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Abstract. We analyze least squares (LS) estimation of breaks in long memory time series.
We show that the estimator of the break fraction is consistent and converges at rate T when
there is a break in the mean, in the memory or in both parameters. Further, we analyze
tests for the number of breaks. When testing for breaks in the memory, the asymptotic
results correspond to the standard ones in the literature. When testing for breaks in the
mean and when testing for breaks in both parameters, the results di¤er in terms of the
asymptotic distribution of the test statistic. In this case, the LS-procedure loses some of its
nice properties, such as asymptotic pivotality. In a simulation exercise, we �nd that the tests
based on asymptotic critical values are oversized in �nite samples. Therefore, we suggest
using the bootstrap, for which we derive validity and consistency, and we con�rm its better
size properties. Finally, we use the method to test for breaks in the U.S. in�ation rate.
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1. INTRODUCTION

Macroeconomic and �nancial time series are in general persistent and display long
memory characteristics such as hyperbolically decaying autocorrelation functions.
There has been a long discussion whether these time series can be described as
fractionally integrated models or whether their long memory is spurious due to breaks
in their mean (Granger and Hyung, 2004). Recently, Perron and Qu (2010) discuss
that many time series are more likely generated by stationary processes with a break
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in their mean rather than by long memory models. However, processes with breaks
in the long memory parameter can also generate those series (McCloskey, 2010).
The aim of this paper is to provide a method to detect the presence of breaks

in memory and in mean and to distinguish between them. We propose a uni�ed
approach for modeling breaks in the mean and the memory. In particular, we extend
Bai and Perron (1998) methodology to the long memory context and analyze least
squares estimation of breaks in long memory time series. In their short memory
framework, they discuss a linear model with multiple breaks. They derive consis-
tency and T�rate convergence of the break fraction estimate and the asymptotic
distribution of the parameter estimates in the regimes. Finally, they provide a series
of tests for the existence and number of breaks. Boldea and Hall (2010) extend Bai
and Perron�s (1998) analysis into a nonlinear setting. They show that the results of
Bai and Perron (1998) do not change, even though the proofs become more involved.
By considering nonlinear models, they encompass several ergodic models but not
long memory time series models.
Hsu and Kuan (1998) and Lavielle and Moulines (2000) analyze the LS proce-

dure for a process with a break in the mean and a stationary long memory error
term, yet without breaks in the memory. Since they do not integrate explicitly the
memory parameter in their analysis, they �nd di¤erent asymptotics. Further, Gil-
Alana (2008) analyzes a similar methodology as ours. Nevertheless, he works with
a data generating process that is not a typical long memory process. He also does
not derive rigorously the asymptotic distributions of the estimates and statistics. He
conjectures that the asymptotic properties resemble the ones found in Bai and Perron
(1998). However, we show that the critical values employed in Gil-Alana (2008) are
not the correct ones for testing for breaks in the mean. Besides, Gil-Alana (2008) is
not speci�c about the impact coming from the estimation of the memory parameter
d. Taking the latter into account, the problem becomes a nonlinear one and we have
to consider speci�c arguments to derive the asymptotic properties.
In this paper, we derive consistency and T -rate convergence of the break fraction

estimator and the asymptotic distribution of the parameter estimates when there are
breaks in the memory and/or the mean. We assess the power of break tests by con-
sidering local breaks in the memory and in the mean. The asymptotic distribution
of these tests di¤er from the ones of Bai and Perron (1998) and the procedure loses
some of its nice properties, such as asymptotic pivotality. We discuss tests for de-
termining which parameter is the changing one. Since the tests based on asymptotic
critical values su¤er from some size distortions in �nite samples, we suggest using
the bootstrap for which we derive validity and consistency.
Another strand of literature focuses on testing for the presence and the number

of breaks in the memory parameter in time series with long memory. Beran and
Terrin (1996, 1999) use parametric Whittle estimators to test for a break in the
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memory. Hassler and Meller (2009) introduce an augmented Lagrange Multiplier
test to test semiparametrically for breaks in the memory, allowing for breaks in
the mean. Hassler and Scheithauer (2011) show that tests for the null hypothesis
of I(0) series against alternatives of a change from I(0) to I(1), discussed by Kim,
Belaire-Franch and Amador (2002) and Busetti and Taylor (2004), are also consistent
for a change from I(0) to I(d), for d > 0. Sibbertsen and Kruse (2009) derive a
CUSUM of squares-based test. Martins and Rodrigues (2010) use recursive forward
and backward estimation of a LM test. McCloskey (2010) uses a modi�ed ratio of
weighted partial sums to test semiparametrically for breaks in the memory.
In Section 2, we discuss the model and the least squares estimation of an unstable

process. In Section 3, we derive the asymptotic behavior of the estimators in the
presence of breaks. In Section 4, we analyze tests for the number of breaks and
examine the behavior of these tests in �nite samples. In Section 5, we propose a
sequential testing strategy to determine which parameter is changing. In Section 6,
we analyze the bootstrap. In Section 7, we apply the methodology to the U.S.
in�ation series and test for breaks in memory and mean in this series. Finally in
Section 8, we conclude. Some Lemmata and additional Propositions which are needed
for the analysis are provided in Appendix A. The proofs are collected in Appendix B.

2. PRELIMINARIES

We consider the following model withm breaks in (T 01 ; T
0
2 ;...; T

0
m) (m+1 regimes),

yt = �
0
j +�

�d0j
t ut; t = T

0
j�1 + 1; :::; T

0
j ; j = 1; :::;m+ 1. (1)

The coe¢ cients of interest �0j = (�
0
j ; d

0
j ) lie in some set �j =Mj �Dj . The process

consists of an intercept and a Type II fractionally integrated disturbance,

�
�d0j
t ut =

t�1X
k=0

�k(�d0j )ut�k; (2)

where ��dt denotes the truncated fractional di¤erencing �lter with memory d and
where

�k (�d) =
� (k + d)

� (d) � (k + 1)
; k = 0; :::; t� 1;

denote the sequence of coe¢ cients of the expansion of ��dt . In this and in the next
section, we assume that the number of breaks, m, is known but the actual break
points,

�
T 01 ; T

0
2 ; :::; T

0
m

�
, are unknown. The latter will be estimated together with the

parameter vector (�0j )
m+1
j=1 . We consider equally the cases of a pure structural change

model, in which both coe¢ cients change, and a partial structural change model, in
which some coe¢ cient does not change.
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For obtaining the conditional sum of squares (CSS) estimator in a stable context,
it su¢ ces to apply the �lter �dt to the process since for d = d

0, the resulting residuals

are ut. Nevertheless, for a unstable process, it is not correct to apply the �lter �
d0j
t

to the process (1), as it is done in Gil-Alana (2008), because �
d0j
t yt is a weighted sum

of I (d1) to I (dj) terms rather than ut. In order to avoid this problem, Dolado et al.
(2009) de�ne the process implicitly as

�
d0j
t

�
yt � �0j

�
= ut; t = T

0
j�1 + 1; :::; T

0
j . (3)

In this case it su¢ ces to apply the fractional di¤erencing �lter �
d0j
t to obtain I (0)

residuals and the whole analysis simpli�es considerably. However, the process de�ned
in (3) is not strictly a I(d0j ) process in t > T

0
1 . Therefore, we rather apply a �lter to

(1) that restricts the �ltered data to lie in the interval of the corresponding regime.
First, we de�ne a break fraction �i and the true break fraction �0i as Ti=T and T

0
i =T

respectively. In particular, we set the residuals

ût (�j�1; �j) = �
dj
t�[�j�1T ]

�
yt � �j

�
; t = Tj�1 + 1; :::; Tj : (4)

Since the fractional di¤erencing �lter for regime j is restricted to the observations
of this regime, this �lter avoids the aforementioned mixing of observations from
di¤erent regimes. The resulting residuals in (4) are close to I (0), if break fraction
and coe¢ cients are estimated close to the true ones. However, apart from terms
coming from the distance between estimate and true break fraction and coe¢ cients,
there are also some additional terms coming from the fact that the applied fractional
�lter is too short. These terms are similar in nature to the terms that show up
when applying a truncated Type II fractional �lter to a untruncated Type I process.
The technical di¢ culties arise from showing that all these terms are asymptotically
negligible.
In particular, assume the process has m breaks at

�
T 01 ; :::; T

0
m

�
, where the true

number of breaks m is known. We estimate the break fractions �j = Tj=T together
with the coe¢ cients in the regimes by conditional sum of squares (CSS) estimation.
Let

ST (�;�) =

m+1X
i=1

Si;T (�i�1; �i; �i) =
m+1X
i=1

[�iT ]X
t=[�i�1T ]+1

ût (�i�1; �i)
2 , (5)

where ût is de�ned in (4). For simplicity, we illustrate the procedure for m = 1,
the general case follows equally. For a given break fraction �1 with T1 = [�1T ] and
(d1; d2),

f�̂i (di; �1)gi=1;2 = argmin
�1;�22M1�M2

fS1;T (0; �1; �1; d1) + S2;T (�1; 1; �2; d2)g .
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Substituting the estimator f�̂i (di; �1)gi=1;2 into the objective function, we obtain
the conditional memory estimator

fd̂i (�1)gi=1;2 = argmin
d1;d22D1�D2

fS1;T (0; �1; �̂1 (d1) ; d1) + S2;T (�1; 1; �̂2 (d2) ; d2)g :

Finally, we minimize the objective function with respect to �1 and obtain an estima-
tor for the break fraction as

�̂1 = argmin
�1
S1;T

�
0; �1; �̂1

�
d̂1(�1); �1

�
; d̂1 (�1)

�
+S2;T

�
�1; 1; �̂2

�
d̂2(�1); �1

�
; d̂2 (�1)

�
The estimator for the parameters di and �i (i = 1; 2) are

d̂i(�̂1) and �̂i(d̂i(�̂1); �̂1).

The truncated �lter (4) is attractive because it estimates the parameters in the
di¤erent regimes separately. Therefore, considering m breaks is conceptionally not
more involved than considering one break. Besides, it extends easily to a Type I
process DGP, ��d

0
i1 ut. The only di¤erence is that for a Type I process, the truncated

part is
Pt�1
j=0 �j (d)�

�d0i1 ut�j rather than
Pt
j=1 �j (d)�

�d0i
t�j ut�j .

For the subsequent analysis we need the following assumptions:
Assumption 1.
(i) The error term ut is iid

�
0; �2

�
:

(ii) Ejutjs <1, s > 3
2(1�2max(d0i ))

.
Assumption 2. The common parameter space� =M�D = ([�; ��]; [0; 1=2� "]) ; 0 <
" < 1=2, is compact and �0 2 �.
Assumption 3. T 0i =

�
T�0i

�
, i = 1; :::;m, where 0 < �01 < ::: < �

0
m < 1:

Assumption 1 implies that the errors are independent from the regression function
ft (�) = (�dit�Ti�1 � 1) (yt � �i), E [utft (�)] = 0 for all � and t. In contrast to
Boldea and Hall (2009), our regressor is not strictly stationary � � mixing but
fractionally integrated. For further generalizations of the error term, we could assume
a di¤erent variance in the di¤erent regimes or a short memory error process, ut =
w� (L) "t. In the former, for m = 1, let u(1)t and u(2)t denote the errors of the two
regimes. The variance of the mean estimator of the second regime depends then on
both error variances. For the latter, the analysis is complicated by the correlation
between the estimators of w� (L) and d. Hualde and Robinson (2010) analyze the
case of this estimator in a stable context with short term component but without
mean. In the following sections, we also consider the case of a stable autoregressive
structure. Further, we discuss shortly the case of testing for a changing short term
component and conjecture that the asymptotic distributions follow from combining
Boldea and Hall�s (2010) approach with ours. Assumption 1 Part (ii) is needed for
weak convergence of partial sums of products of the regressor and the error term.
Assumption 3 is a standard assumption in the break literature.
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For the following analysis of the estimators in the presence of structural breaks, we
need to analyze the behavior of the CSS estimator of one parameter if the other one
is not consistently estimated. For simplicity, we consider the stable case. First, the
CSS estimator of the memory works well when there is no deterministic component
or when it is known or consistently estimated at rate T 1=2�d

0

. On the other hand, if
the mean is not consistently estimated, the memory estimator can have a huge bias
in �nite samples (Chung and Baillie, 1993). But there are no asymptotic results for
this case to my best knowledge. Proposition 1a) delivers these results. Equally, we
analyze the properties of the mean estimation when the memory is inconsistently
estimated. Proposition 1b) shows that consistency and rate of convergence of the
mean estimation are asymptotically not a¤ected by the memory estimation.

Proposition 1. (Behavior of the CSS estimator)
a) For the memory estimator given �, for d0 2 Int(D),

d̂ (�)� d0 = Op(T�1=2) uniformly in �:

b) For the mean estimator given d,

�̂ (d)� �0 = Op(T d
0�1=2) uniformly in d 2 D:

It turns out that the estimation is inconsistent for d0 = 0 but still consistent for
d0 2 Int(D). The �nite sample e¤ects depend on d0; (�0 � �) and T . Especially, for
d0 close to 0, the estimate can be highly upward biased in �nite samples. The same
argument applies if we do not estimate �; just set �̂ = 0.
In the following sections, we analyze long memory time series with a break only

in the mean �, only in the memory d or in both parameters.

3. ASYMPTOTIC BEHAVIOR OF ESTIMATES IN THE PRESENCE OF
BREAKS

Given the nonlinear nature of our problem, our approach is closer to Boldea and
Hall (2010) rather than to Bai and Perron (1998). However, our process is fractionally
integrated and does not meet their conditions. In the following, we have to derive
most of the results newly.
The break fraction estimate is consistent for breaks in the memory, in the mean

and in both parameters.

Theorem 1. (Consistency of the break fraction estimator)
Let �̂i be such that T̂i = [T �̂i]: Then under Assumptions 1-3,

�̂i
p! �0i :

Using consistency of the break fraction estimates, we establish their rate of con-
vergence.
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Theorem 2. (Rate of convergence of the break fraction estimator)
For every � > 0; there exists a �nite C > 0 such that for all large T ,

P
�
T j�̂i � �0i j > C

�
< �:

We �nd T�rate convergence for the break fraction estimator when there are
breaks in the memory, in the mean or in both parameters. This T�rate corresponds
to the one found in Lavielle and Moulines (2000) for a break in the mean in a process
with Type I long memory error but is faster than the one found in Hsu and Kuan
(1998). Given the T rate convergence of the break fraction estimates, Theorem 3
provides consistency, the rate of convergence and the limiting distribution of the
parameter estimates. The estimators di and dj are independent and the estimators
�i and �j are dependent.

Theorem 3. (Asymptotic distribution of the CSS estimators)
Under Assumptions 1-3, with �0 2 Int(�),

diag
�
T 1=2; T 1=2�d

0
i

��
�̂i � �0i

�
d! N

�
0
¯
; Di

�
d0i ; �

0
i ; �

0
i�1
��

where

Di
�
�0i�1; �

0
i ; d

0
i

�
=

0@ 6
�2

�
�0i � �0i�1

��1
0

0 �2
�
�2(1�d0i )(1�2d0i )
(�0i��0i�1)

1�2d0
i
+D�ii

�
�0i�1; �

0
i ; d

0
i

��
1A

where d̂i and �̂j are uncorrelated for i; j = 1; 2, and d̂i and d̂j are uncorrelated and
�̂i and �̂j are correlated for i 6= j.

D�ii
�
�0i�1; �

0
i ; d

0
i

�
is the variance component arising from applying the too short

di¤erencing �lter on the fractionally integrated error series

D�ii
�
�0i�1; �

0
i ; d

0
i

�
=
�4
�
1� d0i

� �
1� 2d0i

�2�
�0i � �0i�1

�2�4d0i A�i
�
�0i�1; �

0
i ; d

0
i

�
; (6)

where

A�i
�
�0i�1; �

0
i ; d

0
i

�
= (7)

lim
T!1

T�1
[�0i�1T ]X
k=1

0@T d0i [(�0i��0i�1)T ]X
t=1

�t�1
�
d0i � 1

� tX
l=0

�l
�
d0i
�
�[�0i�1T ]+t�l�k

�
�d0i

�1A2 .
The covariance �2D�ij(f�0k�1; �0k; d0kgk=i;j) de�ned as (32) in the Appendix as well as
the variance component D�ii

�
�0i�1; �

0
i ; d

0
i

�
of the mean estimators �i and �j are func-

tions of {�0k�1; �
0
k; d

0
k}k=i;j and have to be numerically approximated. We estimate
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the covariance matrix of the estimator by replacing f�0i�1; �0i ; d0i g, D
�
ii and D

�
ij by

their estimates and �̂2 = T�1
PT
t=1 û

2
t .

Finally, if there is some short run dynamics in the form of a stable and known
causal AR(p) structure,

� (L)
�
yt � �0i

�
= �

�d0i
t "t; T

0
i�1 < t � T 0i ; (8)

the mean estimation behaves as in Theorem 3. The memory estimator is correlated
with the estimator of the AR component. In particular,

V ar
�
T 1=2(d̂i � d0i )

�
= !�2

�
�0i � �0i�1

��1
,

where !2 = �2

6 ��
0��1� is de�ned as in Lobato and Velasco (2007). � = (�1; :::; �p)

0

and �k =
P1
j=k j

�1cj�k; k = 1; :::; p where cj are the coe¢ cients of Lj in the ex-
pansion of 1=� (L). � = [�k;j ] ;�k;j =

P1
j=0 ctct+jk�jj; k; j = 1; :::; p denotes the

Fisher information matrix for � under Gaussianity. The proof follows from combin-
ing Hualde and Robinson (2010) and our Theorem 3.

4. TESTS

Up to now, we have assumed that the number of breaks is known. In the follow-
ing, we analyze some tests for determining the number of breaks if this number is
unknown.

4.1. F-test of 0 versus k breaks

First, we consider the hypothesis of no breaks and the alternative of k breaks,
where in practice k is a small number:

H0 : m = 0 vs. H1 : m = k:

Let � denote a break fraction partition satisfying the standard assumption of asymp-
totic distinctiveness and distance to the end-points. In particular, � belongs to the
subset

�� = f� � (�1; :::; �k) : j�i+1 � �ij � �; �i � �; �i � 1� �g

with � > 0. Given a break partition �, let

SSRk (�) = min
�1;:::;�k+1

k+1X
i=1

[�iT ]X
t=[�i�1T ]+1

�
�dit (yt � �i)

�2
(9)

denote the minimized sum of squared residuals under the alternative hypothesis of k
breaks. Note that this �lter di¤ers from the previous �lter (4) in being truncated at 1
rather than at [�i�1T ]. This �lter is the appropriate one under H0. In consequence,
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also the test statistic will be constructed under the assumption that H0 is true. From
(9), we obtain the unconstrained estimators in the k+1 regimes, (�̂1; :::; �̂k+1); given
the break partition �. Equally, SSR0 denotes the minimized sum of squares under
the hypothesis of no breaks. As in Bai and Perron (1998) and Boldea and Hall (2010),
we use a sup F-type test

sup
�2�2

F #T (�; k; p) = sup
�2�2

(SSR0 � SSRk (�)) =kp
SSRk (�) = [T � (k + 1) p]

: (10)

The number of changing parameters p is one or two. The superscript # 2 fd; �; (d; �)g
denotes the parameter in which we are testing for breaks. � is a �xed small number.
The larger � is, the larger is the power, but the test might become inconsistent, if ��
does not contain the true break fraction under the alternative. For the break only in
the memory (mean), SSRk (�) constraints the mean (memory) to be constant over
the regimes.
Since from (9), the same �i is subtracted from observations with true mean �0j

of all regimes j � i, the mean �i; i > 1; is inconsistently estimated under the
alternative hypothesis. This does not happen for the memory estimator di since the
terms arising from applying the wrong �lter are negligible. Alternatively, the �lter (4)
from Sections 2 and 3 would solve this problem of inconsistent estimation under the
alternative. However, for determining the asymptotic distribution of sup� FT under
H0, the �lter in expression (9) is more appropriate. The asymptotic distribution
resembles the one of Bai and Perron (1998) and the size properties are better. Despite
the estimators are inconsistent, this test has power, as we show in Theorem 5.
We consider the following local alternative for assessing the power of the tests for

processes close to H0,

H1;T : d
0
t = d

0
1 + T

�1=2hd

�
t

T

�
and �0t = �

0
1 + T

d01�1=2h�

�
t

T

�
.

As in Lazarová (2005), hj( tT ); j = d; �, is a bounded variation function on [0,1].
This local alternative comprises many types of structural change models. A function
h (�) =

Pi
j=1 �jI

�
�0j � �

�
describes abrupt breaks of size �i at time [�0iT ]. A function

h consisting of constant segments connected by smooth curves describes a smooth
transition between the di¤erent levels of the parameter. Finally, a general smooth
function of h describes continual change of the parameters.
Let

~W1=2�d01 (�) =

Z �

0
s�d

0
1dB (s) (11)

be a variant of a fractional Brownian Motion with a particular covariance structure,

Cov
�
~W1=2�d01 (�i) ;

~W1=2�d01 (�i�1)
�
=

�
1�2d01
i�1

�
�
1� d01

� �
1� 2d01

� . (12)
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Further, let

Bh (�i) = B (�i)�
�p
6

Z �i

0
hd (u) du (13)

and

~W h (�i) = ~W1=2�d01 (�i)�
R �i
0 u�2d

0
1h� (u) du

�
�
1� d01

�p
1� d01

, (14)

where the second terms re�ect the local drift for the break in memory and in mean
respectively. Finally, let

F di (�;k; 1) =

�
�iB

h (�i+1)� �i+1Bh (�i)
�2

�i�i+1 (�i+1 � �i)
, (15)

F�i (�;k; 1) =

�
�
1�2d01
i

~W h (�i+1)� �1�2d
0
1

i+1
~W h (�i)

�2
�
1�2d01
i �

1�2d01
i+1

�
�
1�2d01
i+1 � �1�2d

0
1

i

� and (16)

F
(d;�)
i (�;k; 2) = F di (�;k; 1) + F

�
i (�;k; 1) . (17)

Theorem 4 provides the asymptotic distribution of the test statistic for breaks in
both parameters under the local alternative.

Theorem 4. (Asymptotic distribution of the test)
Under Assumptions 1-2 and under H1;T ,

sup
�2��

F #T (�;k; p)
d! sup
�2��

1

pk

kX
i=1

F #i (�;k; p) ,

where the superscript # 2 fd; �; (d; �)g denotes the parameters in which we are testing
for breaks.

For the local alternative H1;T , the distribution of the test statistic depends on the
shape of the h�functions and depends therefore on the true break fractions if the
h-functions depend, e.g. for h being a stepfunction in the break fractions �0i .
The asymptotic distribution of the test di¤ers from the one in Bai and Perron

(1998) and depends on both standard and fractional Brownian Motion. The terms
corresponding to the estimation of memory and mean are additive because of their
independent estimation. If we test for breaks only in the memory, F di (�;k; 1) corre-
sponds to the one of Bai and Perron (1998) and if we test for breaks only in the mean,
the limit distribution F�i (�;k; 1) depends on the nuisance parameter d

0
1. F

�
i (�;k; 1)

resembles the one for a break in the memory with fractional rather than standard
Brownian Motions. In practice, we estimate the memory and compare the test statis-
tic to critical values obtained from simulating the test statistic for a grid of di¤erent
values of d and �tting a polynomial in d. The validity of this approach follows from
Giraitis et al: (2003).
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Corollary 1 provides the distribution of the test statistic for one break in both
parameters under the speci�c local break hypothesis

H 0
1;T : h# (�) = �#I

�
�0j � �

�
; # = fd; �; (d; �)g.

Corollary 1. Under Assumptions 1-2 and under H 0
1;T ,

sup
�2�2

F d;�T (�;1; 2)
d! sup
�2��

h
�B (1)�B (�)� �d �p

6

�
minf�; �01g(1�maxf�; �01g

�i2
� (1� �)

+

"
� ~W 1=2�d01 (1)� ~W1=2�d01 (�)� ��

�
(minf�;�01g)

1�2d01
�
1�(maxf�;�01g)

1�2d01
��

�(1�d01)
p
1�d01

#2
�1�2d

0
1

�
1� �1�2d01

� .

The proof follows from substituting h# (�) = �#I
�
�0j � �

�
; # = fd; �; (d; �)g, in

Theorem 4. From Corollary 1, because of symmetry, the local power is highest for
�01 = 1=2.
We focus on tests for one break and we simulate the critical values for a grid of

d0 for � = 0:05 and � = 0:15. For a break in both parameters they are shown in the
�rst line of Table 1 and for a break only in the mean, they are shown in the second
line. For a break only in the memory, the critical value corresponds to the one in
Bai and Perron (1998), CVd = 8:57.
For establishing the consistency of the test, we have to analyze the estimator using

the �lter in expression (9) underH1. Similar to Theorems 1 and 2, the break fractions
are also consistently estimated at rate T . Thus, we can treat them as if they were
known. Next, while the memory estimators d̂1; :::; d̂k+1 are still consistent, the mean
estimators �̂2; :::; �̂k+1 are inconsistent because the applied �lters mix observations
of the di¤erent regimes and converge to weighted averages of the true means of the
corresponding and the preceding regimes. Using these results, Theorem 5 provides
the consistency of the test.

Theorem 5. (Consistency of the test)
Under Assumptions 1-3 for k > 0 breaks,
a) The test for breaks in both parameters diverges at rate T under Hd;�

1 and under
Hd
1 , and diverges at rate T

1�2d0 under H�
1 .

b) The test for breaks in the memory diverges at rate T under Hd;�
1 and Hd

1 .
c) The test for breaks in the mean diverges at rate T 1�2d

0

under H�
1 and at rate

T 1�2minfd
0
1;d

0
2g under Hd;�

1 .

Thus, the tests are consistent with a rate of divergence that depends on which
parameters are changing. In consequence, for a d0 close to 1=2, the test for a break
only in the mean has low power under the alternative.
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TABLE 1
Critical Values of F-test for breaks in � and d and only in �.

d0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.49

CV 11.6 11.6 11.5 11.5 11.4 11.4 11.4 11.3 11.2 11.2 11.1
CV� 8.6 8.5 8.5 8.4 8.4 8.2 8.2 8.1 8.0 7.9 7.9

Finally, if the error term has the stable and known short run dynamics structure
ARFI(p,d) in (8), expression (13) in Theorem 4 becomes

Bh (�i) = B (�i)� !
Z �i

0
hd (u) du,

where !2 = �2

6 ��
0��1� is de�ned in the end of Section 3. A solution to an unknown

stable structure is discussed in the empirical application in Section 6.

4.2. F-test of ` versus `+ 1 breaks

We consider the following hypothesis

H0 : m = ` vs. HA : m = `+ 1 .

Technically, we impose ` breaks and test each segment for an additional break. The
test statistic corresponds to the one in Bai and Perron (1998),

FT (`+ 1 j`) = max
1�i�`

1

�̂2i

�
ST (T̂i�1; T̂i)� inf

�2�i;l

ST (T̂i�1; � ; T̂i)

�
where

�i;l =
h
� : T̂i�1 + (T̂i � T̂i�1)� � � � T̂i � (T̂i � T̂i�1)�

i
and

�̂2i
p! �2i = �

2.

Following the same logic as in the test of zero against k breaks, we choose the
�lter truncated at T̂i�1 which is appropriate under H0. The underlying constrained
estimator (assuming one regime for the interval [T̂i�1 + 1; T̂i]) is the one discussed
in Theorem 3. For estimating the regime [� ; T̂i], the �lter is still truncated at T̂i�1
rather than at � and thus di¤ers from the one used in Sections 2-3. Therefore, similar
to Section 4.1, the mean estimate is not consistent under the alternative. Yet, the
test is still consistent.
We consider again a local break in all regimes: For i = 1; :::; ` and t = T 0i�1 +

1; :::; T 0i ,

H`
1T : d0i;t = d

0
i + T

�1=2hd

�
t� T 0i�1
T 0i � T 0i�1

�
and

�0i;t = �
0
i + T

d0i�1=2h�

�
t� T 0i�1
T 0i � T 0i�1

�
.

12



There is a local break in all regimes with hd (�) and h� (�) as de�ned in H1;T .
First,

T�1=2
T 0i�1X
k=1

0B@T d0i [(T 0i �T 0i�1)]X
t=1

�t�1
�
d0i � 1

� tX
l=0

�l
�
d0i
�
�T 0i�1+t�l�k

�
�d0i

�1CAuk (18)

converges in distribution to C
�
�0i�1; ; d

0
i

�
; a Gaussian process with mean zero and

variance (7) with �0i = T 0i =T + (1� )T 0i�1=T . Tightness in  follows from ar-

guments similar to the ones in Lemma 1. Next let G(d;�);(i)2;� (x) be the distribution
function of

sup
���1��

(�
Bh ()� Bh (1)

�2
 (1� ) +

Ŵ h
i ()� 1�2d

0
i Ŵ h

i (1)

1�2d
0
i (1� 1�2d0i )

)
, (19)

where Bh () is de�ned in (13) and where

Ŵ h
i () =

~W h () +

�
1� 2d0i

�
�2
�
1� d0i

�
C
�
�0i�1; ; d

0
i

�
(�0i � �0i�1)1�2d

0
i

. (20)

The �rst term of (20) corresponds to (14) with one local break. For Gd;(i)2;� (x), the

second term in (19) drops and for G�;(i)2;� (x) the �rst term in (19) drops. Theo-
rem 6 provides the asymptotic distribution for testing for a (`+ 1 )�s break in both
parameters.

Theorem 6. (Asymptotic distribution of the test for ` vs. `+ 1 breaks)
Under Assumptions 1,2 and under H`

1T ,

lim
T!1

P (FT (`+ 1j`) � x) = �`+1i=1G
#;(i)
p;� (x) ; # 2 d; �; (d; �).

For the test for a break only in the memory, the test statistic behaves as the
one in Bai and Perron (1998). The critical value x� is the value x for which
Gdp;� (x) = �1=(l+1) and the critical values are the ones tabulated in Bai and Per-
ron (1998). For the test for a break only in the mean, the distribution depends on
the variant of fractional Brownian motion (11) plus the additional term coming from
applying the too short �lter. For this test and for the test for a break in both pa-
rameters, G#;(i)p;� (x) ; # = f�; (d; �)g; di¤ers between the regimes and, consequently,
the critical value x� is the value x for which �`+1i=1G

#;(i)
p;� (x) = �. The asymptotic

distribution depends on (d01; :::; d
0
`+1) and (�

0
1; :::; �

0
` ). As a consequence, the critical

values are obtained on a case-by-case basis given the estimated break partition and
memory parameters. Further, the additional term in (20) introduces some depen-
dence between the distribution function in the di¤erent regimes that has to be taken
into account when simulating the critical values. Therefore, it is clear that using
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TABLE 2
Test for a joint break in memory and mean.

a) Size. Rejection probabilities when there is no break.
Tnd0 0.05 0.15 0.25 0.35 0.45

200 2.2 6.7 10.0 11.3 13.0
500 3.4 7.5 9.6 9.7 8.8
1000 3.5 6.5 7.0 8.0 7.3

b) Power. Rejection probabilities when there is a break at the half of the sample.
T=200

d02nn�02 0.5 1 1.5 2

d01=0.05 0.05 48.2 2.7 50.9 98.1
0.10 44.0 4.3 41.7 95.5
0.25 45.8 21.8 45.0 84.1
0.45 78.6 75.7 80.8 86.5

T=500
0.5 1 1.5 2

91.3 3.8 90.9 100.0
83.7 5.4 82.8 100.0
78.7 56.9 81.0 98.7
99.8 99.4 99.2 99.6

d01=0.25 0.05 49.6 21.4 46.8 90.8
0.25 22.9 10.7 23.1 54.8
0.30 23.1 13.8 23.0 48.9
0.45 35.6 31.0 35.7 50.5

85.5 56.5 86.1 99.7
28.8 9.6 27.8 75.3
27.3 13.2 28.0 64.5
65.7 61.5 63.7 73.6

d01=0.45 0.05 83.6 77.6 83.7 91.3
0.25 38.9 31.6 38.3 56.8
0.40 18.8 16.5 17.9 28.4
0.45 16.5 14.8 16.8 26.5

99.8 99.6 99.6 100.0
71.9 61.1 68.4 81.2
17.1 15.1 17.7 27.6
12.3 9.8 12.2 22.4

this test is unfeasible. To overcome this problem in practice, we suggest using the
bootstrap, which we discuss in the next section.
The consistency and rates of divergence of FT (l + 1jl) follow from using a similar

argument as the one for the consistency of the sup� F (�; 1; p) test for the segment
that contains the additional break in Theorem 5.

5. MONTE CARLO ANALYSIS USING ASYMPTOTIC CRITICAL
VALUES

In this section, we analyze size and power of the three tests discussed in Section
4.1, sup� F

d
T , sup� F

�
T , sup� F

d;�
T . For simplicity we analyze the case of one break,

using the critical values provided in Table 1. In all following simulations the number
of simulations is 1; 000, the distance to the endpoints of the sample " = 0:15; the
signi�cance level � = 0:05 and the sample sizes are T = 200; 500 and 1; 000 for the
size and 200 and 500 for the power. We assume an error variance �2 = 1. Since
asymptotic results are invariant to the level of the mean, we take �0 = 1 if the mean
is constant and �01 = 1 for the mean in the �rst regime if it is changing. For the size,
we analyze d0 = 0:05; 0:15; 0:25; 0:35 and 0:45. For the power, we consider breaks in
the mean from d01 = 0:05 to d

0
2 = 0:1, 0:25 and 0:45, from d01 = 0:25 to d

0
2 = 0:05; 0:3

and 0:45 and from d01 = 0:45 to d
0
2 = 0:05; 0:25 and 0:4. Further, we consider breaks

in the mean from �01 = 1 to �
0
2 = 0:5; 1:5 and 2. The break fraction is always at the
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TABLE 3
Test for a break in the memory.

a) Size. Rejection probabilities when there is no break.
Tnd0 0.05 0.15 0.25 0.35 0.45

200 1.5 4.2 7.3 9.2 7.4
500 2.3 6.3 8.3 8.4 5.5
1000 2.7 6.5 6.8 7.2 4.8

b) Power. Rejection probabilities when there is a break at the half of the sample.
d01 =0.05

Tnnd02 0.05 0.1 0.25 0.45

200 1.2 1.8 20.8 84.3
500 1.2 4.5 64.1 99.6

d01 =0.25
0.05 0.25 0.3 0.45

25.6 7.7 8.9 29.3
66.6 8.9 12.3 67.9

d01 =0.45
0.05 0.25 0.4 0.45
84.5 36.6 10.6 8.7
99.8 67.9 11.2 7.1

half of the sample (�01 = 0:5).
First, Table 2a) shows the size of a test for a break in both parameters. The

estimator of the memory is constrained to lie in the interval [0; 1=2) which naturally
has a negative e¤ect on the size in �nite samples. This negative e¤ect is largest for
d = 0:05 and decreases as the sample size increases. For larger memory parameter,
the test is oversized in �nite samples. This happens because even if the estima-
tion of memory and mean is asymptotically uncorrelated, in �nite samples it is still
correlated. Table 2b) analyzes the power of this test. The power increases in the
sample size. In general, a break in the memory is only detectable for larger break
sizes. Further, the detectability of a break in the mean decreases considerably in d20
since the higher the true memory in the two regimes, the less precisely the means
are estimated. For a non-changing memory of 0:45, the break in the mean is not
detected even for larger samples.
Next, we analyze the behavior of the test for a break only in the memory. Table 3a)

shows the size properties of this test. For d0 = 0:05, the size is too low because of
the constrained estimation of the memory. This size distortion vanishes slowly. For
larger memory parameters, the test is again slightly oversized. Next, Table 3b) shows
that the test has power for detecting a break for not too small breaks in the memory.
Since the size of a test for a break only in the memory is smaller than the one of a
test for a break in both parameters, its power is also smaller.
Finally, we analyze size and power of a test for a break only in the mean. Table 4a)

displays the size properties of such a test. This test is also slightly oversized. Finally,
Table 4b) displays the power. Because of the imprecise estimation, a test of a break
in the mean has low power when the true memory is close to 0:5. This con�rms the
lower rate of divergence in Theorem 5.
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TABLE 4
Test for a break in the mean.

a) Size. Rejection probabilities when there is no break.
Tnd0 0.05 0.15 0.25 0.35 0.45

200 6.5 11.2 11.5 11.0 12.8
500 7.3 8.3 8.7 8.2 8.5
1000 7.1 7.1 6.4 7.3 6.0

b) Power. Rejection probabilities when there is a break at the half of the sample.
T=200

d0nn�02 0.5 1 1.5 2

0.05 65.1 7.9 70.8 99.6
0.25 29.7 12.5 28.2 65.3
0.45 20.2 14.6 14.9 22.6

T=500
0.5 1 1.5 2

95.8 8.5 96.8 100.0
36.2 10.0 33.7 82.3
15.5 10.0 14.5 22.1

TABLE 5
Robustness of tests for a break in one parameter.

a) Size of test for a break in the memory if there is a break in the mean.
T=200

d0nn�02 0.5 1 1.5 2

0.05 13.2 6.3 14.0 46.0
0.25 15.5 8.8 13.2 23.7
0.45 11.9 11.8 12.3 13.1

T=500
0.5 1 1.5 2

20.6 4.5 21.1 79.3
10.7 7.9 11.0 22.5
6.5 8.7 8.5 8.2

b) Size of test for a break in the mean if there is a break in the memory.
d01 =0.05

Tnnd02 0.05 0.1 0.25 0.45

200 7.9 10.0 19.7 39.2
500 8.5 11.7 21.2 41.5

d01 =0.25
0.05 0.25 0.3 0.45

16.6 13.3 13.6 25.5
15.2 11.4 12.0 25.6

d01 =0.45
0.05 0.25 0.4 0.45
23.5 14.3 11.9 14.1
25.8 12.7 9.1 10.5

6. IDENTIFIABILITY OF CHANGING PARAMETERS

Up to now, we have analyzed the behavior of tests in situations for which they
are designed. In this section, we analyze tests for breaks in one parameter for the
case that the other parameter is changing. Table 5a) shows that the test for a break
in the memory is highly oversized if the mean is changing. The reason is that as
mentioned in the end of Section 2, a break in the mean a¤ects the estimation of
the memory in �nite samples. Table 5b) shows that the same is true when testing
for a break in the mean if the memory is changing. The intuition is that the mean
is estimated at di¤erent rates of convergence under the alternative and therefore
the di¤erence between SSR0 and SSR

�
1 becomes too large. Therefore, we cannot

distinguish between breaks in the memory and breaks in the mean and it is not
possible to identify the changing parameter.
First, we focus on testing for a break in the memory when the mean is changing.
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To solve the mentioned problem we suggest a Chow type test. Let

SSR0k (�) = min
�1;:::;�k+1

k+1X
i=1

[�iT ]X
t=[�i�1T ]+1

�
�dit�[�i�1T ] (yt � �i)

�2
denote the minimized sum of squares under the alternative of a break in the memory
and in the mean given a partition �. The estimate of the corresponding break fraction
is

�̂ =argmin
�
SSR0k (�) .

As in Sections 2 and 3, the �lter is truncated at [�̂i�1T ] rather than at 1. Next, we
use the estimated partition �̂ to estimate under the null a constant memory and a
changing mean with the corresponding minimized sum of squares

SSRd0

�
�̂
�
= min
d;�1;:::;�k+1

k+1X
i=1

[�̂iT ]X
t=[�̂i�1T ]+1

�
�d
t�[�̂i�1T ]

(yt � �i)
�2
.

For testing for a break in the mean, we estimate under the null of a constant mean
and a changing memory with the corresponding minimized sum of squares SSR�0 (�̂).
For simplicity, we consider the case of one break. Let

F #T

�
1; 1j�̂1

�
=

�
SSR#0

�
�̂
�
� SSR0k

�
�̂
��

SSR0k

�
�̂
�
= (T � 2)

; # = d; �, (21)

be the test statistic for testing for a break in the memory and the mean respectively.
For testing for a break in the memory under the maintained hypothesis of a break

in the mean, we assume a local break in the memory and a break in the mean

H
d;�01 6=�02
1;T : d0t = d

0
1 + T

�1=2hd

�
t

T

�
.

For testing for a break in the mean under the maintained hypothesis of a break
in the memory, we assume a local break in the mean and a break in the memory

H
�;d01>d

0
2

1;T : �0t = �
0
1 + T

�1=2+d01h�

�
t

T

�
or

H
�;d01<d

0
2

1;T : �0t = �
0
1 + T

�1=2+d02h�

�
t

T

�
:

Proposition 2a) (b)) discusses the asymptotic distribution of the test for a break in
the memory (mean) when the mean (memory) is changing.

Proposition 2. (Asymptotic distribution of the test for a break in one parameter
under the maintained hypothesis of break in other parameter)
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a) Under Assumptions 1-2 and under Hd;�01 6=�02
1;T ,

F dT

�
1; 1j�̂1

�
d! �21 (c1) ;

where c1 = �2

6

�
�01
R 1
0
hd(u)du�

R �01
0 hd(u)du

�2

�01(1��01)
.

b) Under Assumptions 1-2 and under H�;d01>d
0
2

1;T ,

F�T

�
1; 1j�̂1

�
d! �21 (c2) :

where c2 =

�R �01
0 u�2d

0
1h�(u)du

�2

(�01)
1�2d0

1�2(1�d01)(1�2d01)
.

c) Under Assumptions 1-2 and under H�;d01<d
0
2

1;T ,

F�T

�
1; 1j�̂1

�
d!
�
1 +D�22

�
�01; 1; d

0
2

��
�21 (c3) :

where D�22
�
�01; 1; d

0
2

�
is de�ned in (6) and c3 = 1

(1+D�
22(�

0
1;1;d

0
2))

�R 1
0
u�2d

0
2h�(u)du

�2�
1�(�01)

1�2d0
2

�
�2(1�d02)(1�2d02)

.

First, when there is a break in the mean, the estimator of the break partition
�̂ converges at rate T to the true break fraction (from Theorem 2). This rate is
superconsistent and we can treat the break fraction as known. Therefore, the as-
ymptotic distribution in Parts a) and b) corresponds to the one of a Chow test and
the critical values are taken from a �21. For Part c), because of the too short �lter,
the asymptotic distribution is not distribution free and we have to simulate the crit-
ical values. Finally, if we do not know the direction of the break in the memory, in
order to control the size, we choose the critical values from case c) since they are
the larger ones. Proposition 2 can be generalized to k breaks. Since the test is also
consistent, this procedure makes it possible to distinguish between a break in the
memory (mean) and a break in both parameters.
On the other hand, if there are no breaks, �̂ converges to a spurious limit and the

test statistic behaves asymptotically not as in Proposition 2 but similar to the one in
Theorem 4 (the di¤erence comes from the di¤erent �lters). The critical values from
Proposition 2 are not the right ones for this case and we overreject. However, this
case only happens with probability � (probability of erroneously rejecting H0 : d1 =
d2 & �1 = �2 in the �rst step). Thus, the size is controlled.
In practice, we can apply the following sequential testing strategy:

1) Test H0 vs. H1 : d1 6= d2 and/or �1 6= �2 (Corollary 1).
(i) If do not reject ! conclude there are no breaks. Stop.
(ii) If reject ! conclude there are breaks. ! 2a) and 2b).
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2a) Test Hd;�01 6=�02
0 vs. H1 : d1 6= d2 & �1 6= �2 (Prop. 2a))

(i) If do not reject ! conclude the memory is not changing.
(ii) If reject ! conclude the memory is changing.

2b) Test H�;d01 6=d02
0 vs. H1 : �1 6= �2 & d1 6= d2 (Prop. 2b)/c))

(i) If do not reject ! conclude the mean is not changing.
(ii) If reject ! conclude the mean is changing.

All tests in this sequential procedure are consistent. The size is � for the tests
in step 1 and in step 2a) and 2b) if the respective maintained hypothesis is true.
If the mean (memory) is not changing in step 2a) (2b)), the size is �1 � � (�2 � �)
where �1 (�2) denotes the probability of rejecting in the step 2a) (2b)) after having
rejected in step 1). This probability lies between � and 1 and depends on the relative
strength of the signal in the �rst step. Therefore, the test of the null of d1 = d2 versus
d1 6= d2 has size � �1 � � � � regardless of the memory and the test of the null of
�1 = �2 versus �1 6= �2 has size � �2 � � � �.

7. BOOTSTRAP

We propose bootstrap procedures for three di¤erent situations.
First, we use the bootstrap for the test of breaks in mean and/or memory as

a solution to the encountered size distortions due to constrained estimation for d0

close to 0 and for a higher memory in Tables 2, 3 and 4. For simplicity, we again
consider the case of one break. We apply the following residual bootstrap for testing
for breaks in memory and mean:

1. From the estimation under the null, obtain d̂; �̂ and ût.
2. Resample the residuals ût to obtain u�t , and generate

y�t = �̂+�
�d̂
t u

�
t .

3. From the estimation under the null and alternative for the new series y�t , obtain
the test statistic

sup
�2�2

F �T (�; k; p) = sup
�2�2

(SSR�0 � SSR�k (�)) =kp
SSR�k (�) = (T � (k + 1) p)

; (22)

with

SSR�k (�) =
k+1X
i=1

1

T

TiX
t=Ti�1+1

�
�
d̂�i
t (yt � �̂�i )

�2
:

4. Repeat 2-3 B times and obtain from the empirical distribution the bootstrap
critical values.
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The obtained residuals are asymptotically close to iid under H0. Since the
memory is estimated, we integrate the residuals with d̂ rather than with d. Therefore,
even underH0 we cannot use a simple resampling under iid but we use instead results
of Kapetanios (2010), who analyzes the Sieve bootstrap in a similar context, and his
remark about the applicability of the CSS estimator. In contrast to his DGP, ours
is more restricted because we do not have a short memory component. Theorem 7
proves the validity of the bootstrap in our context where the di¢ culty arises from
the fact that the memory is estimated.

Theorem 7. (Asymptotic behavior of the bootstrap test)
Under Assumptions 1 and 2 and under H0 or H1;T , the bootstrap based test sat-

is�es
P (sup� F

�
T (�;k; 2) � xjy1; :::yT )

p! P (sup� F (�;k; 2) � x)

and the test is consistent.

In practice, we use the unconstrained estimator rather than the constrained one to
obtain the residuals in the �rst step. By doing so, we expect better power properties.
This is valid because of Proposition 3.

Proposition 3. Under H0;

1) sup
�2[�;1�� ]

T 1=2
�
di (�)� d0

�
= Op (1) ; i = 1; 2:

2) sup
�2[�;1�� ]

T 1=2�d
0 �
�i (�)� �0

�
= Op (1) ; i = 1; 2:

Table 6a) displays Monte Carlo simulations of the size properties of the bootstrap
critical values for testing for a break in both parameters. We apply the Warp boot-
strap (Giacomini et al., 2007) for all simulations. Not surprisingly, the size properties
of the test for breaks in both parameters with bootstrap critical values is closer to
the nominal level. Table 6b) provides the power of this test. For testing for breaks
only in the memory and only in the mean, we construct corresponding bootstrap
procedures.
Finally, if there are short run dynamics of a stable and known ARFI(p; d) struc-

ture, the �rst two steps of the bootstrap change to

1. From the estimation under the null, obtain d̂; �̂; �̂ (L) and the residuals

v̂t = �
d̂
t �̂
�1 (L) (yt � �̂) :

2. Resample the residuals v̂t to obtain v�t and generate

y�t = �̂+ �̂
�1 (L)��d̂t v

�
t .
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TABLE 6
Bootstrap test for a break in memory and mean.

a) Size. Rejection probabilities when there is no break.
Tnnd0 0.05 0.15 0.25 0.35 0.45

200 5.0 6.1 4.2 3.8 4.9
500 5.6 6.2 5.9 5.7 4.4
1000 4.7 4.8 5.3 4.0 4.9

b) Power. Rejection probabilities when there is a break at the half of the sample.
T=200

d02��02 0.5 1 1.5 2

d01=0.05 0.05 50.1 6.4 53.5 97.6
0.10 42.2 5.7 44.6 91.8
0.25 36.1 21.8 32.7 74.1
0.45 63.7 62.5 71.0 77.8

T=500
0.5 1 1.5 2

90.8 5.8 89.8 100.0
79.6 5.5 82.7 99.9
74.2 45.9 77.5 97.3
98.9 99.1 98.6 99.1

d01=0.25 0.05 41.6 20.6 40.7 86.2
0.25 17.4 6.4 15.2 42.9
0.30 14.9 9.5 17.1 41.5
0.45 22.0 20.5 23.2 32.5

78.6 48.7 84.7 98.8
16.1 6.5 23.3 57.7
15.0 7.7 19.4 47.6
52.6 50.1 54.7 61.0

d01=0.45 0.05 72.9 67.3 71.2 85.7
0.25 26.6 18.3 25.1 41.0
0.40 10.9 9.2 10.2 15.9
0.45 7.7 6.6 8.6 17.1

99.5 99.0 99.7 99.8
56.2 49.8 60.9 62.5
8.9 10.3 12.7 15.6
6.4 5.6 10.7 11.7

Second, we analyze a bootstrap procedure for a test for a break in the memory
(mean) that is robust to the presence of a break in the mean (memory). Such tests
are necessary since the tests de�ned in Theorem 4 su¤er from the size distortions
shown in Table 5, and the tests in Proposition 2 require a break in the not tested
parameter. For the test for a break in the memory that is robust to the presence of
a break in the mean, we apply the following residual bootstrap:

1. From the estimation under the null, minimizing SSR�0 , obtain �̂1; d̂; �̂1; �̂2
and the residuals ût. In line with the procedure described in Sections 2-3, use the
�lter (4).
2. Resample the residuals ût to obtain u�t , and generate

y�t =

(
�̂1 +�

�d̂
t u

�
t ; t � �̂1T

�̂2 +�
�d̂
t u

�
t ; t > �̂1T .

3. From the estimation under the null and the alternative for y�t , obtain a boot-
strap version of the test statistic (21).
4. Repeat 2-3 B times and obtain from the empirical distribution the bootstrap

critical values.

Proposition 4 discusses validity and consistency of the bootstrap procedures in
both cases. If the not tested parameter is not changing, the behavior follows from
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combining Theorem 7 and Proposition 3. If the not tested parameter is changing,
the behavior follows from similar arguments as the ones in Proposition 2.

Proposition 4. (Asymptotic behavior of the robust bootstrap test)
a) Under Assumptions 1-2, for testing for a break in the memory, the bootstrap

based test, corresponding to (22), satis�es under H1;T ,

P (sup� F
�
T (�;k; 1) � xjy1; :::; yT )

p! P (sup� F
d (�;k; 1) � x),

under Hd;�01 6=�02
1;T ,

P (sup� F
�
T (�;k; 1) � xjy1; :::; yT )

p! �21.

Further, the test is consistent.
b) Under Assumptions 1-2, for testing for a break in the mean, the bootstrap based

test satis�es under H0 and H1;T ;

P (sup� F
�
T (�;k; 1) � xjy1; :::; yT )

p! P (sup� F
� (�;k; 1) � x) .

and under H�;d01>d
0
2

1;T ,

P (sup� F
�
T (�;k; 1) � xjy1; :::; yT )

p! �21

and under H�;d01<d
0
2

1;T ,

P (sup� F
�
T (�;k; 1) � xjy1; :::; yT )

p!
�
1 +D�22

�
�01; 1; d

0
2

��
�21

Further, the test is consistent.
F d (�;k; 1) and F� (�;k; 1) are both de�ned in Theorem 4.

As discussed in Section 4.1, the asymptotic distribution of the test statistic for
testing for a break in the memory (mean) di¤ers between the case when the mean
(memory) changes and the case when it does not change. The bootstrap based
test has to take this into account and converges in probability to the corresponding
asymptotic distributions. If there is a break in the mean, �̂1 converges to the true
break fraction and due to the superconsistency, the test behaves as a Chow test
(Proposition 2). If there is no break in the mean, �̂1 has a spurious limit and the
asymptotic behavior corresponds to the �rst term of Corollary 1. Table 7a) displays
the size of this alternative bootstrap procedure. It turns out that the test is still
slightly oversized when the mean is not changing (2nd column). In this case, we
estimate a changing mean with a spurious break point. Thus, the generated series
has a changing mean at this spurious break point and we frequently estimate a break
at this point. For larger sample sizes, the size gets closer to the nominal level. The
power is clearly larger than the one for an alternative conservative strategy of using
always critical values from Theorem 4. This robust bootstrap test also improves
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TABLE 7
Size of robust bootstrap tests.

a) Size of a bootstrap test for a break in d that is robust to a break in �.
T=200

d0nn�02 0.5 1 1.5 2

0.05 5.8 9.7 5.0 4.7
0.15 11.9 9.3 8.0 7.1
0.25 5.7 8.6 9.0 6.6
0.35 5.7 6.4 6.3 6.2
0.45 5.1 6.9 5.6 4.5

T=500
0.5 1 1.5 2

7.1 8.9 7.1 7.1
5.0 8.6 5.2 5.1
6.6 6.5 4.6 4.2
4.6 8.4 4.6 4.6
6.1 6.0 6.1 4.7

T=1000
0.5 1 1.5 2

7.0 7.3 6.5 5.7
4.7 5.9 6.0 5.9
6.3 6.2 6.1 4.9
7.0 6.7 7.0 3.4
5.5 5.5 5.9 3.7

b) Size of a bootstrap test for a break in � that is robust to a break in d.
d01 =0.05 d01 =0.25 d01 =0.45

Tnnd02 0.05 0.1 0.25 0.45 0.05 0.25 0.3 0.45 0.05 0.25 0.4 0.45
200 4.1 9.4 4.2 9.7 5.8 6.5 4.0 10.8 6.0 5.0 4.4 7.0
500 6.8 6.4 6.0 10.1 6.9 7.1 5.0 8.2 5.7 4.5 4.8 8.7
1000 6.2 5.2 6.7 10.2 4.0 4.8 8.4 10.3 4.0 5.5 8.2 6.3

steps 2a) and 2b) in the sequential procedure in Section 6. Table 7b) provides the
size of the test for a break in the mean that is robust to the break in the memory.
The test is still oversized when the memory is close to 0:5 since in this case, the mean
is imprecisely estimated.
Finally, we analyze a bootstrap procedure for testing ` versus `+ 1 breaks to

solve the problems described in the previous section. For simplicity, we consider the
case of one vs. two breaks. We apply the following residual bootstrap:

1. From the estimation under the null, described in Sections 2-3, obtain �̂1; d̂1; d̂2,
�̂1; �̂2 and the residuals ût.
2. Resample the residuals ût to obtain u�t , and generate

y�t = �̂i +�
�d̂i
t u�t ,

3. From the estimation under the null and under the alternative for the new series
y�t , obtain the test statistic from Theorem 4.
4. Repeat 2-3 B times and obtain from the empirical distribution the bootstrap

critical values.

This bootstrap test is valid for similar reasons as the ones in Theorem 7 and avoids
the problem of obtaining the asymptotic critical values on a case by case basis.

8. EMPIRICAL APPLICATION

In the previous sections, we have assumed that the short run dynamics structure
is known. For the empirical application this assumption has to be relaxed. Since the
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consistency of the parametric memory estimation depends on the knowledge of this
autoregressive structure, we need a preliminary estimate of the memory. For a sta-
ble fractionally integrated progress, Hualde and Robinson (2011) suggest using the
following approach: First, obtain a preliminary memory estimate from a semipara-
metric estimation (e.g. the local Whittle estimator (Robinson, 1995)) and use this
estimate to �lter the series to obtain (approximately) short memory. Next, choose
the orders p; q of the short memory ARMA (p; q) structure by minimizing an infor-
mation criterion. Finally, the parameters of the ARFIMA (p; d; q) are estimated
parametrically.
In our case, we need to obtain the preliminary semiparametric estimate under the

alternative rather than under H0. Thus, as in Hsu (2005) and Hassler and Meller
(2009), we use a modi�ed version of the Exact Local Whittle estimator (Shimotsu
and Phillips, 2005, Shimotsu, 2010) and we further modify it by allowing also for
a break in the memory. In particular, we de�ne the periodogram and the discrete
Fourier transform of a time series xt evaluated at the fundamental frequencies as

Ix (vj) = j�x (vj) j2

and

�x (vj) = (2�T )
�1=2

TX
t=1

xte
itvj ; vj =

2�j

T
:

Given a break fraction �, the mean estimators are

�1 (�) =
1

[�T ]

[�T ]X
t=1

yt and �2 (�) =
1

[(1� �)T ]

TX
t=[�T ]+1

yt.

The memory estimator is

d̂i (�) = argmin
di
R (di; �) ;

where for nT = T�, 0 < � < 1,

R (di; �) = log Ĝ (di; �)� 2di
1

nT

nTX
j=1

log vj

and

Ĝ (di; �) =
1

nT

nTX
j=1

Iu(�) (vj) ;

where

ut (�) =

(
�d1t (yt � �1 (�)) ; t � [�T ]
�d2t�[�T ] (yt � �2 (�)) ; t > [�T ]

: (23)
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Finally, the break fraction is estimated as

�̂ = argmin
�
fR (d1 (�) ; �) +R (d2 (�) ; �)g .

From Lavielle and Ludeña (2000), such a break fraction estimator should estimate
the break fraction at rate nT . The subsequent estimators of the parameters in the
two regimes behave as described in Shimotsu (2006). In the following, we choose
� = 0:7.
We �lter the data using the semiparametric estimates ( ~d1; ~d2; ~�1; ~�2; ~�1) to obtain

residuals that are close to I (0). Then, we determine p in the AR(p) structure using
the Bayesian information criterion (BIC). Afterwards, we employ the parametric
testing procedure described in Section 4 and 6. The extension to more breaks is
straightforward.
If the short run dynamics is also changing, yet with a stable structure, we in-

clude �1 (L) and �2 (L) in the parametric estimation. This adds another dimension
to the test, along the lines of Boldea and Hall (2010). The �rst component (13)
consists now of a two dimensional Brownian Motion. Because the pre-estimation is
semiparametric, we need to assume that � (L) is changing at the same point as the
memory and/or the mean. In the following, we assume that � (L) and the memory
are changing at the same time.
Next, we illustrate how the procedure works for a real data set. We consider the

U.S. in�ation time series which is already extensively analyzed in the literature. The
literature is inconclusive about whether in�ation is stationary, fractionally integrated
or has a unit root and whether or not it has breaks in the deterministic part and/or
the memory (See Martins and Rodrigues (2010) for a good summary of the results).
Hsu (2005) �nds two breaks in the mean in January 1973 and September 1981 when
allowing for fractionally integrated errors. Hassler and Scheithauer (2011) and also
Sibbertsen and Kruse (2009) �nd a break from a unit root to a memory smaller than
1 in the �rst quarter of 1982. Hassler and Meller (2009) conclude that there is one
(or possibly two) break(s) in the memory. Mayoral (2011) concludes that the U.S.
in�ation is a fractionally integrated series with a memory around 0:6, though without
testing for breaks in the memory parameter. Martins and Rodrigues (2010) �nd a
break from a unit root to around 0:3 in July 1982, yet without taking into account
potential breaks in the mean.
As in Hassler and Meller (2009), we analyze the monthly U.S. CPI data collected

by the Organization for Economic Cooperation and Development (OECD). This
series comprises 619 observations from January 1960 until July 2011. In�ation is
computed as

�t = 1200 log (CPIt=CPIt�1) .

Finally, we seasonally adjust the series by subtracting seasonal means and adding
the overall mean. Figure 1 displays the seasonally adjusted in�ation series.
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FIG. 1 Seasonally Adjusted Monthly US In�ation
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First, we apply the semiparametric procedure and �nd two breaks in November
1972 and in August 1981. Table 8a) displays memory and mean estimates in the
regimes and the Bayesian information criterion (BIC) of AR(p) models for the �l-
tered data in the regimes. Thus, we choose a AR(1) structure for the �ltered data.
Next, we apply the parametric testing procedure with an underlying ARFIMA(1,d,0)
structure. In a �rst step, we determine sequentially the number of breaks in the mem-
ory parameter and/or the mean allowing for fractionally integrated errors under H0
and H1. In a second step, we identify whether the breaks are in the memory and/or
the mean. Because of the size distortions mentioned in Section 5, we compare the
test statistic to the bootstrap critical values. It turns out that for this data, the
bootstrap critical values di¤er considerably from the asymptotic ones. We reject the
hypothesis H0 of no break at the 1% level. Thus, there is at least one break in Octo-
ber 1981. In the same way, we next test, whether there is an additional break in the
periods before and after October 1981. Table 8b) displays the sequential tests for the
number of breaks, the estimated break points, the test statistics and the bootstrap
critical values. We conclude that there are two breaks, one in February 1973 and
one in October 1981. The former, corresponds to the �rst oil crisis and the latter
corresponds to the Volcker disin�ation period, the end of the second oil crisis and
the great moderation. The potential break in September 1990 is not found to be
signi�cant. Table 8c) summarizes the estimates of memory (with standard errors),
mean and autoregressive parameter for the three regimes. At the �rst oil shock, the
persistence increases and along with the Volcker disin�ation and great moderation
the persistence decreases considerably.
In the second step, we use the methodology in Proposition 2 to determine which
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TABLE 8
Breaks in US In�ation Rate

a) Semiparametric pre-estimation: Memory, mean and BIC for order of AR(p)
Period d � AR(0) AR(1) AR(2) AR(3) AR(4) AR(5)

1960:02-1972:12 0.19 2.91 2.74 2.69 2.72 2.73 2.76 2.78
1973:01-1981:08 0.48 8.90 2.91 2.76 2.79 2.82 2.86 2.90
1981:09-2011:07 0.12 3.00 2.58 2.53 2.53 2.55 2.57 2.59

b) Sequential procedure: F-tests for breaks in both parameters.
Test Break point F CV�0:95 (CV

�
0:99)

0 vs 1 1981:10 55.50 35.83 (41.60)
1 vs 2 1973:02 25.09 18.33 (22.84)
2 vs 3 1990:09 13.64 16.30

c) Parameter estimates in the regimes.
Period d � �

1960:02-1973:02 0.27 (0.09) 3.08 0.31
1973:03-1981:10 0.42 (0.11) 9.74 0.25
1981:11-2011:07 -0.07 (0.07) 2.98 -0.44

d) Sequential procedure: F-tests for identifying the changing parameter.
Break in d Break in �

Break point F CV�0:95 F CV�0:95
1973:02 4.70 6.65 9.82 6.35
1981:10 16.85 6.58 13.06 5.89

parameter is the changing one for each break point. Table 8d) provides test statistics
and bootstrap critical values for testing for a break in the memory (mean) under the
maintained hypothesis of a break in the mean (memory). We conclude that both
breaks are in the mean but only the one in October 1981 is also in the memory.
Therefore, we reestimate a constant memory and the autoregressive parameter for
the period 1960:01 to 1981:10 (d̂ = 0:30 (0:07) and �̂ = 0:29).
Our memory estimates are considerably lower than the estimates in Martins and

Rodrigues (2010), Hassler and Scheithauer (2011), Sibbertsen and Kruse (2009) and
Mayoral (2011). However, these papers do not allow for breaks in the mean and,
therefore, their memory estimates might be spuriously high. Hassler and Meller
(2009) allow for breaks in the memory and obtain similar memory estimates as ours.
However, they test for breaks in mean and memory sequentially rather than simul-
taneously. By testing for breaks in mean and memory simultaneously, we reduce
spurious e¤ects caused by the �nite sample correlation between the respective esti-
mates.
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9. FINAL REMARKS

The analysis is extendable in several directions. First, we have analyzed breaks in
(asymptotically) stationary time series with 0 � d0j < 1=2. The analysis also would
hold for a memory in the interval �1=2 < d0j � 0. In this case, the stronger signals
come from the break in the mean rather than the break in the memory. Nevertheless,
this is still too restrictive for many applications. For example, assume a series with
a linear trend and with a nonstationary memory with 1=2 < d0j � 1 or 1 � d0j < 3=2,

yt = �
0
j + �

0
j t+�

�d0j
t ut; t = T

0
j�1 + 1; :::; T

0
j .

In this case, we apply a �rst-di¤erencing �lter to the process to obtain

�yt = �
0
j +�

1�d0j
t ut; t = T

0
j�1 + 1; :::; T

0
j .

The di¤erenced process has a a changing mean and a new changing stationary mem-
ory parameter, d0j � 1 2 (�1=2; 0) for 1=2 < d0j � 1 and d0j � 1 2 (0; 1=2) for
1 � d0j < 3=2. For this interval for the memory, we have analyzed the methodology.
Note that the original mean cannot be estimated and breaks in it are not identi�able
and do not contribute to �nding the break. Taylor et al. (2010) propose a test for a
break in the mean that is robust for any d, including nonstationary ones. Next, if the
process has a changing linear trend and a memory lying in �, the analysis increases
by one further dimension. This analysis is beyond the scope of this paper.
In the previous analysis, we have assumed that the error follows (1). However,

this so called Type II long memory process is not the only possibility of de�ning a
long memory process. Alternatively, we could assume a Type I long memory error

�
�d0j
1 ut =

1X
j=0

�j
�
d0j
�
ut�j ; 0 � d0j < 1=2.

The estimation of the memory and of the short run dynamics is una¤ected. The
mean estimation, on the other hand, has an additional term that is similar to (6). In
the tests, the variance is increased in a similar way as in Theorem 6. This increased
variance would have to be taken into account. Further, since the mean is less precisely
estimated, the resulting local power would be lower.
Finally, we have assumed one of two situations. Breaks are exclusively in one

parameter or always simultaneously in both parameters. Nevertheless, the proposed
procedure also works if the breaks are not simultaneous. Assume the true process
has k1 breaks in the memory and k2 breaks in the mean at potentially di¤erent break
points. Using the sequential testing in the lines of Bai and Perron (1998), we �rst
detect k = k1 + k2 breaks. Next, using the sequential procedure in Section 6, we
obtain for each of the k breaks, whether it is in the memory, in the mean or in both
parameters.
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APPENDIX A: LEMMATA AND PROPOSITIONS

A.1. Lemmata

Lemma 1. Under Assumptions 1-3, uniformly in ��r 2 �� [0; 1] and in s for s��0i�1 =
O
�
T�1

�
,

a) T��i
[rT ]X
[sT ]+1

d2t (�) = Op(1)

b) T��i
[rT ]X
[sT ]+1

utdt (�) = op(1)

Proof. We have to show uniform convergence of
P[rT ]

t=[sT ]+1 d
2
t and

P[rT ]
t=[sT ]+1 dtut for�

s� �0i�1
�
= O

�
T�1

�
. The proofs of tightness use among other Lemma 15 and 16 of

Johansen and Nielsen (2010). For Part a), we provide a sketch of the proof in Rachinger
(2011).

Lemma 2. If �(1)i < �0i , for some i then

(i) sup
�
(1)
i <�0i

T��i
TX
t=1

dtut = op (1)

(ii) lim inf P

"
T��i

TX
t=1

d2t > C

#
> �, for some C > 0; � > 0:

For a break at T 0i in the memory and the mean or only in the memory : �i = 1 and for a
break only in the mean: �i = 1� 2d0i :

Proof. First, denote for �i�1T < t � �iT

dt (�i�1; �i) = ût (�i�1; �i)� ut. (24)

We have to show that for any break fraction smaller than the true one, �(1)i < �0i , the term
T��i

PT
t=1 utdt vanishes and T

��iPT
t=1 d

2
t is of order O

+
p (1).

ii) Assume m breaks and consider the break in �0iT in (d; �) or d. For �(1)i < �0i , we
know from Lemma 1 that

1

T

TX
t=1

d2t �
1

T

�0iTX
t=�

(1)
i�1T+1

d2t (�i�1; �i) +
1

T

�
(1)
i T+1X

t=�0iT+1

d2t (�i�1; �i)

p!
�
�0i � �0i�1

�
�2

1X
j=1

�2j (di � d0i ) +
�
�
(1)
i � �0i

�
�2

1X
j=1

�2j (di � d0i+1)

Similarly as in Boldea and Hall (2010), we can choose an � small enough so that the previous

32



term bounds

��2 inf
di

24 1X
j=1

�2j (di � d0i ) +
1X
j=1

�2j (di � d0i+1)

35
� ��2

24(di � d0i )2 1X
j=1

�2j (0) + (di � d0i+1)2
1X
j=1

�2j (0)

35
> ��2

�
�2

6
� 1
��
(di � d0i )2 + (di � d0i+1)2

�
> 0

uniformly in di.
Next, we consider the consistency of the break fraction estimator, when there is only a

break in the mean. For d0i > 0; di and di+1 converge at rate T
1=2 to d0i and terms including�

dj � d0i
�
vanish. From the proof of Lemma 1,

T 2di�1
TX
t=1

d2t � T 2di�1
�0iTX

t=�
(1)
i�1T+1

d2t

�
�
(1)
i�1; �i

�
+ T 2di�1

�
(1)
i T+1X

t=�0iT+1

d2t

�
�
(1)
i�1; �i

�

� T 2di�1
T 0iX

t=�
(1)
i�1T+1

��
�0i � �i

�
�di
t��(1)i�1T

1

�2

+T 2di�1
�
(1)
i TX

t=T 0i +1

h�
�0i+1 � �i

�
�di
t�T 0i

1 +
�
�0i � �i

��
�di
t��(1)i T

1��di+1
t�T 0i

1

��2
.

First, both terms have a nonnegative limit. The �rst term�s limit equals zero only if�
�0i � �i

�
= op (1). But in this case, the second term�s limit is larger than zero. Therefore,

uniformly in �i and di for
�
di � d0i

�
= Op(T

�1=2), the term is positive. For the contradiction
established for the break in T 0i , the less favorable case is the one where all other breaks j 6= i
are consistently estimated at the rate established in Theorem 2. Therefore, it su¢ ces to
consider this case.
i) follows from Lemma 1.

Lemma 3 states some properties for the regressor function and its derivative that are
needed in the proofs. In Boldea and Hall (2010), they are assumed in their Assumptions 2-4.
In our context, they are a consequence of Assumption 1 and 2.

Lemma 3. De�ne Ft (�) =
@ft(�)
@� ; a px1 vector, a function of �i for t� [Ti�1 + 1; Ti] and

Fk;t (�), k = d; � the derivative with respect to d and � respectively. Further, de�ne �T
�
d0i
�
=

diag
�
T�1=2; T d

0
i�1=2

�
a) Given the superconsistent rate of convergence of the break fractions, Si;T (�i�1; �i; �i)

de�ned in 5, appropriately standardized converges to a limit that is minimized in di = d0i and
�i = �

0
i .
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b) Evaluated at the true �0i and the true break fractions,

DT;i
�
�0i
�
= �T

�
d0i
� T 0iX
t=T 0i�1+1

Ft
�
�0i�1; �

0
i

�
Ft
�
�0i�1; �

0
i

�0 �T �d0i �
p! �2D0

i

�
�0i�1; �

0
i ; �

0
i

�
where

D0
i

�
�0i�1; �

0
i ; �

0
i

�
=

0@ �2

6

�
�0i � �0i�1

�
0

0
(�0i��

0
i�1)

1�2d0i

(1�2d0i )�2(1�d0i )

1A .
c) Uniformly in (s; r; �) for

�
s� �0i�1

�
= Op

�
T�1

�
and r > �0i ;

Di;T (�i) = �T (di)

[rT ]X
t=[sT ]+1

Ft (s; �)Ft (s; �)
0 �T (di)

p! �2Di (s; r; �)

where

Di (r; �) =

0B@
�
r � �0i

�
�2

1P
j=0

_�2j (d� d0i+1) +
�
�0i � �0i�1

�
�2

1P
j=0

_�2j (d� d0i ) 0

0
(r��0i�1)

1�2d

(1�2d)�2(1�d)

1CA :
d) Evaluated at the true d0i and the true break fractions

Ai
�
�0i
�
= V ar

�
diag

�
T�1=2; T d

0
i�1=2

�X
t2I0i

ut
�
�0i�1; �

0
i

�
Ft
�
�0i�1; �

0
i

�� p! A
�
�0i�1; �

0
i ; d

0
i

�
where

A
�
�0i�1; �

0
i ; d

0
i

�
=

0@ �4 �
2

6

�
�0i � �0i�1

�
0

0 �2
�
(�0i��

0
i�1)

1�2d0i

�2(1�d0i )(1�2d0i )
+A�i

�
�0i�1; �

0
i ; d

0
i

��
1A

with A�i
�
�0i�1; �

0
i ; d

0
i

�
de�ned in (7). Because of the term A�i

�
�0i�1; �

0
i ; d

0
i

�
,

A
�
�0i ; �

0
i�1; �

0
i

�
6= D

�
�0i ; �

0
i�1; �

0
i

�
.

Proof. Part a) Write

Si;T (�i�1; �i; �i) =

TiX
t=Ti�1+1

�
�dit�Ti�1�

�di
t ut

�2
+

TiX
t=Ti�1+1

��
�i � �0i

�
�dit�Ti�11

�2
�2

TiX
t=Ti�1+1

�dit�Ti�1�
�di
t ut

�
�i � �0i

�
�dit�Ti�11.

For the �rst term uniformly in di and �i,

1

T

TiX
t=Ti�1+1

�
�dit�Ti�1�

�di
t ut

�2 p!
�
�0i � �0i�1

� 1X
j=0

�2j (di � d0i );
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a limit that has a unique minimum at d0i . The convergence follows from a law of large
numbers and the last expression follows from (19) in Lobato and Velasco (2007). Uniformity,
follows from a similar argument as the one in the proof of Lemma 1. For the second term
uniformly in di and �i,

T 2di�1
TiX

t=Ti�1+1

��
�i � �0i

�
�dit�Ti�11

�2
!
�
�0i � �0i�1

�1�2d0i �
�0i � �i

�2
(1� 2d0i ) �2 (1� d0i )

,

a limit that has a unique minimum at �i = �0i . Uniformity follows from the deterministic
character. Finally, the third term multiplied by T di�1 is uniformly in di and �i of order
op (1).
Part b)
The derivative evaluated at true break points and true parameters, Ft

�
�0i�1; �

0
i

�
, for

t = T 0i�1 + 1; :::; T
0
i ;

Ft
�
�0i�1; �

0
i

�
=

0BB@ +
t�T 0i�1�1P

j=1

j�1ut�j + _�
d0i
t�T 0i�1

t�1P
j=t�T 0i�1

�j
�
�d0i

�
ut�j

��di
t�T 0i�1

1

1CCA . (25)

First, the (1,1) element of DT
�
�0i
�
converges in mean square to

�
�0i � �0i�1

�
�2

6 because
the terms coming from the second term in Ft

�
�0i�1; �

0
i

�
are negligible. The (2,2) element of

DT
�
�0i
�
converges to (�0i��

0
i�1)

1�2d0i

�2(1�d0i )(1�2d0i )
. Finally, the (1,2) element is of smaller order.

Part c) Note that for a break fraction �i�1, the residuals for t = Ti�1 + 1; :::; T 0i are

û
(i)
t (�i�1; �i) = �

di
t�Ti�1

�
�0i � �i

�
+�

di�d0i
t�Ti�1ut +�

di
t�Ti�1

t�1X
j=t�Ti�1

�j
�
�d0i

�
ut�j .

The di¢ culty arises from showing that the last term of the �rst is asymptotically negligible.
Similarly, the derivatives Ft (�; �) have a similar additional term. For the (2,2) element of
Di;T

�
�; �0i

�
, �di convergence corresponds to the one in part b) since

�
s� �0i�1

�
= Op

�
T�1

�
.

Uniformity follows directly from the fact that the term is deterministic. For Di;T
�
�; �0i

�
(1;1)

,

we use that terms containing
�
�0i � �i

�
are of order T 1�2d

0
i . For uniformity, in (s; r; �), the

tightness of DT
�
�; �0i

�
can be proved using Johansen and Nielsen (2010).

Part d) The (1x1) element of Ai
�
�0i
�
is straightforward. For the (2x2) element, we

separate the second term into two uncorrelated terms

�di
t��0i�1T

�
�d0i
t ut = �

di
t��0i�1T

�
�d0i
t��0i�1T

ut +�
di
t��0i�1T

t�1X
k=t�T 0i�1

�k
�
�d0i

�
ut�k.

The �rst term leads to a variance component of (
�0i��

0
i�1)

1�2d0i

�(1�d0i )(1�2d0i )
. The one corresponding to

35



the second term,

V ar

0@T di�1=2 T 0iX
t=T 0i�1+1

�di
t�T 0i�1

1�di
t�T 0i�1

t�1X
k=t�T 0i�1

�k
�
�d0i

�
ut�k

1A

= T 2di�1E

24T 0i�1X
k=1

0@T 0i �T
0
i�1X

t=1

�t�1 (di � 1)�dit �T 0i�1+t�k
�
�d0i

�1Auk
352 ;

converges to �2A�i
�
�0i�1; �

0
i ; �

0
i

�
. Combining the two terms leads to the result.

Lemma 4 discusses the estimators for the partitions (T1; T2; T3),
�
T1; T

0
2 ; T3

�
and

�
T1; T2, T 02 ; T3

�
:

Lemma 4. (Behavior of estimators)

a) For the estimator
�
����2 ; ��2; �

���
3

�
for
�
T1; T2; T

0
2 ; T3

�
�
d���2 � d02; d�2 � d02; d���3 � d03

�
=

�
Op(T

�1=2); Op(�
�1=2
2 ); Op(T

�1=2)
�

�
����2 � �02; ��2 � �02; ����3 � �03

�
=

�
Op(T

�1=2+d02); Op(�
�1=2+d02
2 ); Op(T

�1=2+d03)
�

b) For the estimator (��2; �
��
3 ) for (T1; T2; T3)�

d�2 � d02; d��3 � d03
�
=

�
Op(T

�1=2); Op(T
�1=2)

�
�
��2 � �02; ���3 � �03

�
=

�
Op(T

�1=2+d02); Op(T
�1=2+d03)

�
c) For the estimator (���2 ; �

�
3) for

�
T1; T

0
2 ; T3

�
�
d��2 � d02; d�3 � d03

�
=

�
Op(T

�1=2); Op(T
�1=2)

�
�
���2 � �02; ��3 � �03

�
=

�
Op(T

�1=2+d02); Op(T
�1=2+d03)

�
Lemmata 5 and 6 are needed for the proof of Theorem 2. We analyze the terms

P
d2t ;
P
dtut

multiplied by ��12 in the case of breaks in memory and mean or only in memory and by

�
�1+2d�2
2 in the case of a break only in the mean respectively. Both Lemmata use Lemma

4. The proofs of tightness are similar to the ones of Lemma 1 and use among others
Lemma 15 and 16 of Johansen and Nielsen (2010). Further, we consider T2 < T 02 and�
s� �01

�
= Op

�
T�1

�
.

Lemma 5. (Break in memory or in memory and mean.)
a) Behavior of

P
d2t . For r = �2 < �

0
2

��12

[rT ]X
t=[sT ]+1

d2t = op (1) ;�
�1
2

�3TX
t=�02T+1

d2t = op (1) :

��12

�02TX
t=[rT ]+1

d2t
p!

1X
j=1

�2j
�
d�2 � d02

�
= Op (1) ;
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b) Behavior of
P
dtut.

��12

[rT ]X
t=[sT ]+1

dtut;

�02TX
t=[rT ]+1

dtut and �
�1
2

�3TX
t=�02T+1

dtut = op (1)

Proof. We use Cauchy Schwarz for the �rst and third in Part b). In particular24��12 [rT ]X
t=[sT ]+1

dtut

352 � ��12 [rT ]X
t=[sT ]+1

d2t�
�1
2

[rT ]X
t=�01T+1

u2t

where the �rst term converges to zero from Part a). The proofs are similar to the one of
Lemma 1 with the di¤erence that the considered interval is constant rather than proportional
to T . In particular, some tedious analysis shows that the terms converge uniformly.

Lemma 6. For (d�2 � d0) = Op(�
�1=2
2 ).

a) Behavior of
P
d2t

�
�1+2d�2
2

[rT ]X
t=[sT ]+1

d2t = op (1) ;�
�1+2d�2
2

�3TX
t=�02T+1

d2t = op (1)

�
�1+2d�2
1

�02TX
t=[rT ]+1

d2t
p!

�
�02 � ��2

�2
�2 (1� d0) (1� 2d0)

b) Behavior of
P
dtut

�
�1+2d�2
2

[rT ]X
t=[sT ]+1

dtut = op (1) ;�
�1+2d�2
2

�02TX
t=[rT ]+1

dtut = op (1) and

�
�1+2d�2
2

�3TX
t=�02T+1

dtut = op (1)

Proof. The terms including � are deterministic, for the terms including d we can show
that they converge uniformly at a faster rate and are, therefore, negligible at the present
rate. Part b) follows from similar argument as the one in Part a). In addition we need also
a uniform argument for the terms including �.

A.2. Propositions

Proposition 5 derives the asymptotic distribution of the estimators de�ned below (9)
under the local alternative H1;T .
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Proposition 5. Under Assumptions 1-2, for i = 1; :::; k + 1

a) �T
�
d01
� �
�̂1;i � �01

�
=)

0@ (�i)
�1
�p

6
� B

h (�i)
�

�

�
1�2d01
i

�
�
�
1� d01

�p
1� 2d01 ~Wh (�i)

� 1A :
b) �T

�
d01
� �
�̂i � �01

�
=)0B@ (�i � �i�1)�1

�p
6
�

�
Bh (�i)�Bh (�i�1)

��
1

�
1�2d01
i ��1�2d

0
1

i�1

�
��
�
1� d01

�p
1� 2d01

h
~Wh (�i)� ~Wh (�i�1)

i�
1CA ;

where Bh (�i) and ~Wh (�) are de�ned in (13) and (14) respectively. �i and �j are asymptot-
ically uncorrelated.

Proof. Part a) The consistency follows from combining Lemma 3a) and Robinson and
Hualde (2010). For the asymptotic distribution, we analyze its denominator and numerator.
For the denominator, we obtain uniformly,

�T
�
d01
�X
1;i

Ft (0; �1;i)F
0
t (0; �1;i)

�T
�
d01
� p!

0@ �i
�2

6 0

0
�
1�2d01
i

�2(1�d01)(1�2d01)

1A
and for the numerator, we obtain

�T
�
d01
�X
1;i

utFt (0; �1;i) =)
 �p

6
Bh (�i)

1

�(1�d01)
p
1�2d01

~Wh (�i)

!
where the weak convergence to Brownian and fractional Brownian Motion follows from
a FCLT and Marinucci and Robinson (1999) respectively. The fractional Brownian Mo-
tion ~W1=2�d01 (�i) has the same marginal distribution as the standard one W1=2�d01 (�i) =R �i
0
(�i � r) dB (r). Because of the opposite order of summing the error terms, its covariance

is (12) rather than the usual one,

Cov
�
W1=2�d01 (�i) ;W1=2�d01 (�i�1)

�
=

�
1�2d01
i + �

1�2d01
i�1

� (1� d01) (1� 2d01)

�E
h
W1=2�d01 (�i)�W1=2�d01 (�i�1)

i2
:

In consequence, ~W1=2�d01 (:) has independent increments. The local drift of the memory
estimator

1
T

i+1P
j=1

TjP
t=Tj�1+1

hd
�
t
T

� t�1P
j=1

_�j(0)ut�j

!2

T�1
i+1P
j=1

TjP
t=Tj�1+1

 
t�1P
j=1

_�j(0)ut�j

!2 p! �2

�i

Z �i

0

hd (u) du.

and the one of the mean

T 2d
0
1�1

i+1P
j=1

TjP
t=Tj�1+1

(�
d1;i
t )2h�

�
t
T

�
T 2d�1

i+1P
j=1

TjP
t=Tj�1+1

(�
d1;i
t )2

! 1

�
1�2d01
i

Z �i

0

u�2d
0
1h� (u) du,
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where we use that (�dit 1) ' (t� 1)
�di and that h� (:) is a bounded variation function.

Part b) The proofs follow similar lines as the one of Part a). The variance of the

estimator �i is
�
1�2d01
i ��1�2d

0
1

i�1
�2(1�d01)(1�2d01)

. Further, the covariance of the two estimators �i and �j for

i < j is

Cov
�
T d

0
1�1=2

�
�i � �0i

�
; T d

0
1�1=2

�
�j � �0j

��
= 0

since unlike Lemma 3,

Cov

0@T 1=2�d01 TiX
t=Ti�1+1

Ft (0; �1;i)ut; T
d01�1=2

TjX
t=Tj�1+1

Ft (0; �1;i)ut

1A = 0.

Thus, the estimator using the �lter (9) is uncorrelated under H0 which contrasts the one in
Theorem 3.

For ` vs. ` + 1 breaks, Proposition 6 derives the asymptotic distribution of the uncon-
strained estimators for the i�s regime, assuming one additional break in this regime. Let
� = T̂i�1 + (T̂i � T̂i�1) be the additional break point in regime i.

Proposition 6. Under Assumptions 1-3 for i = 1; :::; `+ 1 and under H`
0 :

a) �T
�
d0i
� �
�̂i;� � �0i

�
=)

0@ p
6
� B

h () =
�
p
1�2d01�(1�d

0
1)Ŵ

h()

1�2d
0
i

1A :
b) �T

�
d0i
� �
�̂�;i+1 � �0i

�
=)

0@ p
6
� B

h (1� ) = (1� )
�
p
1�2d0i�(1�d

0
i )(Ŵ

h(1)�Ŵh())
1�1�2d

0
i

1A :
Proof. Part a) The behavior of the denominator of the estimator follows from Lemma 3.

First, the l break fractions are superconsistently estimated. We can use arguments similar
to the ones in Theorem 3, to show for the numerator

�T
�
d0i
� �X
t=T 0i�1+1

ut
�
�0i�1; �

0
i

�
Ft
�
�0i�1; �

0
i

�
)

0@ �p
6
B
�

�
�0i � �0i�1

��
� ~W

1=2�d0
i
((�0i��

0
i�1))p

1�2d0i�(1�d0i )
+ C

�
�0i�1; ; d

0
i

�
1A

where C
�
�0i�1; ; d

0
i

�
is discussed in (19). In particular, the convergence of the �rst com-

ponent follows from a functional central limit theorem. For the convergence of the second
component, we use Marinucci and Robinson (1999) and that (18) converges in distribution
to C

�
�0i�1; ; d

0
i

�
. The additional term is a consequence of the too short �lter.

Part b) follows similarly.

Proposition 7 analyzes the estimators corresponding to the ones in Propositions 5 in the
bootstrap world.

p
=) denotes weak convergence in probability as de�ned in Gine and Zinn

(1990).

Proposition 7. Under Assumptions 1 and 2 and under H0 or H1;T , the estimators �̂
�

and �̂
�
1;i converge weakly in probability (

p
=)) to the same limits as the ones in Propositions

5.
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Proof. The proof follows from combining results about the convergence of partial sums
in the bootstrap world to fractional Brownian Motions with the behavior of the estimators
in Propositions 5. It remains to show these convergence results. For this, we incorporate
into Kapetanios� (2010) analysis, the estimation of the mean but for a process without a
short memory component. Since we analyze the behavior of the bootstrap under H0=H1;T ,
we �lter under the assumption of no breaks. In the notation of Kapetanios (2010), we have
to show his Theorem 1

~W �
T;1=2�d̂ =

1

T d̂�1=2

[rT ]X
t=1

�t�1

�
d̂� 1

�
u�t =) ~W1=2�d01 (r) in probability,

where the convergence is in the sense of Giné and Zinn (1990). ~W1=2�d01 (r) is the fractional
Brownian Motion of order 1=2� d01 de�ned in Proposition 5, and u�t is a bootstrap resample
of the residuals of the regression under SSR0. Hence Kapetanios�(2010) �rst assumption is
clearly satis�ed. We have to show

1) E�ju�t jr <1 in probability for some r > 2:

2) sup
r
j ~W �

T;1=2�d0 (r)� ~W �
T;1=2�d̂ (r) j = op� (1) :

For 1), we have to show that

1

T

TX
t=1

jût �
1

T

TX
t=1

ûtjr = Op (1)

Write
1

T

TX
t=1

jût �
1

T

TX
t=1

ûtjr � c (AT +DT + ET )

where

AT =
1

T

TX
t=1

jutjr; DT = j
1

T

TX
t=1

utjr � KAT and ET =
1

T

TX
t=1

jût � utjr.

First, as in Park (2002), AT and DT are of order Op (1). Consider ET

1

T

TX
t=1

jût � utjr =
1

T

TX
t=1

�����dt ��01 + T d01�1=2h�� tT
�
� �

�
+

t�1X
j=1

�j

�
d� d01 � T�1=2hd

�
t

T

��
ut�j

������
r

,

where the second term is op (1) following from eq. (4.17) in Wright (1995) and the fact that
hd is bounded. Using

�
�̂� �01

�
= O(T d

0
1�1=2) and the boundedness of h�, the �rst term is

also of order op (1).
For 2), we need to show

max
s

1

T d
0
1�1=2

�����
sX
t=1

�t�1

�
d̂� 1

�
u�t �

sX
t=1

�t
�
d01 � 1

�
u�t

����� = op� (1)
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where u�t is an iid heterogenous process in the bootstrap probability space, drawn with
probability 1=T from the residuals ût. In particular, de�ning v�j = u

�
t�j ; j = 1; :::; t, the proof

follows the same steps as the one in Kapetanios (2010).
Similarly, partial sums converge to Brownian Motions.

APPENDIX B: PROOFS

B.1. Proof of Proposition 1

a) We show that the memory estimation is still consistent for d0 > 0, but inconsistent for
d0 � 0. We analyze heuristically the case of inconsistent estimation of � with 0 < d0 < 1=2.
In particular, for j�̂� �0j > C the objective function

1

T
SSR =

1

T

TX
t=1

û2t =
1

T

TX
t=1

h�
�0 � �

�
�dt 1 + �

d�d0
t ut

i2
(26)

converges uniformly in d 2 D and � to

1X
j=1

�2j (d� d0).

Therefore, the SSR is still minimized at the true parameter d0 if 0 < d0 < 1=2. The
asymptotically negligible terms

�
�0 � �

�2
K1T

�2d +
1

T
2
�
�0 � �

� TX
t=1

�t(d� 1)
t�1X
j=1

�j(d� d0)ut�j

lead to the mentioned �nite sample e¤ects which depend on d0;
�
�0 � �

�
and T . Especially,

for d0 close to 0, the bias can be huge leading to a highly upward biased estimator in �nite
samples. On the support 0 � d < 1=2, the limit of the expression (26) is not continuous due
to the additional term I (d = 0)

�
�0 � �

�2
. Clearly, for j�̂� �0j > C, (26) is in the limit not

minimized in d = 0. In consequence, the estimator is not consistent for d0 = 0. The same
argument is obviously true if we do not estimate �; just set �̂ = 0:
b)We have to show that

�̂ (d)� �0 = Op
�
T d

0�1=2
�
uniformly in d 2 D,

by showing convergence of the �di and tightness. For tightness we show in Rachinger (2011)
that

EjT 1=2�d
0 �
�̂ (d2)� �0

�
� T 1=2�d

0 �
�̂ (d1)� �0

�
j2 � Kjd2 � d1j2: (27)

B.2. Proof of Theorem 1

We provide the main steps of the proof and indicate where they di¤er from the ones of
Boldea and Hall (2010). De�ne

dt (�k�1; �k) = ût (�k�1; �k)� ut, (28)
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where ût (�k�1; �k) is de�ned in (4), for t 2 I0j \ Îk with I0j = [T 0j�1+1; T 0j ] and Îk = [T̂k�1+
1; T̂k] and k; j = 1; :::;m+1. dt (�k�1; �k) and û

(k)
t (�k�1; �k) depend also on

�
�0i
	
;
�
�0i�1; �

0
i

	
and

�
�0i�1; �

0
i ; �

0
i+1

	
in the cases �0k�1 < �k�1 < t < �0k; �k�1 < �0k�1 < t < �0k and

�k�1 < �
0
k�1 < �

0
k < t respectively. Boldea and Hall (2010) work with a di¤erent expression

separating true quantities from estimated ones. In our case, both are fractionally integrated
and we work rather with expression (28). First, we focus on the break in T 0i . For simplicity,
we denote dt (�k�1; �k) and ût (�k�1; �k) as dt and ût. From the CSS estimation we get

TX
t=1

û2t =
TX
t=1

u2t +
TX
t=1

d2t � 2
TX
t=1

dtut

implying that

T��i
TX
t=1

d2t + 2T
��i

TX
t=1

utdt � 0; (29)

where �i = 1 for a break in T 0i in memory and mean or only in memory and �i = 1 � 2d0i
for a break only in the mean. Denoting qT � Op

�
T b
�
if P

�
jqT j > T b

�
< �� for T � T (��)

for some b�R and any �� > 0 and qT � O+p
�
T b
�
if plimqT is positive, the proof of the

consistency works by showing that T��i
PT

t=1 dtut = op (1) and T��i
PT

t=1 d
2
t = O+p (1),

when the break fraction �i is inconsistently estimated. In particular, we use Lemma 1 and 2
for proving Theorem 1. Inequality (29) together with Part (i) of Lemma 2 would imply that
T��i

PT
t=1 d

2
t = op (1) which would contradict part (ii) of Lemma 2. In particular, Lemma 2

is also true for an estimator �̂i < �
0
i and, in consequence, the break fraction is not estimated

too low. The same argument applies for �̂i > �0i and we conclude that the break fraction
estimator is consistent.

B.3. Proof of Theorem 2

This proof follows closely the proof of Theorem 2 of Boldea and Hall (2010). We consider
the case of three breaks.We analyze two di¤erent cases of changing parameters that require
a di¤erent analysis:

� case A: a break in memory and mean or a break in memory.

� case B: a break in mean; d01 = d02 = d03 � 0.

Consistency of the three breaks is already established. Because of consistency we only
have to consider the behavior of the break points in

V2 =
�
(T1; T2; T3) : jTi � T 0i j � "T (i = 1; 2; 3)

	
:

First, consider case T̂2 < T 02 . In contrast to Boldea and Hall (2010), here the argument is
not symmetric and we have to consider also the case T 02 > T2. The proof works basically by
showing that the break point is with a very small probability in the set

V2 (C) =
�
(T1; T2; T3) : jTi � T 0i j � "T (i = 1; 2; 3); �2 = T 02 � T2 > C

	
:

Hence with large probability jT̂2 � T 02 j < C. We will show that if T2 2 V2 (C) ;

P

(
min
V2(C)

ST (T1; T2; T3)� ST
�
T1; T

0
2 ; T3

�
��2

� 0
)
< �; for T � T (�) (30)
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contradicting the sum of squares minimization and implying that T2 does not belong to
V2 (C). For case A, � = 1 and, for case B, � = 1� 2d02. We show that

ST (T1; T2; T3)� ST
�
T1; T

0
2 ; T3

�
= (SSR1� SSR3)� (SSR2� SSR3)

is positive with high probability for large T picking " and C where

SSR1 = ST (T1; T2; T3) , SSR2 = ST
�
T1; T

0
2 ; T3

�
and

SSR3 = ST
�
T1; T2; T

0
2 ; T3

�
.

The behavior of the corresponding estimators is discussed in Lemma 4. We locate the
dominating terms in ST (T1; T2; T3)�ST

�
T1; T

0
2 ; T3

�
and show that at least some are positive

with large probability. Equation (30) is equivalent to

���2 (SSR1� SSR2) � O+p (1) (31)

We introduce some notation:

I1 = [1; T1]; I2 = [T1 + 1; T2]; I
�
2 = [T2 + 1; T

0
2 ]; I3 = [T

0
2 + 1; T3]; I4 = [T3 + 1; T ].

Next,

SSR1 � SSR3
��2

=
1

��2

�X
I�2

h
u2t (�

��
3 )� u2t

�
��2

�i
+
X

I3

�
u2t (�

��
3 )� u2t (����3 )

��
= D1 +D2:

Since ���3 estimates �03 and �
�
2 estimates �

0
2, there is a mismatch in D1; while there is none

in D2 (�
��
3 and ��3 estimate �

0
3). In Rachinger (2011), we use Lemmata 5 and 6 to show in

a similar way as in Boldea and Hall (2010) that D1 dominates in the limit D2. We further
show that ���2 (SSR2� SSR3) � op (1).

In Theorem 1 and 2, we focus on the break in Ti and assume that all other break fractions
are estimated consistently (Theorem 1) and at the rate T (Theorem 2). It su¢ ces to discuss
this case since it is the least favorable case for the contradiction that is used for deriving the
consistency of the break fraction �i.

B.4. Proof of Theorem 3

We �rst obtain consistency and
p
T -rate convergence of the estimator di when it is calcu-

lated with estimated rather than true endpoints. Given these results, we establish T 1=2�d
0
i

rate convergence for the estimator of �i. Finally, we show that the estimators using the
estimated break points have the same asymptotic distribution as the ones using the true
ones.
We start with the asymptotic distribution of the estimators assuming that the break

points are the true ones. By the superconsistency of the break fractions, this distribution
will correspond to the one when the break points are estimated. First, the consistency of the
estimator di follows from Lemma 3a). The asymptotic distribution of the estimator follows
from Lemma 3a) and b). Because the residuals evaluated at the true parameters and true
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break fractions ut
�
�0i�1; �

0
i

�
di¤er from ut, the variance of the mean estimator contains the

additional term (6). Similarly, the covariance between the estimators �i and �j

D�
ij

��
�0k; �

0
k�1; d

0
k

	
k=i;j

�
=
�2
�
1� d0i

� �
1� 2d0i

��
�0i � �0i�1

�1�2d0i �2
�
1� d0j

� �
1� 2d0j

�
�
�0j � �0j�1

�1�2d0j A�ij (32)

where

A�ij = lim
T!1

T�1
[�0i�1T ]X
k=1

0B@T d0i [(�
0
i��

0
i�1)T ]X

t=1

�t�1
�
d0i � 1

� tX
j=0

�j
�
d0i
�
�[�0i�1T ]+t�j�k

�
�d0i

�1CA
�

0@T d0j T 0j �T 0j�1X
t=1

�t�1
�
d0j � 1

� tX
j=0

�j
�
d0j
�
�T 0j�1+t�j�k

�
�d0j

�1A .
Consequently, the estimators �i and �j are not asymptotically independent.
Next, the proof of consistency of the parameter estimates in the two regimes using the

estimated rather than the true break points and the proof that the asymptotic distribution
corresponds to the one assuming the true break point follows the same lines as in Boldea and
Hall (2010).

B.5. Proof of Theorem 4

For deriving the asymptotic distribution of the test statistic (10), we, �rst, show for the
denominator under the local alternative:

SSRk (�) =
k+1X
i=1

1

T

TiX
t=Ti�1+1

��
�01 � T d

0
1�1=2h�

�
t

T

�
� �i

�
�dit 1 + �

di�d01� 1p
T
hd( tT )

t ut

�2

= �1

1X
k=0

�2k
�
d1 � d01

�
+
k+1X
i=2

(�i � �i�1)
1X
k=0

�2k
�
di � d01

�
+ op (1) = �

2 + op (1)

where the terms including (�0j � �i) are negligible by Lemma 1 and the convergence is a
consequence of Lemma 3 a). Next, we discuss the behavior of the numerator. As in Boldea
and Hall (2010), we write

SSR0 � SSRk (�) =
TX
t=1

u2t (�̂)�
k+1X
i=1

�iTX
t=�i�1T+1

u2t (�̂i) = ::: =
kX
i=1

F �T;i

with
F �T;i = D

R (1; i+ 1)�DR (1; i)�DU (i+ 1; i+ 1) (33)

where the index 1; i indicates summing over [1; Ti] and i over [Ti�1 + 1; Ti] : DR (1; i) =P
1;i[u

2
t (�̂1;i)� u2t ] and DU (i; i) =

P
i[u

2
t (�̂i)� u2t ]: We start with the term DR (1; i)

DR (1; i) =
X

1;i
d2t (�̂1;i; �

0
1)� 2

X
1;i
utdt(�̂1;i; �

0
1) = I

R + IIR
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As in Boldea and Hall (2010), using a mean value theorem (MVT),

IR =
h
T 1=2(d̂1;i � d01)

i2
T�1

X
1;i

F 2d;t
�
��1;i;t

�
+
h
T 1=2�d

0
1
�
�̂1;i � �01

�i2
T�1+2d

0
1

X
1;i

F 2�;t
�
��1;i;t

�
IIR = 2

h
T 1=2(d̂1;i � d01)

i
T�1=2

X
1;i

utFd;t
�
��1;i;t

�
+2
h
T 1=2�d

0
1
�
�̂1;i � �01

�i
T�1=2+d

0
1

X
1;i

utF
0
�;t

�
��1;i;t

�
where ��1;i;t lies in the segment line �̂1;i and �

0
1: Also here since ��1;i;t

p! �01 for each t and
E [Ft (�)F

0
t (�)] has uniform bounds, from Proposition 5 part b) and its proof, we obtain

DR (1; i) =) ��2
�
��1i

�
Bh (�i)

�2
+ �

�1+2d01
i

�
~Wh (�i)

�2�
(34)

For the term DU (i; i) using Proposition 5 and similar arguments as the previous ones,
we obtain,

DU (i; i) =) ��2
h
(�i � �i�1)�1

�
Bh (�i)�Bh (�i�1)

�2
+
�
�
1�2d01
i � �1�2d

0
1

i�1

��1 �
~Wh (�i)� ~Wh (�i�1)

�2�
.

Finally, combining the two terms and using a continuous mapping theorem (CMT) for the
sup functional leads to the stated test statistic.
The independence of the estimates of memory and mean, discussed in Theorem 3, implies

the additiveness of the test statistic.

B.6. Proof of Theorem 5

First, the estimated break fractions converge to the true ones at rate T , for breaks in the
memory Hd1, the mean H

�
1 and in both H

d;�
1 . Under the alternative, the test statistic (10)

diverges since its denominator still converges to �2 because break fractions and regime para-
meters are consistently estimated. If there is at least one break in the memory or in memory
and mean, DR (1; i) is of order Op (T ) and DU (i; i) is of order Op(T 1�2d

0
i ) because the mean

estimators stop being consistent. Thus, the test statistic diverges at rate T . Equally, we �nd
that, if only the mean is changing, SSR0 � SSRk (�) = Op(T

1�2d0) and the test statistic
diverges at rate T 1�2d

0

. If we tested for a break only in the memory or only in the mean,
the tests reject under the alternative of a break in the tested and in both parameters. Under
the alternative of a break only in the not tested parameter, the tests reject asymptotically
with probability �.

B.7. Proof of Proposition 2

Under the hypothesis of one break at �01, the estimator �1 converges at rate T to the
break fraction �01.
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Proof of a) Components from Theorem 4 involving the estimation of the mean are
negligible. Finally, the components involving the memory behave as in Theorem 4 with the
di¤erence that now �1 does not have a spurious limit and thus the limit will be a function of
the true break fraction. Therefore, the test statistic corresponds to the one of a usual Chow
test.

Proof of b) For testing a break in the mean, terms involving the break in the memory
are again negligible. Using the �lter truncated at the supposed break points, we obtain for
the estimator of the mean,

�
�̂� �0

�
=

�1TP
t=1

�
�d1t 1

�
ût +

TP
t=�1T+1

�
�d2t��1T 1

�
ût

�1TP
t=1

�
�d1t 1

�2
+

TP
t=�1T+1

�
�d2t��1T 1

�2 .

It is easy to show that for d01 < d
0
2 in numerator and denominator, the �rst term dominates

and for d01 > d02 the second one does. In (33), the �rst and third term cancel. From the
second term of (33), follows the result. For the latter, as mentioned before, ût contains some
term similar to the one in Theorem 7 coming from a too short �lter causing the increased
variance.

B.8. Proof of Theorem 6

Under H0 : m = l, as in Boldea and Hall (2010), the test statistic can be written as

FT (l + 1jl) = max
1�i�l

sup
�2�i;�

FT;i (l + 1jl) =�̂2i

where FT;i (l + 1jl) = SSR(T̂i�1; T̂i)� SSR(T̂i�1; �)� SSR(� ; T̂i) with SSR(T̂i�1; T̂i) being
the sum of squared residuals for the segment [T̂i�1; T̂i]. Based on Proposition 6, the proof
follows using similar arguments to the ones in Theorem 4.

B.9. Proof of Theorem 7

We show that the bootstrap based test (22) has the same asymptotic distribution as
the one in Theorem 4. The estimates d̂; �̂ play the role of the true parameter values in
Theorem 4. The estimates �̂

�
1;i; �̂

�
i denote the estimates for the bootstrap data fy�t gTt=1.

From Proposition 7, these estimators converge weakly in probability to the same limits as
the ones in Proposition 5.
For establishing the asymptotic distribution of the test statistic, �rst we have to show for

the denominator that
SSR�k (�) = (T � (k + 1) p) = �2 + o�p:

In particular,

SSR�k (�) =
k+1X
i=1

1

T

[�iT ]X
t=[�i�1T ]+1

�
(�̂� �̂�i )�

d̂�i
t 1 + �

d̂�i�d̂
t ut

�2

=

k+1X
i=1

(�i � �i�1)
1X
k=0

�2k

�
d̂�i � d̂

�
+ o�p (1) = �

2 + o�p (1)

46



To prove the convergence we show that E�
�
1
T SSR

�
1

�
= �̂2 and V ar�

�
1
T SSR

�
1

�
= op (1). For

the former,

E�
k+1X
i=1

1

T

[�iT ]X
t=[�i�1T ]+1

�
(�̂� �̂�i )�

d̂�i
t 1 + �

d̂�i�d̂
t ut

�2
= �̂2

1

T

k+1X
i=1

[�iT ]X
t=[�i�1T ]+1

t�1X
j=1

�2j

�
d̂�i � d̂

�
:

For the second term we apply a variant of the Lemma 1, substituting d01 by d̂, and a similar
argument as the one for the �rst term. The convergence follows from T ! 1 and the fact
that d̂�1 and d̂ converge to d

0
1 and �̂

2 converges to �2. The behavior of the numerator follows
from applying Proposition 7 to the Proof of Theorem 4. Finally, from applying a CMT, we
obtain that sup� F

�
T (�; k; p) converges weakly in probability to the corresponding limit in

Theorem 4 for hd = h� = 0.

Proof of c) �xed alternative The test is consistent because the bootstrap test statis-
tic converges to a constant and the original test statistic diverges. For the former, under H1,
the estimators d̂ and �̂ converge to weighted averages of the true parameter values. Applying
the test to the newly integrated series, the resulting test statistic has still a bounded limit
distribution. Since, from Theorem 5, the test statistic diverges under H1, the bootstrap test
is consistent.

B.10. Proof of Proposition 3

We �rst show 1). Note that terms including � are uniformly of order op (1). For i = 1,

T 1=2
�
d1 (�)� d0

�
=

T�1=2
[�T ]P
t=1

 
t�1P
j=0

_�j (0)ut�j

!
ut

T�1
[�T ]P
t=1

 
t�1P
j=0

_�j (0)ut�j

!2 + op (1) .

For j = 1; 2, Nj denotes the numerator and Dj the denominator of d1 (�j). Thus,
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In consequence, we can show tightness for numerator and denominator separately. For the
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where the boundedness of the norm follows from previous arguments.
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For the numerator, weak convergence in � follows from a standard FCLT.
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Next,
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Tightness for the denominator follows directly from its deterministic character. For the
numerator, we can apply a fractional FCLT (Marinucci and Robinson, 1999) to show that it
converges weakly to a fractional Brownian Motion.
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