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1 Introduction

The most widely-accepted econometric model for the intraday trading pro-
cess is the autoregressive conditional duration (ACD) model (Engle and Rus-
sell, 1998) and its extensions; logarithmic ACD (Bauwens and Giot, 2000),
stochastic conditional duration model (Bauwens and Veredas, 2004) or the
stochastic volatility duration model (SVD) to cope with higher-order dy-
namics in the duration process (Ghysels et al., 2004), a nonlinear version
based on self-exciting threshold autoregressive processes (TACD) (Zhang et
al., 2001), or a family of ACD models (Box-Cox ACD) that encompass most
specifications addressed in the literature (Fernandes and Grammig, 2006),
and Markov-switching ACD models (Hujer et al., 2002; Calvet and Fisher,
2008; Chen et al., 2013), among others.
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Since the original paper by Engle and Russell (1998) on financial duration
models, there has been a gradual shift of emphasis from the estimation and
interpretation of econometric results to model testing and the evaluation of
the consequences of misspecification. In this respect, let us first note that
various duration distributions have been proposed to estimate these models.
Financial theory provides almost no basis on which to discriminate between
competing models, and therefore sample information must be used. In gene-
ral, it is held that the choice of a particular distribution should be guided by
the aim to achieve a ”correct” specification or by questions of convenience of
estimation. The simplest distributional assumptions for conditional excess
durations are the exponential and the Weibull distributions. However, these
probability density functions (pdf) are far from capturing the most salient
features of the errors, especially their variability, for example, the flexibility
to accommodate certain stylised facts such as the adequacy of modelling the
behaviour in the tail of the distribution (Luca and Gallo, 2009), the non-
monotonic hazard function (intensity function conditional on past durations
could be constant, increasing or decreasing with respect to duration; Gram-
mig and Maurer, 2000), over-dispersion (standard deviation greater than
the mean), slowly decreasing autocorrelations (Bauwens et al., 2008), or the
conditions that the first and second duration moments should be finite in
order to ensure that the mean and the variance both exist. Nowadays, va-
rious standardised financial duration distributions are available to estimate
the parameters of ACD models: for example, Gamma, generalised Gamma,
Burr, Log-normal, Pareto and Birnbaum-Saunders, among others (see Engle
and Russell, 1998; Lunde, 1999; Grammig and Maurer, 2000; Bhatti, 2010;
among others).

Second, tests based on ACD parameters have been developed to test the
innovation distribution of ACD specifications, by gauging the distance bet-
ween the parametric density and the hazard rate functions implied by the
duration process, together with the nonparametric estimates (Fernandes and
Grammig, 2005). Other testing frameworks for financial duration models in-
clude the density forecast evaluation technique (Bauwens et al., 2004) and the
use of spectral density when testing for ACD effects, as well as for evaluating
the adequacy of ACD models (Duchesne and Pacurar, 2008).

However, the most recent focus of attention with respect to the finan-
cial durations of transactions has been the unobserved heterogeneity that
can be caused, for example, by differences in trading conditions, and which
are not readily captured by covariates (observed heterogeneity). It is well
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known that duration analysis produces incorrect results if unobserved he-
terogeneity is ignored, because this can have serious consequences on the
estimation of parameters, which can be sensitive to the presence of unobser-
ved heterogeneity1. The link between statistical and financial aspects within
a set of distributional assumptions is based on financial market microstruc-
ture theories. These theories divide traders into informed and non-informed,
and the distribution of duration is assumed to be derived from a mixture of
distributions. This basic idea is not new in microeconometric studies (Lan-
caster, 1990). The heterogeneity affects the hazard model in the sense that
for traders who belong to distinct categories, durations might obey different
probability laws. In fact, the assumption of interaction among agents, in-
formed traders who possess private information and liquidity traders whose
information set is publicly available (O’Hara, 1995; Ghysels, 2000), suggests
that financial durations may obey different probability laws. On the other
hand, there are many reasons to believe that arrival rates for informed and
uninformed agents exhibit temporal dependence, each with its own distinct
pattern.

Authors such as Luca and Zuccolotto (2003) and Luca and Gallo (2004,
2009) have proposed various mixtures of distributions to specify and esti-
mate unobserved heterogeneity in the context of ACD models. The simplest
formulation is the mixture of exponential distributions, which can be a finite

1Standard survival models assume homogeneity, such that all individuals are subject to
the same risks embodied in the hazard or in the survivor functions. Models with covariates
relax this assumption by introducing observed sources of heterogeneity. However, the pre-
sence of unobserved heterogeneity creates serious challenges for duration models because,
as pointed out by Lancaster (1979) and Heckman and Singer (1984), by ignoring unobser-
ved heterogeneity biased estimates of the hazard function may be obtained. In econometric
duration research, the mixed proportional hazard model has been used extensively. This
issue can be approached from various directions, such as non-parametric specifications
(Heckman and Singer, 1984; Honoré, 1990; Bearse et al., 1994; among others) or by inclu-
ding non-parametric baseline hazards and unobserved heterogeneity parametrically (Cox,
1972; Kiefer, 1988; Meyer, 1990; among others). The results obtained by Abbring and
Van den Berg (2007) rationalise the preference for the gamma distribution, and connect
the results of mixed proportional hazard models with those of gamma heterogeneity as
the option preferred to a wider class of models. More recently, with respect to hypothesis
testing in the framework of unobserved heterogeneity, Cho and White (2010) proposed the
likelihood ratio as a means of testing for unobserved heterogeneity in exponential and Wei-
bull duration models. Unfortunately, estimators of the mixed proportional hazard model
are usually biased if the functional form of the heterogeneity distribution is misspecified
(Baker and Melino, 2000).
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mixture, if the traders are assumed to be divided into a finite number of
groups, or an infinite mixture, when every trader is considered to have his
own behaviour. Therefore, the infinite mixture summarises a wide variety
of agents or trading conditions, and thus different degrees of information, as
well as different attitudes toward risk, budget constraints, and so on, can be
taken into account, allowing for a complex unobserved heterogeneity. This
context translates into a mixture provided the assumption holds of no inter-
action among agents: relaxing this hypothesis complicates matters and could
be the object of further study. If test results indicate unobserved heteroge-
neity, then the crucial issue is to incorporate the mixing distribution of the
heterogeneity term.

Because the parameter estimates are very sensitive to the choice of the
mixing distribution (Heckman and Singer, 1984), other mixing distributions
have sometimes been considered. Although there is no argument in favour
of one choice over the other, we consider a distribution which can accom-
modate two facts: that the intensity function conditional on past durations
(hazard function) is non-monotonic, and that the unobserved heterogeneity
of traders can be modelled by means of finite mixtures of non-exponentials.
Specifically, we consider a distribution that is widely used in studies of frailty:
the inverse Gaussian distribution (Hougaard, 1984). The inverse Gaussian
or Wald distribution has many applications in studies of life time, reaction
times, reliability and number of event occurrences (Lancaster, 1972; Whit-
more, 1975, 1979; Banerjee and Bhattacharyya, 1979; Chhikara and Folks,
1977, 1989; Jorgensen, 1982; Seshadri, 1983 and 1999; Abraham and Bala-
krishnan, 1998; and Balakrishnan and Nevzorov, 2003; among others), and it
has been applied in fields such as economics, agriculture, demography, eco-
logy, engineering, genetics, meteorology and the internet (Seshadri, 1999),
in the study of many different topics, including financial asset returns, tur-
bulent wind speeds, impulsive noise in radar, and radar and communication
channels. It is a member of the natural exponential family of distributions
and can be considered an alternative to exponential, log-Normal, log-logistic,
Frechet and Weibull distributions, among others. The inverse Gaussian dis-
tribution, for example, is as suitable as the Gamma, both analytically and
computationally, although it is not as widely used. Furthermore, the inverse
Gaussian is a less complex alternative to the classical log-Normal model,
and its hazard rate function has a ∩-shape like the log-Normal, generalised
Weibull and log-logistic distributions, i.e. the inverse Gaussian is unimodal,
which increases from 0 to its maximum value and then decreases asymptoti-
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cally to a constant. It is also likely to prove useful in statistical applications
as a flexible and tractable model for fitting duration data and other right-
skewed unimodal data. Finally, it is a flexible closed form distribution that
can be applied to model heavy-tailed processes.

The rest of this paper is structured as follows. Section 2 briefly describes
the classical ACD model and presents the inverse Gaussian distribution as a
suitable model in this scenario. Section 3 addresses the modelling of unob-
served heterogeneity with finite mixture distributions. Section 4 presents a
numerical application and, finally, some conclusions are drawn.

2 The inverse Gaussian ACD model

Engle and Russell’s (1998) autoregressive conditional duration (ACD) model
successfully models financial data that arrive at irregular intervals. This mo-
del is applied to the duration between two consecutive periods, xi = ti− ti−1,
where ti is the time for period i, and can easily be formulated in terms of the
expected conditional duration for the i–th trade: ψi = E(xi|xi−1, . . . , x1; θ1),
where xi = ψi εi. Therefore, standardised or excess durations, xi/ψi ≡ εi ∼
iid D(θ2), where D is a general distribution defined within the interval (0,∞)
with E(εi) = 1, and where θ1 and θ2 are vectors of unknown parameters. ψi

is called the conditional duration and can be expressed as a linear function
of past durations and lagged conditional durations. Hence, the ACD (p, q)
model can be written as:

ψi = ω +
q∑

j=1

αj xi−j +
p∑

j=1

βj ψi−j, i = 1, 2, . . . , N

where ω > 0, αj ≥ 0 and βj ≥ 0 for all j. Although not necessary, these sign
restrictions are convenient to ensure the positivity of ψi in estimation.

Our attention in this paper is based on D(θ2). Any distribution defi-
ned on a positive support can be specified for D . Previous studies have
shown that several distributions can be used (exponential, Weibull, genera-
lised gamma, Burr, log-normal, Pareto, Birnbaum-Saunders, among others
(i.e., Engle and Russell, 1998; Lunde, 1999; Grammig and Maurer, 2000;
Bhatti, 2010; among others)). However, these pdf’s are far from capturing
the most salient features of the errors, specifically their variability. 2 No-
wadays, several choices of standardized financial duration distributions are

2For example, the flexibility to accommodate some stylized facts as the adequacy of

6



available to estimate parameters of ACD models, as for example, gamma,
generalized gamma, Burr, log-normal, Pareto, Birnbaum-Saunders, among
others (i.e., Engle and Russell, 1998; Lunde, 1999; Grammig and Maurer,
2000; Bhatti, 2010; among others). However, Engle and Russell (1998) show
that consistent and asymptotically Normal estimates of parameters vector
are obtained by maximising by QML, even if the distribution of the stan-
dardised duration, D(θ2), is not exponential. Drost and Werker (2004) show
that consistent estimates are obtained when the QML estimation method is
based on the standard Gamma family (including the exponential). In this
paper, we consider the inverse Gaussian distribution (Balakrishnan and Nev-
zorov, 2003; Chhikara and Folks, 1989; Jørgensen, 1982 and Seshadri 1983
and 1999).

2.1 The inverse Gaussian distribution

The inverse Gaussian distribution is a member of the natural exponential
family of distributions. Let {W (t), t > 0} be a one-dimension Wiener pro-
cess with positive drift µ and variance σ2, with W (x) = x0. Then the time
required for W (t) to reach the value u > x0 for the first time (first pas-
sage time, Schröndinger, 1915), is a random variable with inverse Gaussian
distribution. A continuous random variable X follows the inverse Gaussian
distribution with parameters µ and λ (henceforth IG(µ, λ)) if its probability
density function is given by

f(x; µ, λ) =

√
λ

2 π x3
exp

[
−λ(x− µ)2

2 xµ2

]
, (1)

for x > 0, λ > 0, µ > 0 and zero for x < 0.
Some useful properties of this distribution are given in Jørgensen (1982).

Here we only reproduce the most important of them. The IG probability

density is always positively skewed, with value γ2 = 3
√

µ/λ and the excess

kurtosis, which is 15µ/λ, is always positive. Figure 1 illustrates the shape of
the IG distribution for selected parameter values. It is also important to note

modelling the behaviour in the tail of the distribution (Luca and Gallo, 2009), the non-
monotonic hazard function (intensity function conditional on past durations could be
constant, increasing or decreasing with respect to duration; Grammig and Maurer, 2000),
over-dispersion (standard deviation greater than mean) and the slowly decrease of auto-
correlations (Bauwens et al., 2008), or the conditions which the first and second duration
moments should be finite to ensure that the mean and variance exist.
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Figure 1: Pdf of the inverse Gaussian distribution for different parameter
values

that the IG distribution is closed with respect to scale transformations since,
if X ∼ IG (µ, λ) and c > 0, the transformed variable cX has the distribution
IG(c µ, c λ). Moreover, if xi ∼ IG(µ, λ), then

∑n
i=1 xi ∼ IG(nµ, n λ) and

furthermore, in this case, it is verified that the mean of durations X̄ ∼
IG(µ, n λ), where X̄ = (1/n)

∑n
i=1 Xi. This property is useful because mean

durations follow a IG distribution with the same mean as the individual
distribution.

As λ tends to infinity, the inverse Gaussian distribution becomes more
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like a normal (Gaussian) distribution. The characteristic function is

φX(t) = exp





λ

µ


1−

√
1− 2λ2it

λ








and all positive and negative moments exist. In particular, the mean and
variance of this distribution are E(X) = µ and var(X) = µ3/λ, respectively.

The pdf of the IG distribution is unimodal and its mode is located in

xmode = µ




√
1 +

9µ2

4λ2
− 3µ

2λ


 .

The cumulative distribution function (see Folks and Chhikara, 1978) is
given by

F (x) = Φ


t1

√
λ

x


 + Φ


t2

√
λ

x


 exp

(
2λ

µ

)
, (2)

where t1 = −1 + x/µ, t2 = −1− x/µ and

Φ(z) =
∫ z

−∞
1√
2π

e−t2/2 dt

is the cumulative distribution function of the standard normal distribution.

2.2 The inverse Gaussian autoregressive conditional
duration

From Y = X/µ we obtain E(Y ) = 1 and after the changes of variable
y = εi = xi/ψi we obtain

f(xi|ψi) =

√
λψi

2 π µ x3
i

exp

[
−λ(xi − ψi)

2

2 µxi ψi

]
, (3)

which is an IG pdf where the λ–parameter is equal to λψi/µ. Henceforth,
this model is referred to as IG–ACD (p, q).

Assuming that xi is weakly stationary (i.e. the first two moments of xi

are time–invariant) we derive the variance of xi in an IG–ACD (1, 1) model.
It is easy to see that after the change of variable proposed εi ∼ IG(1, λ/µ)
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and then var(εi) = µ/λ, which implies that the variance of the standardi-
sed durations is homoskedastic. Therefore E(ε2

i ) = (µ + λ)/λ. After some
computation, we obtain the unconditional mean and variance, given by3,

E(xi) =
ω

1− α1 − β1

, (4)

var(xi) = ψ2
i (εi) = µ2 (µ + λ)(1− 2α1β1 − β2

1) + λ[β1(2α1 + β1)− 1]

λ(1− β2
1 − 2α1β1)− α2

1(µ + λ)
,(5)

respectively4.
Using (2) we obtain the cumulative distribution function of the pdf (3)

given by

F (xi|ψi) = Φ

(
ti1

√
λψi

xi µ

)
+ Φ

(
ti2

√
λψi

xi µ

)
exp

(
2λψi

µ2

)
, (6)

where ti1 = −1+xi/µ, ti2 = −1−xi/µ. As formally shown by Engle and Rus-
sell (1998), instantaneous intraday price volatility is linked to the conditional
hazard of price durations. Therefore, expression (6) can be used to obtain
the conditional intensity process on past durations of the hazard function,
given by

h(xi|ψi) =

{
1− Φ

(
ti1

√
λψi

xi µ

)
− Φ

(
ti2

√
λψi

xi µ

)
exp

(
2λψi

µ2

)}−1

×
√

λψi

2 π µ x3
i

exp

[
−λ(xi − ψi)

2

2 µxi ψi

]

This function is non–monotonic with respect to duration, although it
depends on parameter values of µ and λ (see Figure 2). In Figure 2 (top)

3i) If 1− β2
1 − 2α1β1 − α2

1 = α2
1µ/λ, we have non–stationary variance.

ii) If 1 − (α1 + β1)2 − α2
1µ/λ > 0, the variance of durations is positive and stationary

(finite).
4For example, in an EACD(1, 1) model we have

E(xi) =
ω

1− α1 − β1
,

var(xi) = µ2

(
1− β2

1 − α1β1

1− β2
1 − 2α1β1 − 2α2

1

)
.
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given a unit mean, when the shape parameter increases, the hazard function
increases too, and more quickly for large durations. In Figure 2 (bottom),
given the shape parameter λ, the higher the mean, the greater the intensity
of trading and the faster the hazard function increases. Therefore, it could
be increasing or decreasing depending on the values of the parameters. With
the exception of λ = 0.5 and µ = 0.5, the shape seems to be monotonically
increasing.
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Figure 2: Hazard rate for the inverse Gaussian ACD model for different
parameter values
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From (3) we obtain the IG–ACD(p,q) log–likelihood conditional function
for the i-th observation, which produces a closed form, i.e. the parameters
may be estimated by a numerical maximisation algorithm, such as:

`i = log f(xi|ψi)

− frac12 (log λ + log ψi − log(2 π)− log µ)− 3

2
log xi

− λ(xi − ψi)
2

2 µxi ψi

, (7)

where ` =
∑N

i=1 `i, the first order conditions are as follows:

∂`

∂λ
=

1

2

[
N

λ
− 1

µ

N∑

i=1

(xi − ψi)
2

xi ψi

]
,

∂`

∂µ
=

1

2µ

[
−N +

λ

µ

N∑

i=1

(xi − ψi)
2

xi ψi

]
,

∂`

∂ω
=

1

2

N∑

i=1

1

ψi

+
λ

2µ

N∑

i=1

x2
i − ψ2

i

xi ψ2
i

,

∂`

∂αr

=
1

2

N∑

i=1

(
1

ψi

+
λ

2µ

x2
i − ψ2

i

xi ψ2
i

)
∂ψi

∂αr

, r = 1, 2, . . . , q,

∂`

∂βr

=
1

2

N∑

i=1

(
1

ψi

+
λ

2µ

x2
i − ψ2

i

xi ψ2
i

)
∂ψi

∂βr

, r = 1, 2, . . . , p,

where

∂ψi

∂αr

=
q∑

j=1

(
xr−j + βj

∂ψr−j

∂αr

)
, (8)

∂ψi

∂βr

=
p∑

j=1

βj
∂ψr−j

∂βr

. (9)

Remark 1 A simpler model can be obtained by assuming that λ = µ2 (see
Balakrishnan and Nevzorov, 2003, p. 238). In this simple case (7) is given
by

log f(xi|ψi) =
1

2
(log µ + log ψi − log(2 π))− 3

2
log xi − µ(xi − ψi)

2

2 xi ψi

, (10)
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which is the log–likelihood of the first passage time to a point µ in a Brownian
motion process with unit drift and unit variance, and (5) reduces to

var(xi) = µ2 (1− 2α1β1 − β2
1)(1 + µ) + µ[β1(2α1 + β1)− 1]

µ(1− β2
1 − 2α1β1)− α2

1(1 + µ)
.

3 Modelling the unobserved heterogeneity by

finite mixtures of inverse Gaussian distri-

butions

Economic theory does not provide much basis on which to choose a mixing
distribution. Since financial market microstructure theories tend to divide
the process into distinct categories (i.e., informed and uninformed) the dis-
tribution of duration is assumed to derive from a mixture of distributions.5

Zhang et al. (2001) report that there are differences between informed trading
(fast transacting regime) and uninformed trading (slow transacting regime).
Accordingly, the differences between trading conditions is another argument
in favour of the mixture hypothesis.

3.1 Finite mixtures of inverse Gaussian distributions

In this section, following the spirit of the work of Luca and Zuccoloto (2003),
we assume that there exist two categories of Traders, and a finite mixture of
the inverse Gaussian distribution is proposed. An initial distinction can be
made between informed traders who possess private information with proba-
bility 1− p and liquidity traders whose information set is publicly available
with probability p. Given the assumption of no interaction among agents, the
existence of different behaviours suggests that financial durations may obey
different probability laws. Moreover, the fact of differences across trading
conditions is another argument in favour of the mixture hypothesis.

Let us consider the model proposed by Jørgensen et al. (1991), where the
random variable X is equal to

X =

{
X1, with probability 1− p,
X2, with probability p,

5However, mixture models cannot model underdispersion (variance less than the mean),
but this is not too restrictive as most data are overdispersed, see Cameron and Trivedi
(1996).
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where X1 ∼ IG(µ, λ), 1/X2 ∼ IG(1/µ, λµ2) and where p = µ/(µ+γ) ∈ (0, 1).
Here, X2 is the complementary reciprocal of X1.

The resulting pdf for X is then given by

g(x; µ, λ, γ) =
γ + x

γ + µ

√
λ

2πx3
exp

[
−λ(x− µ)2

2xµ2

]
, (11)

which is always unimodal (see Jørgensen et al., 1991). Henceforth, this dis-
tribution is denoted as a finite inverse Gaussian mixture, or FIGM. Further-
more, because the distribution is infinitely divisible, all moments exist and
the cumulants are positive.

Another interpretation of the above distribution can be stated as follows.
Consider the random variable X3 such that X3 ∼ µ2

λ
χ2(1), where χ2(r) repre-

sents the χ2–distribution with r degrees of freedom. Then (see Jørgensen et
al., 1991), the random variable X following the pdf (11) can also be rewritten
as X = X1 + W , where X1 and W are independent with

W =

{
0, with probability 1− p,
X3, with probability p,

This result shows, therefore, that the pdf (11) is the convolution of an
inverse Gaussian distribution with a compound Bernoulli distribution. A
possible interpretation of this sum in our duration process is that it has
two distinct phases, i.e. the duration has two different intrinsic components.
Variable V is the time it takes for a trade to be initiated in the market and
X1 is the subsequent time required for the trade to develop into a complete
duration. If V = 0, the trade is initiated immediately. If V = X3 there is
a random delay before trade is initiated. Jørgensen et al. (1991) pointed
out that the random X1 from the initiation might be represented by the first
passage time of a Wiener diffusion process and therefore would be inverse
Gaussian distributed.

If γ = 0, there is no heterogeneity because p = 1. Therefore, a single
formal Wald–test on γ could be employed to test heterogeneity in this mixed
model. When γ →∞ the pdf in (11) reduces to the pdf of the inverse Gaus-
sian distribution in (1) and when γ = 0 (i.e., when there is no heterogeneity)
the pdf (11) gives the distribution of the complementary reciprocal of X1, say
X2. Figure 3 contains a plot of the pdf (11) for selected parameter values.

Henceforth, we will use FIGM(µ, λ, γ) to denote the pdf of a random
variable following the pdf given in (11). Some properties of this generalisation
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Figure 3: Pdf of the FIGM distribution for different parameter values

of the inverse Gaussian distribution are as follows. Its mean and variance
are given by

E(X) = µ

[
1 +

µ2

λ(1 + γ)

]
, (12)

var(X) = µ3σ2

[
1 +

σ2(2µ + 3γ)

(µ + γ)2

]
,

respectively.
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The cdf becomes

G(x) = Φ


t1

√
λ

x


 +

γ − µ

µ + γ
Φ


t2

√
λ

x


 exp

(
2λ

µ

)
.

3.2 The finite inverse Gaussian mixture autoregressive
conditional duration model

From the Jorgensen et al. (1991) model, and after the appropriate change of
variable, we obtain the pdf of the conditional duration, given by

g(xi|ψi) =
1

ψi

γψi + φxi

µ + γ

√
λψi

2πφx3
i

exp

[
−λ

2

(φxi − µψi)
2

φψixiµ2

]
, (13)

where φ is equal to the mean of the FIGM distribution in (12). It is easy to
see that the pdf in (13) is again a finite mixture FIGM–ACD model in which
the λ–parameter is equal to λψi/φ, the µ–parameter is equal to µψi/φ and
the γ–parameter is equal to γψi/φ. If var(εi) > 1 (< 1) there is conditional
overdispersion (underdispersion).

The conditional hazard function for past durations is given by

h(xi|ψi) =

{
1− Φ

(
ti11

√
λψi

φxi

)
+

γ − µ

µ + γ
Φ

(
ti22

√
λψi

φxi

)
exp

(
2λ

µ

)}−1

× 1

ψi

γψi + φxi

µ + γ

√
λψi

2πφx3
i

exp

[
−λ

2

(φxi − µψi)
2

φψixiµ2

]
,

where ti11 = −1 + xiφ
µψi

and ti22 = −1− xiφ
µψi

.
Figure 4 shows that the conditional hazard function for the FIGM–ACD

distribution can be either increasing or decreasing, depending on the para-
meter values.

From (13) we obtain the finite mixture FIGM–ACD log–likelihood condi-
tional function for the i-th observation which is also closed form, and so the
parameters can be estimated straightforwardly.

`i = − log ψi + log(γ ψi + φxi)− log(γ + µ)

+
1

2
[log λ + log ψi − log(2π)− log φ]− 3

2
log xi

− λ

2

(φ xi − µψi)
2

φψi xiµ2
. (14)
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Figure 4: Hazard rate for the FIGM–ACD model for different parameter
values

The first order conditions obtained from (14) for the i–th observation are:

∂`i

∂λ
=

xi

γψi − φxi

∂φ

∂λ
+

1

2λ
− 1

φ

∂φ

∂λ

− λ

2

[
1

λ
+

xiφ + µψi

φxi − µψi

∂φ

∂λ

]
(φxi − µψi)

2

φψi xiµ2
,

∂`i

∂µ
= − xi

γψi − φxi

∂φ

∂µ
+

1

γ + µ
− 1

2φ

∂φ

∂µ

− λ

2


1

λ
+

xi
∂φ
∂µ

+ ψi

φxi − µψi

− 1

φ

∂φ

∂µ
− 2

µ


 (φxi − µψi)

2

φψi xiµ2
,

∂`i

∂γ
=

ψi + xi
∂φ
∂γ

γψi − φxi

− 1

γ + µ
− 1

2φ

∂φ

∂γ
+

λ

2

∂φ

∂λ

µ2ψi − φ2x2
i

φ ψi xi µ2
,

∂`i

∂ω
= − φxi

γψi + φxi

+
1

2ψi

+
λ

2

µ + 1

ψi

(φxi − µψi)
2

φψixiµ2
,

∂`i

∂αr

=

[
− φxi

γψi + φxi

+
1

2ψi

+
λ

2

µ + 1

ψi

(φxi − µψi)
2

φψixiµ2

]
∂ψi

∂αr

,
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∂`i

∂βr

=

[
− φxi

γψi + φxi

+
1

2ψi

+
λ

2

µ + 1

ψi

(φxi − µψi)
2

φψixiµ2

]
∂ψi

∂βr

,

where ∂ψi/∂αr and ∂ψi/∂βr are given in (8) and (9), respectively, i =
1, 2, . . . , N , r = 1, 2, . . . , q and

∂φ

∂λ
= − µ2

λ2(1 + γ)
,

∂φ

∂µ
=

3µ2 + λ(1 + γ)

λ(1 + γ)
,

∂φ

∂γ
= − µ3

λ(1 + γ)2
.

4 An empirical example

As an illustration of the application of our specification to financial duration
data, we estimated a simple ACD(1, 1) model using data obtained from the
transaction durations of IBM stock on five consecutive trading days from
November 1 to November 7, 1990, adjusted by removing the deterministic
component (Tsay, 2002). The number of observations employed was 3534
positive adjusted durations.

Table 1 summarises the results of different distributions used in this pa-
per to estimate the ACD(1, 1) model. We consider the exponential, Weibull,
generalised gamma, Burr, inverse Gaussian with two and one-parameter dis-
tributions. Let Θ be a vector of unknown parameters to be estimated. Then,
the density functions and the logarithm of the different duration models used
in this paper are as follows:

Exponential : `(Θ, xi) =
N∑

i=1

[
− log ψi − xi

ψi

]
,

Weibull: `(Θ, xi) =
N∑

i=1

[
log γ − log xi + γ log

(
xi

φi

)
−

(
xi

φi

)γ]
,

where φi = ψi [Γ (1 + 1/γ)]−1.

Generalised gamma: `(Θ, xi) =
N∑

i=1

[log θ − log Γ(γ) + (γθ − 1) log xi
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− γθ(log φ + log ψi)−
(

xi

φψi

)θ

 ,

where φ = Γ(γ)/Γ(γ + 1/θ),

Burr: `(Θ, xi) =
N∑

i=1

[log κ− κ log εi + (κ− 1) log xi

−
(

1

σ2
+ 1

)
log(1 + σ2ε−κ

i xκ
i )

]
,

where εi = ψi(σ
2)1+1/κΓ(1/σ2+1)

Γ(1+ 1
κ)Γ( 1

σ2− 1
κ)

.

The likelihood logarithms for the finite and infinite mixtures are:

`(Θ, xi) =
N∑

i=1

log

[
K∑

k=1

pk
1

λk

exp

(
− xi

ψiλk

)]
−

N∑

i=1

log ψi,

`(Θ, xi) =
N∑

i=1

[(θ1 + 1) log θ1 − log ψi + log(θ1 + 1)

− (θ1 + 2) log

(
θ1 +

xi

ψi

)]
,

for Luca and Zuccolotto’s (2003) finite mixture and infinite mixture, respec-
tively.

Table 1 shows the estimated parameters, with the asymptotic t–statistics
corrected for the presence of unobserved heteroskedasticity, and also the value
of the logarithm of maximum likelihood.

Because the tests for ACD models involve basic residual examinations,
testing the functional form of the conditional mean duration or testing the
distribution of the error term, we use some statistics based on standardized
durations: mean, standard deviation, excess–dispersion,

E(xi|ψi) =
1

N

N∑

i=1

xi

ψi

,

σxi|ψi
=

√√√√ 1

N

N∑

i=1

(
xi

ψi

− E(xi|ψi)

)2

,

MSExi|ψi
=

1

N

N∑

i=1

(xi − ψi)
2 ,
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Table 1: Quasi maximum likelihood estimates, statistics and misspecification
tests of the different ACD(1,1) models

Exponential Weibull Generalised Burr Inverse Inverse

Gamma Gaussian (2p.) Gaussian (1p.)

γ 0.8788 4.0689
(78.48) (5.66)

θ 0.4038
(10.14)

λ 0.4103
(9.06)

µ 1.5367 0.2670
(8.52) (30.70)

κ 0.9812
(60.21)

σ2 0.1885
(5.81)

ω 0.1803 0.1687 0.1411 0.1119 0.1442 0.1442
(2.35) (2.33) (3.01) (2.82) (2.4) (2.40)

α1 0.065 0.0639 0.0627 0.0499 0.0449 0.0449
(4.93) (5.39) (5.75) (5.70) (4.17) (4.44)

β1 0.8811 0.8852 0.8968 0.8966 0.9113 0.9113
(27.9) (30.61) (47.59) (42.69) (36.21) (36.65)

`max –7688.09 –7633.65 –7583.66 –7615.51 –6973.39 –6973.39
AIC 4.3526 4.3224 4.2947 4.3127 3.9493 3.9493
SBIC 4.3579 4.3294 4.3034 4.3214 3.9580 3.9580

E(xi|ψi) 1.0014 1.0058 0.9894 1.2457 1.0033 1.0033
σxi|ψi

1.2276 1.2336 1.2157 1.2629 1.2321 1.2321
MSExi|ψi

13.701 13.658 13.860 13.373 13.599 16.350
MSExi|ψi

2.2906 2.2862 2.3025 2.2624 2.2887 2.7425
Excess–Dispersion 4.7728 4.8365 4.5032 5.2195 4.7780 4.7783

Q(1) 0.0680 0.0850 0.1566 0.146 1.236 1.236
[0.79] [0.77] [0.69] [0.70] [0.27] [0.27]

Q(5) 2.8626 2.8591 2.7562 2.9510 2.1950 2.1950
[0.72] [0.72] [0.74] [0.70] [0.82] [0.82]

Q(10) 5.1054 5.1193 5.1449 5.147 6.187 6.186
[0.88] [0.88] [0.88] [0.88] [0.80] [0.80]

Q(20) 11.2538 11.0604 10.6352 10.742 12.221 12.222
[0.94] [0.94] [0.95] [0.95] [0.95] [0.95]

Note: The t–values are shown in parentheses and the p–values in brackets. 1p and 2p: one and two-

parameter models.
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MAExi|ψi
=

1

N

N∑

i=1

|xi − ψi|,

Excess–Dispersion =
√

N
σ2

xi|ψi
− 1

σ(xi|ψi−1)2
.

And Akaike and Schwarz Bayesian information criteria (AIC and SBIC,
respectively), durations (MSExi|ψi

, MAExi|ψi
), and also the Ljung–Box sta-

tistic (Q(k)) for k=2, 5,10 and 20 lags for autocorrelation in the standardized
residuals shown in Table 1.

In general, these results indicate that all parameters in each estimated
model are statistically significant at any conventional level of significance,
but also that the standardized residual does not present serial dependence.
Henceforth, misspecification tests based on the autocorrelation of standardi-
zed residuals indicate the non–presence of serial dependence. All the fitted
models present a good behaviour in their standardized residuals, and so the
models cannot be compared by means of this portmanteau test. On the other
hand, in terms of the log–likelihood measures but also in terms of AIC and
SBIC information criteria, IG fits better than other distributions. Moreover,
with respect to statistical error measures, IG has a lower MSE than do other
models. Finally, as can be seen, the durations are overdispersed in all models
because the mean value is lower than the variance.

To analyze the effect of unobserved heterogeneity, we compared the fi-
nite and infinite mixtures of distributions based on exponentials derived by
Luca and Zuccolotto (2003) and our model. Table 2) shows that the finite
exponential mixture and FIGM have statistically significant parameters for
unobserved heterogeneity. In the case of finite FIGM, γ is significant and in
the case of Luca and Zuccolotto (2003), p1 and p2 are also significant at any
significance level. Taking into account that liquidity traders have probabili-
ties p̂2 = 0.86 and p̂ = 0.81, it can be seen that both models yield similar
probabilities, but FIGM has a lower probability than the finite exponential
mixture. Thus, `max for FIGM is higher than the finite mixture model of
Luca and Zuccolotto (2003), but it is also better in terms of AIC and SBIC
information criteria. Therefore, we conclude that our model is statistically
preferable.

The next subsection analyzes the forecasting capabilities of the different
models used in this paper.
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Table 2: Quasi–maximum likelihood estimates for ACD(1,1) models with
heterogeneity. Finite and infinite mixtures.

Finite exponential
model

Infinite exponential
model

Finite generalised inverse
Gaussian

γ 0.0533
(6.23)

λ 0.0859
(44.99)

µ 0.2277
(38.43)

p1 0.1381
(5.2917)

p2 0.8645
(13.529)

λ1 0.6308
(1.9958)

λ2 2.6092
(2.1898)

θ1 3.7437
(8.81)

ω 0.0554 0.1177 0.0596
(1.87) (2.71) (2.74)

α1 0.0260 0.0573 0.0227
(2.10) (5.54) (4.31)

β1 0.9123 0.9081 0.9181
(45.32) (43.77) (41.20)

`max –6947.05 –7613.70 –6654.77
AIC 3.9355 4.3111 3.7395
SBIC 3.9477 4.3181 3.7800

E(xi|ψi) 1.0527 0.9943 1.0018
σxi|ψi

2.4946 1.2095 1.4318
MSExi|ψi

19.1681 16.368 19.068
MAExi|ψi

2.5380 2.7582 2.5345
Excess–Dispersion 10.767 4.7324 10.7472

Q(1) 0.642 0.376 1.303
[0.42] [0.54] [0.25]

Q(5) 2.878 3.043 2.669
[0.72] [0.69] [0.75]

Q(10) 4.5 4.784 4.594
[0.92] [0.90] [0.92]

Q(20) 10.547 10.658 10.806
[0.96] [0.95] [0.95]

Note: The t–values are in parentheses and the p–values are in brackets.
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4.1 Forecasting performance using statistical criteria

This subsection focuses on the out–of–sample forecasting ability of the dif-
ferent financial duration models used in Tables 1 and 2 in terms of statistical
accuracy, using point forecasts and density forecasts. As is well known, in
the case of ACD modelling, point forecasts do not depend on the shape of
the residual distribution, which might render comparison of alternative ACD
models difficult, but only provide evidence of how well a model captures the
dynamics of the durations around the mean.

In general, the forecasting period is considered to be based on H observa-
tions. All the models are estimated from the first observation in the sample
up to N -H-1 observations and then one–step–ahead forecasts are obtained
for each model by considering the final H points.

The measures of accuracy for the one-step-ahead point forecasts used in
this study are based on h = 1, . . . , H prediction periods for ψi, called ψ̂i, and
H = 10, 25, 50, 100, 500 and 1000 observations. This is because most empiri-
cal tests of market microstructure theories are concerned with the dynamics
of (very) short or (very) long durations. For these predictions, the mean
absolute error (MAE) and mean squared error (MSE) are determined.

Table 3 shows the forecast performance of both non–heterogeneity and
heterogeneity models. In the first case, the exponential model seems pre-
ferable in terms of MSE for H = 10, 25, 50, 500. The inverse Gaussian is
only preferable for MAE in H = 10, 25 and 100. However, with respect to
unobserved heterogeneity models, the finite inverse Gaussian mixture model
is always preferable to the finite exponential model, both in terms of MSE
and of MAE. Although it is not usual in comparisons of duration–oriented
financial forecasts, we also evaluated the equality of competitive forecasts.
To do this, we used the Diebold and Mariano (DM, 1995) test, which exa-
mines whether the difference between the root MSE (RMSE) values for the
two model forecasts is statistically significant. Table 4 shows the results for
the modified version of the forecast evaluation DM test for non-heterogeneity
models, for cases in which the null hypothesis of equal predictors is rejected.
An asterisk indicates that forecasts 1 and 2 are equal at any significance level,
that is, the null hypothesis cannot be rejected. However, p-values indicate
that forecast 2 is better than forecast 1, that is, the null hypothesis can be
rejected. We show the results corresponding to the MSE criteria applied to
the difference: dh = e2

1h− e2
2h, where e1h and e2h are prediction errors formed

by differences between the actual duration and its prediction, because the
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Table 3: One–step–ahead forecasting results for models with and without
heterogeneity. Short–and long–horizons of forecasts.

I. Short–horizon predictions
H = 10 H = 25 H = 50
MSE MAE MSE MAE MSE MAE

Panel A: Classic and Non–classic ACD models
Exponential 29.2477 2.9587 27.1561 3.0612 20.8892 2.8169
Weibull 29.2989 2.9592 27.1998 3.0613 20.9352 2.8188
Generalised Gamma 29.4038 2.9699 27.3069 3.0659 21.0244 2.8243
Burr 29.7283 2.9569 27.4355 3.0416 21.3261 2.8274
Inverse Gaussian (1p) 29.6237 2.9427 27.4109 3.0343 21.1781 2.8228
Inverse Gaussian (2p) 29.6237 2.9427 27.4107 3.0343 21.1781 2.8228
Panel B: Unobserved heterogeneity in ACD models
Finite exponential model (3p) 23.6497 3.1488 – – – –
Finite Inverse Generalised inverse Gaussian model 23.6241 3.1465 21.6194 3.2436 16.0554 2.9156
Infinite exponential model 23.4041 3.1678 21.9798 3.3659 16.0302 2.9516

II. Long–horizon predictions
H = 100 H = 500 H = 1000

MSE MAE MSE MAE MSE MAE
Panel A: Classic and Non-classic ACD models
Exponential 18.5476 2.6894 21.5633 2.8218 23.1841 2.8751
Weibull 18.5935 2.6916 21.6302 2.8259 17.9632 2.8578
Generalised Gamma 18.6821 2.6953 21.7397 2.8329 23.3027 2.8827
Burr 18.9817 2.7160 22.1071 2.8546 23.6847 2.9053
Inverse Gaussian (1p) 18.8237 2.6971 21.8908 2.8386 23.4829 2.8901
Inverse Gaussian (2p) 15.3272 2.6019 21.7453 2.8296 23.4829 2.8901
Panel B: Unobserved heterogeneity in ACD models
Finite exponential model (3p) 14.1174 2.7065 20.1117 2.9152 17.7702 2.8297
Finite Inverse Generalised inverse Gaussian model 14.1149 2.7060 16.4896 2.8158 17.7747 2.8285
Infinite exponential model 14.0834 2.7323 16.3965 2.8573 17.6720 2.8695

Notes: MSE = Mean squared error, MAE = Mean absolute error. 1p, 2p and 3p represent 1, 2 and 3
parameter models
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MAE criteria results indicate too much non-rejection for the null hypothesis.

Table 4: p-values for DM test with dh = e2
1h − e2

2h

H

e1 e2 10 25 50 100 500 1000

Weibull Exponential ∗ 0.02 0.00 0.00 0.00 0.00
Generalised Gamma Exponential ∗ 0.01 0.00 0.00 0.00 0.00
Burr Exponential ∗ ∗ 0.00 0.00 0.00 0.00
Inverse Gaussian (1p) Exponential ∗ ∗ ∗ 0.00 0.00 0.00
Inverse Gaussian (2p) Exponential ∗ ∗ ∗ ∗ 0.00 0.00
Generalised Gamma Weibull ∗ 0.01 0.00 0.00 0.00 0.00
Burr Weibull ∗ ∗ 0.00 0.00 0.00 0.00
Inverse Gaussian (1p) Weibull ∗ ∗ ∗ ∗ 0.00 0.00
Inverse Gaussian (2p) Weibull ∗ ∗ ∗ ∗ 0.00 0.00
Weibull Generalised Gamma 0.07 ∗ ∗ ∗ ∗ ∗
Burr Generalised Gamma ∗ ∗ 0.00 0.00 0.00 0.00
Inverse Gaussian (1p) Generalised Gamma ∗ ∗ ∗ ∗ 0.00 0.00
Inverse Gaussian (2p) Generalised Gamma ∗ ∗ ∗ ∗ ∗ 0.00
Burr Inverse Gaussian (1p) 0.07 ∗ 0.00 0.00 ∗ 0.00
Exponential Inverse Gaussian (2p) ∗ ∗ ∗ 0.00 ∗ ∗
Weibull Inverse Gaussian (2p) ∗ ∗ ∗ 0.00 ∗ ∗
Generalised Gamma Inverse Gaussian (2p) ∗ ∗ ∗ 0.00 ∗ ∗
Burr Inverse Gaussian (2p) 0.07 ∗ 0.00 0.00 ∗ 0.00

Note: An asterisk indicates that model forecasts 1 and 2 are statistically equal at any significance level.

As can be seen in Table 4, in terms of MSE criteria, inverse Gaussian
forecasts are only statistically better than the other models for H = 100, but
for other horizons the test is not conclusive, because the null hypotheses are
not rejected at any significance level, with the exception of H = 500 and 1000,
where Exponential, Weibull and generalised Gamma are always better than
the inverse Gaussian models. On the other hand, with respect to the class
of non–monotonic hazard distribution models, that is, the Burr model, the
inverse Gaussian model (1p and 2p) is always preferable for H = 10, 50, 100
and 1000 observations.
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The results for the unobserved heterogeneity models are shown in Table
5. Only the results for H = 500 and 1000 predictions are shown because for
the remaining forecast periods the results indicate non–rejection of the null
hypothesis. In all cases, according to the DM test the finite inverse Gaussian
mixture is better than finite and infinite mixtures of exponentials, at different
conventional significance levels.

We conclude, thus, that in terms of classical forecast evaluation criteria,
the inverse Gaussian has a slight advantage with regard to other unobser-
ved heterogeneity models, and the non-heterogeneity Burr distribution in all
cases. As regards the other models, exponential forecasts seems to be better
than the others for several prediction horizons. Finally, it is noteworthy, as
also observed by Hujer et al. (2002), that the models which allow unobserved
heterogeneity provided better forecast results in terms of MSE than did the
ACD models without unobserved heterogeneity, in both short and long-run
predictions. Thus, point forecasts do not tell us much about the suitabi-

Table 5: p-values for DM test for predictions of unobserved heterogeneity
models.

H

e1 e2 500 1000

Panel A: dh = e2
1h − e2

2h

Finite inverse Gaussian
Finite exponential mixture 0.00 0.05
Finite exponential Infinite exponential 0.00 0.04

Panel B: dh = |e1h| − |e2h|
Finite inverse Gaussian

Finite exponential mixture 0.05 0.10
Finite exponential Infinite exponential 0.02 0.00

Finite inverse Gaussian
Infinite exponential mixture 0.00 0.00

lity of the model in question, particularly regarding the appropriateness or
otherwise of the residual distribution. Therefore, for a more comprehensive
assessment of financial duration models, we employ the method of density
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forecasts. This technique can be employed to evaluate forecasts from both
nested and non-nested models.

A density forecast is defined as the density for the next observation of the
variables of interest. This method was derived by Diebold et al. (1998), based
on Rosenblatt (1952). This approach allows us to evaluate forecasts without
having to specify a loss function, and thus improves over most standard
techniques for evaluating point forecasts, which typically assume quadratic
loss. In our case, this density is implied by each model shown in Tables 1 and
2, and for the horizons defined by 100 and 1000 observations (for example,
we use the first 2534 observations of the sample for estimation, and the last
1000 for out–of–sample density forecast evaluation).

To do this, we applied the probability integral transform (PIT): zi =∫ xi
−∞ f(u|ψi) du, where xi is the duration realized and represents the one–

step ahead conditional forecast density produced by the financial duration
model. For example, in the exponential case fi(xi|ψi) = 1

ψi
exp(−xi/ψi).

Under the null hypothesis that the sequence of forecast densities {zi}n
i=1

is equal to the sequence defining the data generating process of xi (which
cannot be observed), that is, that the sequence of density forecasts is correctly
specified, then {zi}n

i=1 ∼ iidU(0, 1). As Diebold et al. (1998) point out, this
is a joint hypothesis which makes it difficult to distinguish the causes of a
possible rejection. This suggests that it is necessary to evaluate the density
forecasts {fi(·)}n

i=1 by testing the hypothesis of iid U(0,1) for the sequence
{zi}n

i=1. To do so, we can consider a number of tests of iid U(0,1), such
as a simple inspection of the autocorrelation functions to analyse the iid
hypothesis and histograms and QQ–plots of {zi}n

i=1 to assess uniformity. All
of these measures could inform us about the goodness of the density forecasts.

Specifically, to test the iid assumption of {zi}n
i=1 –or even the presence

of non-linear dependence in higher powers, for example, {z2
i }n

i=1–, we can
employ the Ljung–Box statistic (Q), both for the level and the square of the
sequence. These results are omitted by parsimony, but are available from the
authors on request. In general, the test for serial independence of the z se-
quences yielded good results for all non-heterogeneity and heterogeneity ACD
specifications, irrespective of the innovation distribution assumed. That is,
the iid assumption for the z and the squared sequences cannot be rejected,
at conventional significance levels, by employing different lags for LBQ tests.

We only report the results of histograms and QQ–plots for unobserved
heterogeneity models, because the results for non-heterogeneity models in-
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dicate that these are not correctly specified, that is, the sequence {zi}n
i=1 is

not iid U(0,1). For example, we can say that for H = 1000 predictions, the
histograms suggest that density forecasts are under–estimated for Weibull
(i.e., higher values for density or relative frequency at low values of probabi-
lity integral transform, zi), and over–estimated for exponential, generalised
gamma, Burr and inverse Gaussian with one or two parameters. In other
words, the probability integral transforms are not U(0,1).

Figure 5 shows the histogram for each unobserved heterogeneity finan-
cial duration model, which is scaled using the relative frequency and the bin
width, by the Freedman-Diaconis method. In addition, we plot the theoreti-
cal U(0,1) density in a fill area behind the empirical histogram. In all figures,
a comparison of the fill area for the U(0,1) distribution and the histogram
shows that they are close to the U(0,1) assumption. Nevertheless, the finite
exponential and finite inverse Gaussian mixtures have under–estimated fo-
recasts. However, empirical distribution tests such as Kolmogorov-Smirnov,
Anderson-Darling or Cramer-von Mises tests, reject null hypothesis of U(0,1)
at 5

Finally, Figure 6 shows the QQ–plots (by Cleveland’s method) between
empirical and theoretical quantiles of U(0,1) for unobserved heterogeneity
financial duration models. These indicate that the distributions lie on the
straight line. However, the infinite exponential may be more accurate than
the straight line for H = 1000 observations.

The main conclusion drawn with respect to density forecasts is that the
unobserved heterogeneity models perform better than the non-heterogeneity
ones because predictions are iid U(0,1); moreover, an infinite exponential
mixture of distributions is better than a finite mixture, at least according to
H = 1000 prediction results. However, these results cannot be considered
conclusive.

5 Conclusions

This paper proposes a new specification of the disturbance in the autoregres-
sive conditional duration model (ACD) to specify and test unobserved he-
terogeneity. It is assumed that standardized durations allow non-monotonic
hazard distribution (i.e., constant, increasing or decreasing with respect to
duration).

Unlike other recently proposed unobserved heterogeneity models based
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Figure 5: Histograms of the sequence of {zi}n
i=1 for unobserved heterogeneity

financial duration models and the case of H = 100 (above) and H = 1000
(below) predicted observations.
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Figure 6: QQ-plots of the sequence of {zi}n
i=1 for all financial duration mo-

dels and the case of H = 100 (above) and H = 1000 (below) predicted
observations.
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on exponential mixtures (Luca and Zuccolotto, 2003; Luca and Gallo, 2004,
2009), we propose the non-heterogeneity inverse Gaussian–ACD (IG–ACD)
and an unobserved heterogeneity finite inverse Gaussian–ACD (FIGM–ACD)
model. In the latter model, we assume the finite mixture of an inverse Gaus-
sian distribution with its reciprocal, as proposed by Jørgensen et al, 1991,
and we derive its statistical properties in the ACD(1,1) model.

The models we propose are easy to fit, and characterize the behaviour
of the conditional durations reasonably well. Therefore, by using statisti-
cal measures and autocorrelation tests on standardized residuals based on
in-sample estimates, all models are correctly specified, and the IG models
perform better than those without heterogeneity, such as exponential, wei-
bull, generalised gamma and Burr, and also, with regard to distributions,
than the unobserved heterogeneity model based on exponential mixtures.

Finally, based on out–of–sample predictions and one-step-ahead forecast
accuracy measures obtained for several prediction horizons, we only conclude
- in terms of point forecasts - that the forecasts obtained by IG–ACD models
are slightly better than those obtained from unobserved heterogeneity models
based on exponentials. On the other hand, as regards density forecasts,
the results of probability integral transforms for non-heterogeneity models
(in all the horizons analysed), indicate that the models are not correctly
specified. With respect to unobserved heterogeneity, although probability
integral transforms are iid U(0,1), which indicates that the model is specified
correctly, we cannot clearly determine any model as preferable. Therefore,
these results are not conclusive.
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