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Abstract

This paper studies the existence of changes in the transmission mech-

anism of monetary policy on 110 US monthly macroeconomics variables

during the Great Recession. Impulse Response Functions for this large

dataset are estimated for different states of the economy. I combine

three different techniques to deal with the dimensionality problems which

emerge from an estimation procedure of this magnitude: (i) factor de-

composition, (ii) an identification strategy independent of the number of

variables included in the dataset and (iii) a blockwise optimization algo-

rithm for the correct selection of the Bayesian priors. Results show the

presence of structural breaks in the forces driving the economy as well

as qualitative differences in the reaction of all the variables to monetary

policy decisions depending on these changes.
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1 Introduction

In the last years, since the beginning of the Great Recession in 2008, the Fed-

eral Reserve has implemented a set of policy measures in order to stimulate the

growth of the US economy. Offi cial interest rates are currently at their lower

bound and they will be eventually raised by policymakers. On the other hand,

the twenty years previous to the collapse of the financial system were charac-

terized by long expansions, two brief recessions, moderate interest rates and the

lowest volatility since the middle of the 20th century. After the magnitude and

impact of the financial crisis in 2008, macroeconomic transmission mechanisms

may have been affected. Therefore, monetary policy decisions entail doubts

about the size, effectiveness and duration of the consequences of ending the

monetary stimulus on macroeconomic variables. The response of real economy

could be similar to the observed in the period previous to the Great Recession,

or, on the contrary, it may overreact after this stage of great volatility.

This paper tries to solve this issue identifying structural changes in the US

economy during the Great Recession based on the dynamics of a large dataset

of 110 monthly macroeconomics series during the last forty years. I find distin-

guishable reactions to monetary policy shocks in the different structural phases

detected for all the variables included in the dataset.

Conventionally, monetary policy analysis has been carried out by imposing

plausible restrictions in Vector Autoregressive (VAR) innovations for the iden-

tification of the structural shock of interest. Thus, it is assumed that the inno-

vations of the VAR span the space of the structural shocks. However, if there

is a variable containing information related with the structural shock which is

not included in the model its innovations will be biased due to the omission

of this relevant variable. Given that the number of parameters estimated in a

VAR increases as the square of the number of time series included in the model,

this approach is not able to deal with large amounts of information and, con-

sequently, the omission of relevant information becomes a plausible problem.

In fact, this technical limitation has been argued as explanation for some of

the results provided by the structural VAR literature which are not conceal-

able with economic theory: raises of prices as consequence of a contractionary

monetary shock, known as the Price Puzzle (Sims, 1992) and monetary policy

changes which only affect exchanges rates with a considerable delay instead of

contemporaneously, the Delayed Overshooting Puzzle (Eichenbaum and Evans,

1995).
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More recently, factor decomposition has been included in the structural

analysis literature in order to avoid the dimensionality problems of VARs and

reconcile theoretical predictions with empirical results. Under the assumption

that the whole economy is driven by a reduced set of latent forces, large datasets

can be summarized in a small number of factors which explain the most of the

co-movement in the macroeconomic data. Due to its considerable smaller cross

sectional dimension with respect to the observed data, factors can be included in

economic analysis allowing for parsimonious specifications. The advantages of

this approach at macroeconomic forecasting with respect to other models have

been widely shown1 .

Bernanke, Boivin and Eliasz (2005) use this technique to combine a set of

factors with federal funds rate in a VAR for the identification of monetary pol-

icy shocks. The inclusion of higher level of information in this model, known

as Factor Augmented VAR (FAVAR), solves the Price Puzzle predicting rea-

sonable responses in prices to monetary shocks. Moreover, this approach allows

the estimation of the responses to monetary shocks in the large set of variables

used for the estimation of the latent factors. Under its identification scheme,

factors are computed as linear combination of "slow moving variables", those

which are largely predetermined as of the current period, are assumed to be

non-affected by federal funds rate. Therefore, the number of identification re-

strictions depends on the number of factors obtained from the data. Thus, a

second dimensionality problem arises here. If the researcher choses a large num-

ber of underlying factors to closely mirror the observable dataset, the number

of necessary restrictions will be larger as well. Given that the factors are statis-

tical tools with no clear economic interpretation, it is diffi cult to find reasonable

criteria to impose identification restrictions describing the relationship between

federal funds rate and a relatively large set of estimated factors.

Gambetti and Forni (2010) overcome this limitation by using a Dynamic

Factor Model (DFM) approach for structural analysis. These models are based

on two sets of equations. A first group describing the contemporaneous rela-

tionship between observed data and the static factors, as those estimated in the

FAVAR, and a second set of equations specifying the dynamic of the static fac-

tors which are driven by the dynamic factors. Given that the number of dynamic

factors can be lower than the total of static factors, the quantity of static factors

representing the dataset can grows without affects the amount of necessary iden-

1See Stock and Watson (2002, 2002b), Giannone, Reichlin and Small (2008) or Rünstler
et al (2009) for particular examples.
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tification restrictions imposed on the number of dynamic factors2 . Moreover,

under the identification strategy of Gambetti and Forni (2010), restrictions are

not imposed in the Impulse Response Functions (IRF) of the factors, which are

posteriorly linked with the observable data. Instead, restrictions are directly

applied into the IRF of the observed variables to the dynamic shocks. This al-

lows us to estimate the factors for the whole dataset with no need of distinguish

between slow and fast moving variables and, consequently, none of the available

information is discarded. This framework provides reasonable IRF where Price

Puzzle and Delayed Overshooting Puzzle disappear.

Despite the advantages of factor decomposition for structural analysis, pre-

vious literature assumes structural stability along time in the relation of the

factors with the observed data and in the parameters of the factor´s dynamic.

However, this paper shows the existence of instability in a factor model applied

to the US economy including data corresponding to the Great Recession.

Banerjee, Marcellino, and Masten (2008) perform a Monte Carlo experiment

to explore the consequences of changes in the model parameters on the forecast

performance of the factors. They find that the effects of instability in the factors

loadings fade away as long as temporal and cross sectional dimensions of the

panel is large while, on the other hand, discrete changes in the law of motion of

the factors may affect the forecast properties of the models. Stock and Watson

(2009) study the effects of structural instability in the US between 1959 and 2006

using subsamples corresponding with Great Moderation period (McConnell and

Perez Quiros, 2000). Their conclusions are consistent with those provided by

Banerjee, Marcellino and Masten (2008): despite the presence of some instability

in the factors loadings, most accurate results are based on factors estimated with

the full sample in combination with forecast equation for each subsample. As

they point out, this striking result may be due to the presence of instability in

law of motion of the factors although "additional analysis is required to confirm

this conjecture".

This paper takes these findings as starting point and introduces this conjec-

ture into a structural analysis context by assuming that i) the behavior of the

whole economy can be explained as a stable function of unobservable forces, the

factors, and ii) the interaction between those forces evolves differently over time.

The study of this particular case of instability, within other considered in Stock

2Bernanke, Boivin and Eliasz (2005) estimate 3 or 5 static factors from a dataset of 120
variables while Gambetti and Forni (2010) compute 16 static factors to summarize the behavior
of a version of the same dataset containing 112 variables.
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and Watson (2009), presents two important advantages. First, it permits the

existence of several breaks during large periods of time instead of just one. And

second, it allows the identification of structural breaks in real time without us-

ing ex-post information to assume when these changes take place. This feature

is included into the econometric framework using a model where the dynamic

of the factors is governed by a Markov Switching (MS) process. Accordingly

with this specification, and contrary to previous linear models, relations in the

economy change as a function of a latent variable which captures regime shifts

across time.

It is important to notice that a third dimensionality issue appears here.

Given that the dynamic of the factors differs from one regime to another, the

number of parameters to be estimated increases proportionally with the number

of regimes. In order to deal with such a problem, this paper follows the esti-

mation strategy proposed by Sims, Waggoner and Zha (2008) for large multiple

equation MS models. Traditional maximum likelihood estimation procedures

are not reliable for sets of parameters too large with respect to the sample size.

To overcome this limitation, they suggest a computationally tractable proce-

dure based on Gibbs sampling where prior Bayesian information is included for

the estimation of the posterior distribution of the parameters. Due to the com-

plexity of large multivariate MS models, the posterior distribution presents non

Gaussian shapes. For this reason, it becomes crucial to choose starting values

for the Gibbs sampler close to the most likely scenario in order to avoid series

of posterior draws getting stuck in a low probability region. This is done by

implementing a blockwise optimization algorithm for the selection of the start-

ing values. The whole set of parameters to be estimated is partitioned into

several blocks. Then, a routine for maximization of the posterior distribution is

applied to one of these blocks while keeping the value of the other blocks fixed.

This step is iterated from one block to the next until convergence is achieved.

This method increases likelihood more effi ciently than the application of an

optimization routine to whole set of parameters when it is considerably large.

I update the dataset generally used in the literature for the estimation of

the factor of the US economy by including the period corresponding to the

Great Recession. Results show how the inclusion of this data yields important

changes in the amplitude of the linear IRF (with no regimes changes) in all

the variables with respect to those estimated with data previous to 2008. Once

the MS model is introduced into the empirical analysis two different regimes

are identified. IRF belonging to a state characterized by low volatility and
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expansion periods are very similar to those computed linearly with data previous

to the Great Recession. However, the shape and magnitude of the IRF linearly

computed with the dataset until 2014 are clearly distorted by the form IRF

corresponding to a second state corresponding to periods of high volatility and

recessions. These facts stress the important effect of the data corresponding with

the last years in the results and the necessity of an identification of separated

monetary transmission mechanism taking into account the presence of structural

instability.

The rest of the paper is organized as follows. Next section describes the

model. Section 3 contains the empirical analysis including data description,

estimation process and results. Section 4 concludes.

2 Model and Identification

Consider xit as a macroeconomic series expressed on a monthly basis where

i = 1, . . . , n. These n series composing the whole economy may be expressed

as a function of a set of r latent variable f1t , . . . , f
r
t , the static factors, and an

idiosyncratic component εit only associated with xit or with a set of variables

belonging to the same macroeconomic category:

xit = λ1i f
1
t + . . .+ λri f

r
t + εit (1)

Given that the static factors affects the n series, equation (1) is rewritten as

Xt = ΛFt + ξt (2)

where Xt = x1t, ..., xnt, Ft = f1t , . . . , f
r
t , with 1 ≤ r << n, and Λi =

λ1i , ..., λ
r
i .

The law of motion of the static factors, which are only contemporaneously re-

lated with the observable series, follows a different autoregressive process across

time depending of the value of an unoservable Markov chain state variable

st = 1, .., h. Thus,

Ft = A1stFt−1 +A2stFt−2 + ...+ApstFt−p + ηt (3)

Finally, the ηt innovations of equation (3) are driven by the set of q dynamics

factors ut loaded by the full rank r × q matrix Bst which also depends on the
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state variable

ηt = Bstut (4)

The number of the static factors, r, is bigger or equal than the number of

dynamics factors, q, because Ft consits of current and lagged values of the of

the dynamic factors ut. This is known as the static representation of the DFM3 .

Thus, xit is a function of the dynamic factors and its corresponding idyos-

incratic component:

xit = Λi(I −A1stL−A2stL2 − ...−ApstLp)Bstut + εit (5)

Notice that, accordingly with equation (5), any variable of interest to the

researcher within the large set of available information for a particular econ-

omy, eventually depends on a reduced set of q dynamic factors for a given state

of the economy. Let us consider the dynamic factors as structural shocks and

Λi(I−A1stL−A2stL2− ...−ApstLp)Bst as the IRF which measure the reaction
of a given variable xit to a marginal change in ut. Based on this representation

of the dynamic of the economy, Gambetti and Forni (2010) define a useful strat-

egy for the identification of the monetary shocks equivalent to those applied in

structural VAR literature. Structural shocks in equation (5) are unidentified

since they do not meet any requirement based economic theory. However, let us

suppose that economic theory supports a set of restrictions in the contemporane-

ous or short term responses of a reduced set of variables to monetary structural

shocks and that these timing restrictions can be summarized into an orthogonal

matrix H. In that case, identified structural shocks are found by premultipliy-

ing ut by H and its corresponding IRF are identified postmultiplying them by

H ′. If the number of variables supporting theory restrictions coincides with the

number of dynamic factors, H may be found under a standard triangularization

scheme. As highlighted by Gambetti and Forni (2010), the number of identifi-

cation restrictions can be larger than the number of dynamic shocks. However,

this paper follows exactly their identification procedure to help comparison of

the results.
3See Bai and Ng (2007) for further description.
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3 Empirics

3.1 Data

Empirical applications of DFM for the U.S. economy are generally based on

similar versions of the dataset used by Stock & Watson (1999). Remarkable

examples are, Bernanke, Boivin and Eliasz (2005), Boivin and Ng (2006) or

Stock & Watson (2012) among others. For the comparability of the findings

with previous results, this dataset is also used here. To be precise, the dataset

consists in 110 monthly US series which may be classified into the following

categories: real output and income, employment and hours, housing starts and

sales, inventories and orders, money and credit, interest rates, exchange rates,

price indexes and stock prices. This panel exactly corresponds with the version

of the Stock & Watson (1999) dataset used by Gambetti and Forni (2010)4 .

The sample starts in April of 1973 in order to avoid the fixed exchange rate and

is updated to November of 2013 to include data corresponding with The Great

Recession. Data transformation is carried out in line with previous FAVAR and

structural DFM literature.

3.2 Estimation under Structural Instability

As mentioned in the previous section, static factors are not observable by the

researcher. However, given that macroeconomic data are very collinear, Princi-

pal Component Analysis (PCA) may be applied for the estimation of a reduced

set of latent series capturing the bulk of their co-movements. Let be X the

t × n matrix of data, static factors are computed by post multiplying X by a

n × r matrix Λ, containing in its columns the r eigenvectors associated with

the r biggest eigenvalues of variance covariance matrix of X. This gives us a

summary of the original data in terms of the amount of eigenvectors chosen by

the researcher. Obviously, the bigger the number of eigenvectors the lower the

loss of information caused by this reduction dimension technique. I apply the

criteria proposed by Bai and Ng (2002) for the selection of the optimal number

of static factors, r. These criteria, generally used in the factors model literature,

are also implemented in Gambetti and Forni (2010). In particular, they chose

ICp2 criterion within the group of specifications proposed by Bai and Ng (2002)

4The Index of Help-Wanted Advertising in Newspaper and its ratio with respect to employ-
ment were skipped because more recently they provide poor information about labor market
conditions .
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which points out 16 as the optimal amount of factors. Nevertheless, once their

sample set is updated including data corresponding with the Great Recession,

all the six versions of IC and PC suggest a value of r equal to 25.

Due to the properties PCA dimension reduction technique, the relation be-

tween the latent factors and the observed data is assumed to be linear and

stable along the analyzed period. Accordingly with Banerjee, Marcellino, and

Masten (2008) and Stock and Watson (2009), the static factors can be correctly

estimated by PCA even under structural instability as long as the temporal and

cross sectional dimensions of the panel are large. The results of Banerjee, Mar-

cellino, and Masten (2008) are based on Monte Carlo simulations for datasets of

50 series and 150 observations which are considerably smaller than the dataset

used here. Alternatively, Stock and Watson (2009) estimate a set of factors us-

ing a whole panel US data between 1959 and 2006 and compare them with two

sets of factors based on data before and after 1984 in order to capture the struc-

tural changes which take place during the Great Moderation5 . They find that

full sample estimations of the factors span the space of the subsamples factors

by comparing their correlations. Accordingly with their results, the number of

factors summarizing the full sample containing structural shifts was larger than

the amount of factors mirroring the co-movements in the subsamples with more

stable patterns. This explains why the number of factors selected by Bai and

Ng (2002) criteria applied to the dataset of Gambetti and Forni (2010) is bigger

once the dataset contains the Great Recession.

Moreover, in order to identify the main sources of instability in the model,

Stock and Watson (2009) apply the Chow test to the regression of the observable

variables on full sample estimated factors for the pre and post 1984 periods. The

same test is applied to four periods ahead direct forecast equation where the

parameters estimated also contains the dynamic of the factor6 . Surprisingly,

they find more evidences of instability in the forecast equation than in the

factor loadings equations. Moreover, most accurate results are provided by

full sample factors in combination with forecast parameter estimated from split

samples. This suggests that the structural instability comes from the dynamic

of the factors although, as they highlight, this hypothesis requires a further

assessment.

This paper explores this scenario. In order to mirror structural breaks in

the transition of the forces driven the economy, it is assumed that the dynamic

5See Kim and Nelson (1999), McConnell and Perez Quiros (2000).
6See stock and Watson (2009), page 5 for details.
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of the factors follows a MS process. This specification presents two advantages

with respect to the analysis of Stock and Watson (2009). First, accordingly with

the MS specification, the dynamic of the factors depends on an unobservable

state variable estimated following standard procedures described below. Thus,

structural breaks may be identified based on the currently available data and no

ex-post information is required. And second, instead of consider a single break,

the state variable evolves along the temporal dimension of the dataset allowing

for multiple breaks.

The vector containing the state dependent autoregressive parameters and

error variance covariance matrices of equation (3), θ,is computed based on the

PCA estimation of the static factors. Notice that, as previously mentioned,

these parameters depend on a state variable, st, which mirrors changes in the

macroeconomics patterns along time. Due to the uncertainty about when these

changes take place, st is estimated. For this purpose, it is assumed that st
follows a first order Markov switching process characterized by the probabilities

of transition from one regime to another represented by a h×h Q matrix where
h is the number of regimes that may be taken by st. Given the big amount

of parameters that characterize a multivariate MS model, MLE may produce

unreliable results for a relatively small sample size. Instead, estimation is carried

out following the procedure proposed by Sims, Waggoner and Zha (2008) for

large multivariate MS models based on Bayesian methods. The joint posterior

density of θ, ST = (s1, s2 . . . , sT ) and Q is complicated and, even if it is known,

its integration to obtain the marginal distribution of the parameters may be

unfeasible. Alternatively, Gibbs sampler is used to calculate the moments of

the marginal posterior distributions by sampling iteratively from the conditional

posterior distributions:

i) p(ST | FT , θ,Q)

ii) p(Q | FT , ST , θ)

iii) p(θ | FT , ST , Q)

i)Under the assumption that st follows a first order Markov chain process,

it can be shown that7 :
7See Kim and Nelson (1999b) equation 9.14 for details.
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p(ST | FT , θ,Q) = p(sT | FT , θ,Q)

T−1∏
t=1

p(st | Ft, θ,Q, st+1)

where ST may be drawn recursively for t = T − 1, T − 2, . . . , 1. Inititally,

for a given initial value of the other MS parameters, Hamilton´s filter is applied

forward to estimate p(sT | FT , θ,Q). Then p(st | Ft, θ,Q, st+1) is generated
based on

p(st | Ft, θ,Q, st+1) =
p(st, st+1 | Ft, θ,Q)

p(st+1 | Ft, θ,Q)

=
p(st+1 | st, Ft, θ,Q)p(st | Ft, θ,Q)

p(st+1 | Ft, θ,Q)

=
qst+1 ,st p(st | Ft, θ,Q)

p(st+1 | Ft, θ,Q)

where qst+1 ,st is a transition probability in Q from st to st+1.

ii) Conditional on the others parameters, the transition probability matrix

Q is generated from a Dirichlet distribution D(αi,j) where 1 6 i, j 6 h. αi,j , the

hyperparameters which specified the form of the prior distribution, are chosen in

order to mirror the duration of the NBER recessions and expansions. Precisely,

the expected probability of staying in the same state is

Eqj,j =
αj,j∑
αi,j
i

=
αj,j

αj,j + (h− 1)

αi,j is set equal to 1 for every i 6= j and, for the two regimes specification,

αi,i is assumed to be equal 58.3 and αj,j to 12.16. In this way, the believes

about the duration of the regimes are reflecting the average duration in months

of the NBER recessions and expansion between 1973.4 to 2013.11 respectively.

iii)The state dependent autoregressive parameters and error covariances are

drawn as in the standard Bayesian VAR literature. A is genareted from the

multivariate normal posterior and ση from an inverse-Wishart posterior for each

regime. Priors are set as in the version of the Minnesota prior defined by Sims

and Zha (1998).

However, given the complexity of large multivariate MS models, the pos-

terior distribution can present complicate shape. In order to avoid sequences

of posterior draws stuck in a low probability region, a correct selection of the
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starting values for the Gibbs sampler becomes crucial. For this purpose, the

set of coeffi cients to be estimated is partitioned into several blocks containing

intercepts, autoregressive parameters, error covariances and the transition ma-

trix. Then, an optimization procedure is applied iteratively for each of these

blocks while holding the others constant until likelihood convergence is achieved.

This procedure has been shown to increase likelihood more effi ciently than the

application of a maximization routine to the total set of parameters.

Finally, inference about the MS parameters is carried out after 10,000 iter-

ations of the posterior sampler started with the initial values provided by the

blockwise algorithm. To guarantee convergence, the first 3,000 iterations were

discarded.

Once the estimation of the parameters in equation (3) is performed, the r×q
matrix loading the dynamic factors Bst is computed by applying again the PCA

dimension reduction technique to the regime-dependent covariance matrices of

the errors.

The scheme developed by Gambetti and Forni (2010) is reproduced for struc-

tural identification. The identification restrictions are based on: industrial pro-

duction, prices, interest rates and exchanges rates. The set of contemporaneous

IRF corresponding with these variables in this order in equation (5) are re-

stricted to be lower triangular by a Cholesky decomposition. Identification is

carried out by post multiplying the complete set of IRF in (5) by the quotient of

the Cholesky factor over the set of contemporaneous IRF of these four variables.

In this way, it is assumed that production and prices do not respond to interest

rate changes within the same month and that interest rates do not respond con-

temporaneously to exchange rates while the reaction to a monetary policy shock

for the remaining of variables included in the dataset remains unrestricted. This

identification scheme requires a number of dynamic factors equal to the number

of variables considered for identification (q = 4). Results of next section are

based on this specification in order to help its comparability with respect to the

findings provided by Gambetti and Forni (2010).

3.3 Results

At first, I assess the necessity of distinguish between macroeconomic reactions

to monetary policy shock along time. For this purposes, linear IRF for some

representative variables of the different categories of the dataset are computed

for a rolling window period. In this exercise IRF to a 0.5% increase in federal
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funds rate are estimated based on a subsample starting in April 1973 and fin-

ishing in January 2005. Then, the next monthly observation is added to the

subsample and IRF are computed again. This step is iterated until the last

available observation corresponding with November 2013 is included. For the

sake of space, the rolling window IRF for the variables used for identification,

industrial production, prices, federal funds rate and exchange rates, are depicted

in Figure 1. For these four variables, it can be seen how IRF are very similar

from one month to the next until the moment in which data corresponding with

the Great Recession is included. Starting from this period, IRF´s amplitude

jumps. Thereafter, there is a second group of IRF with a relatively stable shape

month by month until the end of the sample. This pattern is also present in all

the other rolling window IRF not presented here8 .

These preliminary results show the existence of structural instability in the

DFM and provide evidences of changes and different magnitudes in the macro-

economic transmission mechanism during the Great Recession. In consequence,

I apply the MS specification to identify the periods when these structural breaks

take place. Figure 2 presents the smoothed probabilities of a second state9 once

the estimation procedure described in the previous section is applied. In order to

characterize this state, the probabilities are presented together with the periods

classified as recessions by the National Bureau of Economic Research (shaded

areas) and business cycle volatility (dotted line) defined as in Blanchard and

Simon (2001): the standard deviation of GDP growth over the last 20 quar-

ters which is assumed to be constant along the three months of each quarter to

match monthly data. The figure shows how structural changes in the dynamic

of the factors take place during recessions and periods of high volatility (as

the inter-recessions periods between 1973 and 1983 or after the 2007 recession)

with the single exception of the early 1990s recession which occurs during a low

volatility period.

For illustrative purposes, state dependent IRF are presented with linear IRF

computed with data up to November 2007 and with a second set of linear IRF

including the Great Recession data. To save space, not all the 110 IRF are of-

fered in this paper. Instead, a set of variables considered as being representative

of the broad categories included in the dataset are depicted in figures 3 to 7.

Several conclusions emerge from this comparison:

8Results are available upon request.
9Results are based on a two state specification. The estimated probabilities for a third

state in the dynamic of the factors were negligible.
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As previously observed in the rolling window exercise, the growth in the

amplitude of the linear IRF, once data posterior to 2007 is added, is a consistent

pattern which affects all the linear IRF for all the 110 variables in the dataset.

These differences are not minor. The increases in the maximum value in the

linear IRF including updated data are around the double of those computed

with data previous to the last recession. Industrial Production Index (Figure 1,

first row, columns 1 and 2) is a clear example of this fact. The reduction in this

index estimated with updated data reaches 2.5% while this quantity was around

0.9% with the pre-Great Recession sample. A second remarkable example can

be found in the reaction of people unemployed for more than 15 weeks after the

contractionary policy shock. Here, the maximum amount estimated in 2007 is

of 150,000 and during the Great Recession raises to more than 500,000 people

(Figure 6, third row, columns 1 and 2).

Moreover, 75% of the pre-Great Recession linear IRF are similar in shape

and amplitude to those estimated for the first state. For instance, see Federal

Funds Rate (Figure 3, third row, columns 1 and 3) or Purchasing Manager

Index (figure 7, second row, columns 1 and 3) where these two IRF are almost

identical.

These facts stress the distortionary effect that the inclusion of the Great

Recession data causes in the estimates with respect to those computed with

the dataset used in Gambetti and Forni (2010) where the most of the sample

corresponds with a stable period. The consequences of the inclusion of more

observation corresponding with a high volatility period in the linear IRF may

be clearly seen in the Producer Price Index and M1 (Figure 4, first and second

rows) or in the Unemployment Rate (Figure 6, last row) where the shape of the

linear IRF computed based in the whole sample is evidently conditioned by the

IRF of the second state.

4 Concluding remarks

This paper shows the existence of changes in the macroeconomic transmission

mechanisms during the Great Recession by analyzing the presence of structural

instability in a Dynamic Factor Model. Based on previous Monte Carlo simula-

tions and empirical results which support the correct estimation of the factors

under instability in their loadings, I examine the presence of breaks in the tran-

sition of the factors using estimation procedure for large multivariate Markov
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Switching models. This specification provides evidences supporting the pres-

ence of two different dynamics on the underlying forces driving the US economy

during the last forty years.

The reaction of macroeconomic variables to monetary policy changes is esti-

mated, firstly, without take into consideration the presence of structural insta-

bility. These responses present heterogeneous results when are compared with

those in which the Great Recession data is included. This fact stresses the exis-

tence of instability and introduces uncertainty about the selection of the correct

sample to mirror the current economic conditions. The estimation process pro-

posed here allows the identification of these structural breaks and the evaluation

of the reaction of a large dataset of variables to monetary policy shocks in each

of those different structural situations. The comparison of these responses with

those ignoring the presence of instability highlights the important consequences

of the inclusion of data presenting heterogeneous macroeconomics patterns in

the magnitude of the effects of monetary policy changes. The distinction and

identification of these changes are crucial in order to avoid misleading predic-

tions.

Therefore, in the existing situation, with no conclusive signs of economic

recovery and doubts about duration and impact of the structural effects of

the Great Recession on the macroeconomic patterns, this paper provides an

appealing framework in order to helps policy decision about the eventual effects

of abandoning the zero lower bound of the offi cial interest rates.
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Figure 1.1: 50 months ahead Industrial Production Index rolling window Impulse Response 

Function from January 2005 to November 2013 for a 50 basis points contractionary monetary 

policy shock. 

 

Figure 1.2: 50 months ahead Consumer Price Index rolling window Impulse Response Function from 

January 2005 to November 2013 for a 50 basis points contractionary monetary policy shock 

Figure 1.3: 50 months ahead Federal Funds Rates rolling window Impulse Response Function from 

January 2005 to November 2013 for a 50 basis points contractionary monetary policy shock. 

 

Figure 1.4: 50 months ahead Swiss/US real Exchange Rate rolling window Impulse Response 

Function from January 2005 to November 2013 for a 50 basis points contractionary monetary policy 

shock. 
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Figure 3. Impulse Response Functions in percentage for identification variables. First column presents linearly IRF for data until November 2007. Second 

column are linear IRF for the whole sample. Columns three and four are state dependent IRF for the whole sample 
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Figure 4. Impulse Response Functions in percentage for Producer Price Index, Money Stock M1, Real Personal Consumption Expenditures and Consumer 

Credit Outstanding. First column presents linearly IRF for data until November 2007. Second column are linear IRF for the whole sample. Columns three 

and four are state dependent IRF for the whole sample 
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Figure 5. Impulse Response Functions for New Orders: durable goods(%), Nonfarm Housing Starts (%) , NAPM Inventories (index), and Capacity 

Utilization- Manufacturing(%). First column presents linearly IRF for data until November 2007. Second column are linear IRF for the whole sample. 

Columns three and four are state dependent IRF for the whole sample. 
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Figure 6. Impulse Response Functions in percentage for Average Weekly Hours Index: Total Private Industries (%), Average Weekly Hours: 

Manufacturing (hours per week), Unemployment by Duration (thousand people) and Unemployment Rate (%). First column presents linearly IRF for data 

until November 2007. Second column are linear IRF for the whole sample. Columns three and four are state dependent IRF for the whole sample 
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Figure 7. Impulse Response Functions for S&P'S Common Stock Price Index (%) and Purchasing Managers' Index. First column presents linearly IRF for 

data until November 2007. Second column are linear IRF for the whole sample. Columns three and four are state dependent IRF for the whole sample 

Figure 2. Line: State-2 Smoothed Probabilities. Shaded areas: NBER Recessions. Dotted line: Business Cycle Volatility 


