4922 0.4936 0.4938 0.4919  0.4956 0.4958 0.4952 0.4967 0.4972 

 0.10 0.5454 0.5444 0.5437 0.5442 0.5447  0.5488 0.5481 0.5499 0.5470 0.5483 

 0.25 0.6475 0.6479 0.6477 0.6481 0.6478  0.6497 0.6505 0.6508 0.6520 0.6520 
 0.50 0.7980 0.7981 0.7977 0.7987 0.8003  0.7992 0.7993 0.8005 0.8011 0.8014 

 0.75 0.9884 0.9900 0.9910 0.9899 0.9919  0.9898 0.9904 0.9899 0.9895 0.9887 

 0.90 1.1896 1.1903 1.1910 1.1907 1.1894  1.1838 1.1845 1.1858 1.1876 1.1891 
 0.95 1.3204 1.3193 1.3202 1.3225 1.3218  1.3118 1.3116 1.3104 1.3137 1.3131 

 0.975 1.4353 1.4366 1.4371 1.4359 1.4368  1.4243 1.4254 1.4272 1.4264 1.4278 

 0.99 1.5778 1.5811 1.5787 1.5912 1.5888  1.5749 1.5767 1.5779 1.5738 1.5788 

n = 1000 0.01 0.4230 0.4238 0.4208 0.4225 0.4223  0.4229 0.4239 0.4235 0.4223 0.4235 

 0.025 0.4600 0.4606 0.4597 0.4610 0.4602  0.4609 0.4609 0.4614 0.4620 0.4626 

 0.05 0.4980 0.4973 0.4982 0.4987 0.4985  0.5012 0.5021 0.5021 0.5036 0.5035 
 0.10 0.5494 0.5501 0.5494 0.5499 0.5489  0.5534 0.5533 0.5533 0.5520 0.5531 

 0.25 0.6510 0.6516 0.6522 0.6523 0.6529  0.6551 0.6567 0.6570 0.6566 0.6570 

 0.50 0.8038 0.8042 0.8037 0.8044 0.8042  0.8077 0.8078 0.8071 0.8079 0.8069 
 0.75 0.9955 0.9950 0.9958 0.9961 0.9965  0.9952 0.9958 0.9962 0.9964 0.9966 

 0.90 1.2007 1.2003 1.1981 1.2011 1.2012  1.2017 1.2033 1.2027 1.2030 1.2042 

 0.95 1.3327 1.3328 1.3302 1.3306 1.3312  1.3364 1.3375 1.3385 1.3386 1.3382 
 0.975 1.4501 1.4474 1.4462 1.4461 1.4459  1.4549 1.4556 1.4554 1.4575 1.4569 

 0.99 1.6045 1.5999 1.5976 1.6040 1.6102  1.6009 1.6026 1.5996 1.6023 1.5992 

n = 2000 0.01 0.4260 0.4263 0.4263 0.4255 0.4250  0.4258 0.4289 0.4286 0.4285 0.4296 
 0.025 0.4633 0.4632 0.4615 0.4626 0.4621  0.4679 0.4684 0.4682 0.4681 0.4683 

 0.05 0.5029 0.5034 0.5028 0.5027 0.5027  0.5055 0.5058 0.5055 0.5056 0.5067 

 0.10 0.5566 0.5555 0.5551 0.5562 0.5551  0.5548 0.5543 0.5542 0.5550 0.5546 
 0.25 0.6621 0.6624 0.6617 0.6625 0.6620  0.6605 0.6603 0.6599 0.6601 0.6606 

 0.50 0.8144 0.8150 0.8151 0.8146 0.8153  0.8133 0.8133 0.8134 0.8141 0.8138 

 0.75 1.0040 1.0036 1.0038 1.0037 1.0031  1.0076 1.0069 1.0067 1.0068 1.0067 
 0.90 1.2070 1.2067 1.2071 1.2054 1.2061  1.2158 1.2154 1.2159 1.2144 1.2145 

 0.95 1.3440 1.3458 1.3467 1.3448 1.3445  1.3498 1.3496 1.3510 1.3526 1.3508 

 0.975 1.4695 1.4653 1.4631 1.4659 1.4669  1.4710 1.4719 1.4728 1.4724 1.4722 
 0.99 1.6053 1.6048 1.6024 1.6095 1.6108  1.6142 1.6157 1.6184 1.6174 1.6173 

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the limiting 
random variables based on n steps. 
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Table B.2. Quantiles of the null distribution under cointegration of the modified 

CUSUM of squares test statistic, ˆCSn . Number of integrated regressors, k. 

 Case of inclusion of a constant term and a linear trend (m = 2) 
Sample size, n k = 1 2 3 4 5 

n = 100 0.01 0.4003 0.4035 0.4029 0.4020 0.4014 

0.025 0.4358 0.4399 0.4418 0.4411 0.4422 
0.05 0.4757 0.4771 0.4793 0.4781 0.4788 

0.10 0.5259 0.5273 0.5272 0.5285 0.5303 

0.25 0.6287 0.6305 0.6311 0.6317 0.6336 
0.50 0.7757 0.7748 0.7777 0.7789 0.7808 

0.75 0.9587 0.9614 0.9636 0.9661 0.9661 

0.90 1.1470 1.1493 1.1506 1.1489 1.1536 
0.95 1.2720 1.2735 1.2725 1.2761 1.2752 

0.975 1.3747 1.3715 1.3751 1.3791 1.3856 

0.99 1.5084 1.5075 1.5096 1.5137 1.5205 

n = 200 0.01 0.4056 0.4054 0.4053 0.4073 0.4105 

0.025 0.4440 0.4424 0.4428 0.4456 0.4453 

0.05 0.4837 0.4828 0.4841 0.4847 0.4842 
0.10 0.5361 0.5362 0.5368 0.5376 0.5385 

0.25 0.6382 0.6382 0.6384 0.6401 0.6421 

0.50 0.7857 0.7854 0.7877 0.7884 0.7884 
0.75 0.9734 0.9743 0.9748 0.9776 0.9797 

0.90 1.1714 1.1712 1.1720 1.1752 1.1761 

0.95 1.3025 1.3009 1.3009 1.3025 1.3011 
0.975 1.4158 1.4158 1.4148 1.4161 1.4194 

0.99 1.5325 1.5414 1.5529 1.5558 1.5548 

n = 500 0.01 0.4158 0.4178 0.4187 0.4163 0.4161 

0.025 0.4554 0.4558 0.4579 0.4554 0.4561 
0.05 0.4934 0.4938 0.4939 0.4941 0.4957 

0.10 0.5434 0.5441 0.5448 0.5446 0.5447 

0.25 0.6496 0.6498 0.6503 0.6502 0.6497 
0.50 0.8009 0.8015 0.8017 0.8016 0.8027 

0.75 0.9886 0.9889 0.9881 0.9899 0.9913 

0.90 1.1947 1.1946 1.1948 1.1952 1.1957 
0.95 1.3259 1.3273 1.3279 1.3274 1.3278 

0.975 1.4469 1.4402 1.4439 1.4446 1.4451 

0.99 1.6004 1.6008 1.5983 1.5987 1.6025 

n = 1000 0.01 0.4190 0.4195 0.4184 0.4199 0.4189 

0.025 0.4580 0.4586 0.4582 0.4587 0.4584 

0.05 0.4973 0.4968 0.4971 0.4982 0.4987 
0.10 0.5499 0.5505 0.5491 0.5488 0.5495 

0.25 0.6559 0.6559 0.6549 0.6555 0.6561 

0.50 0.8060 0.8061 0.8057 0.8067 0.8059 
0.75 0.9991 0.9998 1.0005 1.0007 1.0001 

0.90 1.2034 1.2045 1.2047 1.2035 1.2048 

0.95 1.3385 1.3395 1.3387 1.3416 1.3411 
0.975 1.4592 1.4592 1.4580 1.4599 1.4615 

0.99 1.5894 1.5890 1.5906 1.5916 1.5888 

n = 2000 0.01 0.4243 0.4241 0.4238 0.4253 0.4251 
0.025 0.4654 0.4646 0.4644 0.4642 0.4636 

0.05 0.5034 0.5036 0.5033 0.5034 0.5046 

0.10 0.5527 0.5534 0.5529 0.5533 0.5531 
0.25 0.6588 0.6590 0.6592 0.6602 0.6595 

0.50 0.8129 0.8128 0.8129 0.8129 0.8128 

0.75 1.0047 1.0046 1.0048 1.0041 1.0044 
0.90 1.2106 1.2120 1.2114 1.2117 1.2103 

0.95 1.3433 1.3449 1.3432 1.3427 1.3429 

0.975 1.4718 1.4732 1.4716 1.4689 1.4706 
0.99 1.6245 1.6227 1.6251 1.6189 1.6218 

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the 
limiting random variables based on n steps. 
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Table B.3. Quantiles of the null distribution under cointegration of the modified 

CUSUM of squares test statistic, ˆCS ( )n m q+  

 Order of the polynomial trend function , ,( , )t m t q t
′ ′ ′=τ τ ττ τ ττ τ ττ τ τ  

Sample size, n m + q = 1 2 3 4 5 

n = 100 0.01 0.3497 0.3306 0.2958 0.2734 0.2558 

0.025 0.3787 0.3597 0.3189 0.2922 0.2736 

0.05 0.4074 0.3856 0.3398 0.3112 0.2895 
0.10 0.4436 0.4177 0.3674 0.3329 0.3096 

0.25 0.5146 0.4832 0.4179 0.3774 0.3464 

0.50 0.6118 0.5729 0.4874 0.4323 0.3944 
0.75 0.7232 0.6826 0.5678 0.4983 0.4503 

0.90 0.8325 0.7982 0.6518 0.5647 0.5074 

0.95 0.9040 0.8761 0.7064 0.6116 0.5445 
0.975 0.9654 0.9469 0.7601 0.6490 0.5796 

0.99 1.0384 1.0358 0.8229 0.7003 0.6172 

n = 200 0.01 0.3642 0.3416 0.3085 0.2867 0.2701 
0.025 0.3944 0.3730 0.3328 0.3055 0.2875 

0.05 0.4222 0.4000 0.3544 0.3248 0.3025 

0.10 0.4601 0.4338 0.3817 0.3482 0.3233 
0.25 0.5325 0.4994 0.4346 0.3926 0.3610 

0.50 0.6275 0.5905 0.5025 0.4495 0.4109 

0.75 0.7392 0.7007 0.5866 0.5169 0.4691 
0.90 0.8495 0.8200 0.6733 0.5876 0.5292 

0.95 0.9191 0.8949 0.7305 0.6324 0.5675 

0.975 0.9845 0.9677 0.7841 0.6756 0.6022 
0.99 1.0630 1.0613 0.8519 0.7326 0.6469 

n = 500 0.01 0.3728 0.3554 0.3220 0.2995 0.2835 

0.025 0.4047 0.3849 0.3452 0.3189 0.3003 

0.05 0.4344 0.4115 0.3690 0.3387 0.3168 
0.10 0.4723 0.4454 0.3961 0.3624 0.3370 

0.25 0.5431 0.5139 0.4479 0.4069 0.3759 

0.50 0.6413 0.6050 0.5183 0.4643 0.4278 
0.75 0.7532 0.7164 0.6021 0.5334 0.4866 

0.90 0.8645 0.8330 0.6892 0.6034 0.5477 

0.95 0.9363 0.9092 0.7495 0.6516 0.5893 
0.975 0.9989 0.9782 0.8041 0.6970 0.6250 

0.99 1.0803 1.0739 0.8686 0.7497 0.6743 

n = 1000 0.01 0.3813 0.3643 0.3302 0.3057 0.2899 
0.025 0.4122 0.3935 0.3539 0.3261 0.3080 

0.05 0.4394 0.4203 0.3752 0.3458 0.3242 

0.10 0.4776 0.4542 0.4035 0.3688 0.3444 
0.25 0.5514 0.5208 0.4556 0.4128 0.3831 

0.50 0.6491 0.6150 0.5277 0.4713 0.4350 

0.75 0.7648 0.7279 0.6120 0.5421 0.4951 
0.90 0.8758 0.8493 0.6996 0.6133 0.5583 

0.95 0.9446 0.9253 0.7614 0.6649 0.5990 

0.975 1.0113 1.0022 0.8191 0.7089 0.6372 
0.99 1.0843 1.0926 0.8834 0.7652 0.6877 

n = 2000 0.01 0.3864 0.3688 0.3383 0.3135 0.2959 

0.025 0.4175 0.3976 0.3598 0.3324 0.3132 
0.05 0.4477 0.4247 0.3803 0.3517 0.3299 

0.10 0.4851 0.4582 0.4085 0.3751 0.3501 

0.25 0.5584 0.5273 0.4615 0.4209 0.3884 
0.50 0.6546 0.6197 0.5329 0.4798 0.4409 

0.75 0.7674 0.7315 0.6182 0.5484 0.4998 

0.90 0.8790 0.8526 0.7053 0.6206 0.5641 
0.95 0.9520 0.9308 0.7653 0.6688 0.6046 

0.975 1.0171 1.0111 0.8215 0.7119 0.6446 

0.99 1.0974 1.1057 0.8895 0.7644 0.6909 

Note. Percentiles computed by generating 20000 draws from the discrete time approximation (direct simulation) to the 

limiting random variables based on n steps. 
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Appendix C. Finite sample empirical size. 

 

Table C.1. Finite sample-adjusted empirical size at 5% nominal level. Case of no 

deterministic component, ˆCS ( )n k , Bartlett kernel and bandwidth 1/ 4( ) [ ( /100) ]nq d d n= . 

φ = 0.50, σkυ = 0.75 
 Number of integrated regressors, k 

Sample size, n d k = 1 2 3 4 5 

n = 100 α = 0.00 0 0.0516 0.0506 0.0414 0.0412 0.0378 

  2 0.0380 0.0388 0.0354 0.0298 0.0276 

  4 0.0352 0.0264 0.0230 0.0212 0.0168 

  8 0.0278 0.0230 0.0158 0.0184 0.0100 

  12 0.0210 0.0200 0.0172 0.0146 0.0114 

 α = 0.25 0 0.0658 0.0728 0.0616 0.0512 0.0454 

  2 0.0472 0.0390 0.0338 0.0290 0.0262 

  4 0.0426 0.0360 0.0278 0.0258 0.0214 

  8 0.0310 0.0228 0.0166 0.0132 0.0092 

  12 0.0158 0.0104 0.0126 0.0076 0.0086 

 α = 0.50 0 0.1420 0.1462 0.1218 0.1166 0.1068 

  2 0.0574 0.0564 0.0524 0.0400 0.0394 

  4 0.0422 0.0334 0.0316 0.0290 0.0248 

  8 0.0304 0.0262 0.0230 0.0162 0.0126 

  12 0.0212 0.0150 0.0124 0.0106 0.0124 

 α = 0.75 0 0.4394 0.3914 0.3476 0.3106 0.2846 

  2 0.1098 0.1034 0.0928 0.0870 0.0696 

  4 0.0586 0.0616 0.0538 0.0398 0.0314 

  8 0.0292 0.0264 0.0208 0.0144 0.0148 

  12 0.0154 0.0102 0.0090 0.0104 0.0074 

n = 200 α = 0.00 0 0.0508 0.0446 0.0452 0.0456 0.0452 

  2 0.0434 0.0420 0.0366 0.0360 0.0330 

  4 0.0466 0.0440 0.0346 0.0300 0.0298 

  8 0.0318 0.0340 0.0290 0.0278 0.0222 

  12 0.0328 0.0242 0.0248 0.0200 0.0174 

 α = 0.25 0 0.0698 0.0666 0.0642 0.0670 0.0632 

  2 0.0460 0.0464 0.0410 0.0412 0.0388 

  4 0.0408 0.0400 0.0384 0.0334 0.0276 

  8 0.0420 0.0306 0.0326 0.0276 0.0208 

  12 0.0300 0.0264 0.0250 0.0204 0.0158 

 α = 0.50 0 0.1676 0.1726 0.1620 0.1582 0.1442 

  2 0.0798 0.0790 0.0668 0.0702 0.0648 

  4 0.0648 0.0546 0.0516 0.0462 0.0442 

  8 0.0370 0.0356 0.0376 0.0342 0.0268 

  12 0.0376 0.0294 0.0206 0.0178 0.0180 

 α = 0.75 0 0.4766 0.4636 0.4388 0.4130 0.3880 

  2 0.1484 0.1506 0.1358 0.1264 0.1172 

  4 0.0902 0.0770 0.0764 0.0736 0.0680 

  8 0.0412 0.0414 0.0366 0.0330 0.0296 

  12 0.0256 0.0268 0.0276 0.0200 0.0140 
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Table C.1. Finite sample-adjusted empirical size at 5% nominal level. Case of no 

deterministic component, ˆCS ( )n k , Bartlett kernel and bandwidth 1/ 4( ) [ ( /100) ]nq d d n= . 

φ = 0.50, σkυ = 0.75 (continuation) 

 Number of integrated regressors, k 

Sample size, n d k = 1 2 3 4 5 

n = 500 α = 0.00 0 0.0434 0.0426 0.0424 0.0450 0.0486 

  2 0.0448 0.0462 0.0432 0.0420 0.0366 

  4 0.0466 0.0392 0.0394 0.0386 0.0382 

  8 0.0482 0.0388 0.0388 0.0400 0.0362 

  12 0.0402 0.0366 0.0318 0.0292 0.0250 

 α = 0.25 0 0.0730 0.0714 0.0740 0.0750 0.0660 

  2 0.0518 0.0530 0.0514 0.0488 0.0478 

  4 0.0478 0.0490 0.0450 0.0456 0.0482 

  8 0.0370 0.0368 0.0378 0.0354 0.0338 

  12 0.0372 0.0346 0.0352 0.0302 0.0294 

 α = 0.50 0 0.1828 0.1878 0.1814 0.1794 0.1818 

  2 0.0848 0.0882 0.0846 0.0826 0.0818 

  4 0.0612 0.0628 0.0662 0.0592 0.0596 

  8 0.0408 0.0422 0.0394 0.0340 0.0330 

  12 0.0380 0.0360 0.0328 0.0296 0.0256 

 α = 0.75 0 0.5758 0.5450 0.5546 0.5444 0.5282 

  2 0.1924 0.2010 0.1840 0.1862 0.1780 

  4 0.0862 0.0814 0.0874 0.0794 0.0752 

  8 0.0596 0.0598 0.0508 0.0522 0.0488 

  12 0.0418 0.0436 0.0394 0.0358 0.0382 

n = 1000 α = 0.00 0 0.0572 0.0540 0.0468 0.0436 0.0500 

  2 0.0488 0.0546 0.0522 0.0516 0.0498 

  4 0.0500 0.0512 0.0466 0.0498 0.0428 

  8 0.0422 0.0422 0.0400 0.0452 0.0404 

  12 0.0408 0.0432 0.0356 0.0368 0.0322 

 α = 0.25 0 0.0754 0.0756 0.0712 0.0708 0.0696 

  2 0.0612 0.0618 0.0628 0.0602 0.0538 

  4 0.0418 0.0414 0.0442 0.0404 0.0434 

  8 0.0436 0.0462 0.0416 0.0404 0.0394 

  12 0.0432 0.0320 0.0390 0.0328 0.0298 

 α = 0.50 0 0.1968 0.1848 0.1980 0.1832 0.1782 

  2 0.0690 0.0652 0.0646 0.0678 0.0678 

  4 0.0382 0.0422 0.0350 0.0330 0.0296 

  8 0.0480 0.0490 0.0530 0.0480 0.0472 

  12 0.0416 0.0384 0.0404 0.0356 0.0350 

 α = 0.75 0 0.5872 0.5898 0.5938 0.5784 0.5820 

  2 0.1640 0.1582 0.1544 0.1458 0.1452 

  4 0.0812 0.0742 0.0742 0.0748 0.0712 

  8 0.0588 0.0506 0.0482 0.0456 0.0426 

  12 0.0522 0.0532 0.0472 0.0402 0.0390 

Notes. (a) This design corresponds to the situation of contemporaneous endogeneity between 

integrated regressors and error correction terms when σkυ > 0 and α = 0, irrespective of the 
value of φ, that is 

1 , 1 ,
(1/ ) [ ] (1/ ) [ ]

n n

t k t t t k t t
n E u n E= =∑ = ∑ υη ηη ηη ηη η

, ,
[ ]

k t t k
E υ= υ =w σσσσ . (b) All the results 

were computed by generating 5000 draws from the discrete time approximation (direct 

simulation) to the limiting random variables based on n steps. 

 

 

 

 


