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Abstract

The literature on spurious regressions has found that thet-statistic for testing the null of no

relationship between two independent variables diverges asymptotically under a wide variety

of nonstationary data generating processes for the dependent and explanatory variables. This

paper introduces a simple method which guarantees convergence of thist-statistic to a pivotal

limit distribution, when there are drifts in the integrated processes generatingthe data, thus

allowing asymptotic inference. We show that this method can be used to distinguish a genuine

relationship from a spurious one among integrated (I(1) andI(2)) processes. Simulation ex-

periments show that the test has good size and power properties in small samples. We apply

the proposed procedure to several pairs of apparently independentintegrated variables (includ-

ing the marriages and mortality data of Yule, 1926), and find that our procedure, in contrast

to standard ordinary least squares regression, does not find (spurious) significant relationships

between the variables.
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1 Introduction

For many years, the statistics and econometrics literatures have studied the phenomenon of spuri-

ous relationships among independent variables under a widevariety of data generating processes

(DGPs). One early reference is that of Yule (1926), which finds a correlation above 95% between

the proportion of Church of England marriages to all marriages and the mortality rate, for the years

1866-1911. More recently, using computer simulation methods, Granger and Newbold (1974)

found a significantt-ratio for the slope parameter in a simple linear regressionmodel, assuming

independent driftless random walks for the dependent and explanatory variables. Later on, the

asymptotic theory developed by Phillips (1986) provided a theoretical explanation of the results in

the experimental study of Granger and Newbold (1974): thet-ratio does not possess a limiting dis-

tribution, it rather diverges to infinity as the sample size grows, implying that, asymptotically, the

t-ratio would always reject the (true) null of no relationship. The rate at which the statistic diverges

is T 1/2, according to Phillips (1986).1 When allowing for drifts in the random walk representation

for the dependent and explanatory variables in a linear regression model, Entorf (1997) shows that

divergence occurs at (a faster) rateT . In a recent paper, Noriega and Ventosa-Santaulària (2007)

show that the phenomenon of spurious regression is pervasive under a wide range of combinations

of DGPs for both the dependent and explanatory variables.2

In search for a convergentt-statistic in spurious regressions, Sun (2004) recognizesthat the

“divergence of the usualt-statistic seems to be a defining characteristic of a spurious regression” (p.

943). He shows that such divergence arises from an underestimated standard error of the ordinary

least square (OLS) estimator, and proposes an alternative estimator, based on the HAC standard

error estimator with a bandwidth proportional to the samplesize. In this set-up, the resultingt-

statistic no longer diverges. Sun (2004) finds, however, that the (convergent) limiting distribution

of the t-statistic depends on nuisance parameters; in particular,on the memory parameters of

the underlying fractional processes he assumes for the dependent and explanatory variables. He

argues that, although of theoretical interest, these results have little practical importance, given that

parameters in theDGP are generally unknown, and therefore, inference is not feasible.

In this paper, we take a different route. We propose to filter out nuisance parameters via OLS

linear detrending on each variable. Residuals from these regressions are then used to verify the

1In a subsequent paper, the representation theory developedby Phillips (1998) shows that a trending stochastic
(deterministic) process can be represented as an infinite linear combination of trending deterministic (stochastic) func-
tions with random coefficients. In such an asymptotic environment, the regressiont-ratios of the fitted coefficients
diverge at rateT 1/2.

2Other papers studying the phenomenon of spurious regression under different assumptions are: Marmol (1995,
1996, 1998), Cappuccio and Lubian (1997), Granger et. al. (1998), Tsay and Chung (1999), Hassler (1996, 2000,
2003), Kim, Lee and Newbold (2004), Noriega and Ventosa-Santaul̀aria (2006), and Stewart (2006). A literature
review can be found in Ventosa-Santaulària (2009).
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significance of the relationship through a rescaled versionof the standardt-statistic. An analogous

approach can be found in the seminal paper by Granger and Newbold (1974), who argue, in the

context of estimating equations in econometrics, that “Onemethod we are currently considering is

to build single series models for each variable, using the methods of Box and Jenkins (1970) for

example, and then searching for relationships between series by relating the residuals from these

single models.” (pp. 117-118). They further argue that in building regression models, the quantity

to be explained is not the variation in the original series, but the variation in the residual part.

Using asymptotic theory, we show that, when both dependent and explanatory variables follow

an integrated process, the proposedt-statistic will not depend on nuisance parameters and will not

diverge, except for the case when the dependent and explanatory variables are not independent,

effectively eliminating the spurious regression problem.We also compute both finite sample and

asymptotic critical values, which can be used to distinguish a genuine relationship from a spurious

one. Simulation experiments reveal that this procedure works well in finite samples.

Next section briefly introduces the types ofDGPs analysed in the paper, which are widely used

in empirical work in econometrics. Section 3 shows how standard inference might be complicated

by the presence of nuisance parameters, even for (appropriately rescaled) convergentt-statistics. In

order to overcome this problem, the approach outlined aboveto testing for a statistical relationship

in a simple regression model is introduced in Section 4, which results in both convergent and

pivotal limit distributions of thet-statistic, thus allowing asymptotic inference. Section 5presents

Monte Carlo experiments which report size and power properties of the proposed testing procedure.

Section 6 presents several empirical applications of our procedure. We find that, for instance,

the high statistical correlation between marriages and mortality found by Yule (1926) is indeed

spurious, once our filtering procedure is applied. Last section concludes.

2 Trending mechanisms in the DGP

We consider the following regression model, estimated by OLS:

yt = α̂ + δ̂xt + η̂t, (1)

used as a vehicle for testing the null hypothesisH0 : δ = 0. Note that the nature of the trend-

ing mechanism in the dependent and explanatory variables isunknown a priory. The following

assumption summarizes theDGPs considered below for both the dependent and the explanatory

variables in model (1). TheDGPs in Table 1 include stochastic trending mechanisms, which are

widely used in applied work in economics, to model variablessuch as nominal and real output,

consumption, money, prices, among others.
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Table 1

ASSUMPTION. TheDGPs for z = y, x are as follows.
DGP Name Model

1. I(1) ∆zt = uzt

2. I(1)+drift ∆zt = µz + uzt

3. I(2) ∆2zt = uzt

4. CI(1,1) yt = α1 + β1xt + uyt

5. CI(2,1) yt = α2 + β2xt + ξyt

6. Corr(1) yt = α3 + β3xt + ξyt

In Table 1,uyt anduxt are independent innovations obeying Assumption 1 in Phillips (1986), and

ξyt =
∑t

i=1
uyi, that isξyt follows anI(1) process.DGP 1 is a driftless random walk, while

DGP 2 is a random walk with drift,µz. DGP 3 represents an integrated process with double

unit roots, that is, one that has to be differenced twice to make it stationary. UnderDGP 4, xt is

assumed to followDGPs 1 or 2 and, ifβ1 6= 0, thenyt andxt are cointegratedCI(1, 1), following

the notation in Engle and Granger (1987). In this case, even though both variables areI(1), the

linear combination produces stationary errors. UnderDGP 5 it is assumed thatxt follows anI(2)

process and, ifβ2 6= 0, thenyt andxt are cointegratedCI(2, 1). Here a linear combination of

I(2) processes reduces the order of integration toI(1). Finally,DGP 6 corresponds to the case of

xt ∼ I(1) with drift, correlated withyt (assumingβ3 6= 0), but not cointegrated, sinceξyt ∼ I(1).

We call this case Corr(1), meaning that theI(1) variables are (only) correlated.

3 The divergent nature of thet-statistic

Assume that interest centers on testing the null hypothesisof no relationship between two random

variablesy andx, i.e.,H0 : δ = 0, using as a vehicle regression model (1). Rejection of the null

when variables are independent is known as a spurious regression.

In a recent paper, Noriega and Ventosa-Santaulària (2007, NVS hereafter) showed that the

t-statistic (tδ̂) in a spurious regression does not possess an asymptotic distribution under a wide

variety of Data Generating Processes, including trend-stationary processes, single and double unit

root processes, broken-mean- and broken-trend-stationary processes, and combinations thereof.

Instead, thet-statistic diverges to infinity as the sample size grows.3

In order to obtain a convergentt-statistic, the latter should be rescaled byT κ. NVS find thatκ

is generally 1/2, but in some casesκ = 1, or κ = 3/2, depending on the trending behaviour of the

3These results were obtained by NVS from the calculation of the order in probability of thet-statistic for all
combinations of DGPs considered.
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dependent and explanatory variables.

Theorem 1 presents the asymptotic behaviour of thet-statistictδ̂ from (1) for four combinations

of DGPs in the Assumption: 1) a driftless random walk on a driftlessrandom walk (calledt1
δ̂
),

2) a random walk with drift on a random walk with drift (t2
δ̂
), 3) a double unit root process on a

double unit root process (t3
δ̂
), and 4) a double unit root process on a double unit root process under

cointegration [CI(2,1)] (t4
δ̂
).4 In the Theorem, convergence in distribution and in probability are

denoted asD→ and
p

→, respectively, andWz is a standard Wiener process, i.e.,Wz(r) is normally

distributed for everyr in [0, 1]; that isWz(r) ∼ N(0, r). To simplify notation, all integrals are

understood to be taken over the interval[0, 1], with respect to the Lebesgue measure, i.e., integrals

such as
∫
Wz,

∫
W 2

z ,
∫
rWz, and

∫
WxWy are short for

∫
1

0
Wz(r)dr,

∫
1

0
W 2

z (r)dr,
∫

1

0
rWz(r)dr,

and
∫

1

0
WxWy(r)dr, respectively. Also,W z =

∫ r

0
Wz(s)ds, for s ∈ [0, 1] , s < r.

The proof of Theorem 1 is provided in the Appendix.5

THEOREM 1. Consider testing the null hypothesisH0 : δ = 0 in regression model (1).

a) Denote bŷδ1 andt1
δ̂

the OLS estimate ofδ, and thet-statistic for testingH0, respectively, when

bothy andx follow an I(1) process. Then asT → ∞,

δ̂1
D
→ (Sxy − SxSy) (Sx2 − S2

x)
−1

T−1/2t1
δ̂

D
→ (Sxy − SySx) (S1)

−1/2

b) Denote bŷδ2 andt2
δ̂

the OLS estimate ofδ, and thet-statistic for testingH0, respectively, when

bothy andx follow an I(1) plus drift process. Then asT → ∞,

δ̂2
p
→ µy

µx

T−1t2
δ̂

D
→ µxµy (12S2)

−1/2

c) Denote bŷδ3 andt3
δ̂

the OLS estimate ofδ, and thet-statistic for testingH0, respectively, when

bothy andx follow an I(2) process. Then asT → ∞,

δ̂3
D
→ σy

σx
S3S

−1

4

T−1/2t3
δ̂

D
→ S3S

−1/2
5

d) Denote bŷδ4 andt4
δ̂

the OLS estimate ofδ, and thet-statistic for testingH0, respectively, when

xt is generated by anI(2) process, andyt is generated by aCI(2, 1) process, as inDGP 5. Then

asT → ∞,

δ̂4
D
→ βy2S4

(∫
W x

)−2

4Results for the caseCI(1, 1) are well known (Stock, 1987) and therefore are not reported here.
5Results in partsa), b), andc) of Theorem 1 confirm and extend results in Noriega and Ventosa-Santaul̀aria (2007)

(some of which had already been obtained in Phillips (1986),Park and Phillips (1989), Marmol (1995) and Entorf
(1997)), as NVS only derived the order in probability of thet-statistic, and not the corresponding asymptotic distribu-
tion, as is done in Theorem 1.
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T−1/2t4
δ̂

D
→ S

1/2
4

∫
W x

(∫
W

2

x

)−1

whereSz, Sz2, Sxy, Stz, andSi for i = 1, 2 . . . , 5, are functions of Wiener processes defined in

Appendix A.3.

As can be seen in Theorem 1, the slope parameter does not converge to its true value of zero

for the first three combinations ofDGPs. To confirm the spurious nature of the relationship, note

that thet-statistic diverges in all cases, thus indicating that the null hypothesis of no relationship

will be rejected in large samples. TheCI(2, 1) case of partd shows that the estimate does not

converge to its true value,β2, and its associatedt-ratio diverges at rateT 1/2. Furthermore, note that

when variables followDGP 2 (I(1) + drift), typically the leading case in macroeconomics, the

normalized asymptotic distribution is not pivotal: it depends on the deterministic drift parameters.

Hence, even after using an appropriate rescaling, inference is not possible in this case due to the

presence of nuisance parameters.

4 A simple test for spurious regression

Results from last section make clear that for the case of a unitroot process with drift, even knowing

the scaling factor needed for the statistic to achieve a well-defined limit, the corresponding asymp-

totic distribution is not pivotal (not nuisance-parameter-free). We propose below a simple method

which filters out the nuisance parameters, thus allowing asymptotic inference.

The procedure starts by linearly detrending each variable through the following OLS regres-

sion:

zt = cz + bzt+ εzt, t = 1, 2, ..., T. (2)

for z = x, y. Residuals are defined as:

ε̂zt = zt − ĉz − b̂zt,

which are used to estimate the following equation

ε̂yt = cf + βf ε̂xt + νt. (3)

As can be seen, equation (3) uses generated variables: residuals obtained from a first round of

estimation. Pagan (1984) shows that when regressors are residuals from another model, a two-step

regression estimator will be consistent and efficient, and “valid inferences can be made with the
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standard errors provided as output from a second stage regression” (p. 242).6 Additionally, as

proven by Frisch and Waugh (1933), identical results for theestimation ofβf and itst-statistic

from (3) would be obtained if instead regression model (1) was used with an additional time trend

term.7

The next theorem provides the asymptotic theory related to the OLS estimator̂βf , and a

rescaled version of its associatedt-statistic,T−1/2tβf
, which we callτ , in equation (3). It also

reports the asymptotic behavior of theR2 statistic. Note from Theorem 2 that partsa andb (c and

d) refer toI(1) (I(2)) processes. The proof is outlined in the Appendix.

THEOREM 2. Consider testing the null hypothesisH0 : βf = 0 in regression model (3). The

asymptotic behaviour(T → ∞) of the OLS estimator̂βf , its associatedT 1/2-rescaledt-statistic,

τ , and theR2 statistic is as follows:

a) Whenxt is generated by anI(1) or anI(1) + drift process, andyt is generated by aCI(1, 1)

process, as inDGP 4:

β̂f
p
→ β1

τ = Op(T
1/2)

(1−R2) = Op (T
−1)

b) Whenxt andyt are independent from each other and generated byI(1) or I(1)+drift processes:

β̂f = Op(1)

τ
D
→ ND−1/2

(1−R2) = Op (1)

c) Whenxt is generated by anI(2) process, andyt is generated by aCI(2, 1) process, as inDGP

5:

β̂f
p
→ β2

τ = Op(T )

(1−R2) = Op (T
−1)

d) Whenxt andyt are independent and generated byI(2) processes:

β̂f
D
→ (σy/σx)Q5Q

−1

4

τ
D
→ Q5Q

−1/2
6

(1−R2) = Op (1)

6Note however, that this result concerns estimators from regression models in which only the regressor is a gener-
ated variable.

7See also Lovell (2008) or Greene (1997, pp. 246-247).
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e) Whenxt is generated by anI(1) + drift process, andyt is generated aCorr(1) process, as in

DGP 6:

β̂f
D
→ Q1/σxQ2

τ
D
→ Q1(−σ2

yQ3)
−1/2

(1−R2) = Op (1)

whereN ,D, andQi for i = 1, 2, . . . , 6 are functions of Wiener processes defined in Appendix A.4.

Theorem 2 provides useful results. First, the estimated slope parameter in the detrended re-

gression model (3) converges to the cointegrating parameter of model 4 in the Assumption,β1,

when variables cointegrate, as shown in parta, implying that the cointegrating parameter will be

consistently estimated from regression model (3).8 Furthermore, under cointegration, the rescaled

t-statistic diverges, correctly indicating a long-run relationship, as shown also in parta. Second, as

shown in partb, the rescaledt-statistic does not diverge for independent integrated processes, thus

avoiding the (asymptotic) spurious regression problem. Furthermore, thet-statistic converges to a

pivotal limiting distribution. Note that this holds true with or without a drift in theDGP . Similar

conclusions can be reached forI(2) processes, as shown in partsc andd. Parte indicates that

when variables are correlated but not cointegrated, the test has no power, sinceτ does not diverge;

instead, it converges to a non-pivotal distribution. Finally, note that theR2 converges in probability

to one, only when there is cointegration among the variables.

Summing up, thet-statistic will diverge only when there is a long-run cointegration relationship

between the variables; otherwise it will not grow with the sample size.

Based on the preceding results, we propose a simple test whichallows to distinguish a true

linear relationship among two integrated random variables, from a spurious one. The test is based

on τ , the T 1/2-rescaledt-statistic ofβf in regression model (3) for testing the null hypothesis

H0 : βf = 0. Under the null, the filtered variables are asymptotically linearly independent. A true

relationship occurs when the null is rejected.

For the case when the variables are independent and follow any combination ofI(1) andI(1)+

drift processes, the resulting formulae (Theorem 2, partb) show that the asymptotic distribution

is pivotal, i.e. free of nuisance parameters. This implies that the above procedure allows inference

by means of an appropriately rescaled pivotal statistic, whose distribution can be tabulated.

We simulated the limit expression forτ in Theorem 2 (partsb andd) and generate asymptotic

critical values, which we report in Table 2 in the row indicated by the symbol∞.9

8Nelson and Kang (1981) argue that the dynamics of econometric models estimated from inappropriately detrended
integrated variables, may be an artifact of the trend removal procedure. Note that this phenomenon does not seem to
affect the consistency with which the slope parameter is estimated, as shown in partsa) andc) of Theorem 2.

9The number of replications is10, 000 and the simulation of the Brownian motions follows Perron (1989, p. 375).
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Table 2

CRITICAL VALUES FOR THE t-STATISTICS

τ [case I(1)-I(1) with or without drift] τ [case I(2)-I(2)]
T 1% 5% 10% 20% 1% 5% 10% 20%

25 ±1.28 ±0.92 ±0.76 ±0.57 ±5.47 ±3.49 ±2.70 ±1.92

50 ±1.28 ±0.92 ±0.76 ±0.58 ±5.95 ±3.67 ±2.82 ±2.00

100 ±1.28 ±0.92 ±0.76 ±0.58 ±5.87 ±3.73 ±2.86 ±2.01

200 ±1.28 ±0.92 ±0.76 ±0.58 ±5.90 ±3.74 ±2.85 ±2.03

500 ±1.28 ±0.92 ±0.76 ±0.58 ±5.95 ±3.74 ±2.85 ±2.03

1,000 ±1.28 ±0.93 ±0.76 ±0.58 ±6.04 ±3.78 ±2.90 ±2.04

∞ ±1.29 ±0.93 ±0.76 ±0.58 ±6.04 ±3.79 ±2.92 ±2.06

Table 2 also reports critical values based on simulated datafor samplesT = 25, 50, 100, 200,

500, 1000. The left part of Table 2 shows critical values for the (normalized) t-statistic,τ , for the

case I(1)-I(1) (whether the variables have a drift or not), while the right part shows critical values

for the case I(2)-I(2), also based on Theorem 2 (partd). It is worth noting the closeness of the

asymptotic and finite sample critical values.

As a guide on the use of critical values in Table 2, assume thatunit root tests (such as Dickey-

Fuller, or Ng-Perron tests) have led the researcher to the conclusion that bothy andx areI(1), with

a sample size ofT = 100. The use ofτ , together with critical values provided in Table 2, allows to

test for a relationship between these two integrated variables. A (low) value of the statistic which

does not reject the null (lower than, say,0.92, the critical value at the 5% level), will indicate that

the variables are two independent random walks. On the otherhand, a large value of the statistic

(larger than 0.92) will be indicative of the variables beingcointegrated.

Figure 1 plots the asymptotic distribution ofτ for the I(1)+drift case (left panel) and for the

I(2) case (right panel) under the null hypothesis. Clearly, both of the distributions display a marked

departure from normality.

4.1 Some extensions

We have also examined the case of spurious regression between two Trend-Stationary (TS) pro-

cesses (see Kim, Lee and Newbold, 2004) as well as combinations amongTS andI(d) processes,

for d = 1, 2. Results indicate thattβ̂f
converges to a standard normal distribution under the null

hypothesis when innovations in theDGP for both dependent and explanatory variables areiid.

However, when the innovations are autocorrelated, the limit distribution of tβ̂f
under the null is

A Matlab code is available from the authors upon request.
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Figure 1
ASYMPTOTIC DISTRIBUTION OF THEτ -STATISTICS
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Panel (a):τ [I(1)+drift-I(1)+drift case]; Panel (b):τ [I(2)-I(2) case].σ2

z = 1 for z = x, y; T = 1, 000, R = 10, 000.

A standard normal distribution (dash-dotted curve) is depicted for comparison.

not nuisance-parameter-free. These results, which are still preliminary and out of the scope of the

present paper, will be reported elsewhere.

5 Finite Sample Properties

5.1 Size and power of theτ test

We computed rejection rates of the proposedτ -statistics for testing the null hypothesisH0 : βf = 0

in equation (3), using critical values from Table 2 with a 5% nominal level. Rejection rates were

computed on simulated data for samples of sizeT = 50, 100, 200, 300 and500, using the models

in the Assumption, and10, 000 replications.

Table 3 shows rejection rates of theτ test for different combinations of parameter values, as-

sumingxt andyt have been generated as independentI(1) processes (Panela), or as cointegrated

processes (Panelb). In order to study the effect on size and power of autocorrelation in the pro-

cesses’ disturbancesuzt, we allow uzt = ρzuzt−1 + ηzt, for ρz = 0.0, 0.5 with z = y, x, and

η ∼ iidN (0, 1).10 As can be seen, size tends to be conservative acrossT and parameter values

(with the exception ofT = 50 andρy = ρx = 0.5, in which case size is 0.07). Turning to Panel

b in Table 3, we find that power is generally high, except for samples sizes smaller thanT = 200

and small parameter values.

10We assumeσ2

y = σ2

x = 1 in all simulations.
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Table 3
REJECTION RATES OF THE TEST STATISTICSτ .

Panel (a)
Relationship Parameters Sample Size

µx µy βy1 ρx,1 ρy,1 50 100 200 300 500

In
d

e
p

e
n

d
e

n
tD

G
P

s

0.00 0.00
– 0.00 0.00 0.02 0.02 0.02 0.03 0.02
– 0.50 0.50 0.07 0.04 0.04 0.03 0.03

0.50

0.30
– 0.00 0.00 0.02 0.03 0.02 0.02 0.02
– 0.50 0.50 0.07 0.05 0.04 0.03 0.03

1.25
– 0.00 0.00 0.02 0.02 0.02 0.02 0.02
– 0.50 0.50 0.07 0.04 0.04 0.03 0.03

1.50
– 0.00 0.00 0.02 0.02 0.02 0.02 0.02
– 0.50 0.50 0.07 0.05 0.04 0.03 0.03

1.50

0.30
– 0.00 0.00 0.02 0.02 0.03 0.03 0.02
– 0.50 0.50 0.07 0.05 0.03 0.03 0.03

0.50
– 0.00 0.00 0.02 0.02 0.02 0.02 0.02
– 0.50 0.50 0.07 0.04 0.03 0.03 0.03

1.25
– 0.00 0.00 0.03 0.02 0.03 0.02 0.03
– 0.50 0.50 0.07 0.04 0.03 0.03 0.03
Panel (b)

µx αy βy1 ρx,1 ρy,1 50 100 200 300 500

C
o

in
te

g
ra

te
d

0.00 0.30 0.30
0.00 0.00 0.01 0.10 0.41 0.65 0.91
0.50 0.50 0.03 0.62 0.92 0.99 1.00

0.30 0.50

0.30
0.00 0.00 0.02 0.10 0.40 0.65 0.91
0.50 0.50 0.28 0.61 0.93 0.99 1.00

0.50
0.00 0.00 0.24 0.62 0.94 0.99 1.00
0.50 0.50 0.74 0.96 1.00 1.00 1.00

1.25
0.00 0.00 0.99 1.00 1.00 1.00 1.00
0.50 0.50 1.00 1.00 1.00 1.00 1.00

1.50
0.00 0.00 1.00 1.00 1.00 1.00 1.00
0.50 0.50 1.00 1.00 1.00 1.00 1.00

1.75
0.00 0.00 1.00 1.00 1.00 1.00 1.00
0.50 0.50 1.00 1.00 1.00 1.00 1.00

2.00
0.00 0.00 1.00 1.00 1.00 1.00 1.00
0.50 0.50 1.00 1.00 1.00 1.00 1.00

Panel (a):xt and yt independently generated by DGP (2); panel (b):xt and yt generated by DGP (2), and (4),

respectively (xt, yt ∼ CI(1, 1)).

Table 4 shows size and power results under the assumption that variables are generated by an

I(2) process. Panela shows that the test has the correct size for all parameter values and sample

sizes. Panelb corresponds to the case when the variables cointegrate in such a way that a linear

combination of the twoI(2) variables isI(1), that is, variables areCI(2, 1). As can be seen, power

is generally very high.11

Note that our proposed test is based on prior statistical inference used to determine whether

there is a unit root or not in each variable. Since this pre-testing may induce size distortions, we

applied a Bonferroni correction. Additional Monte Carlo experiments were carried out where theτ

test depends on inference drawn from Dickey-Fuller tests applied to the individual series. Results

11We also studied the power of the test assuming variables areI(2) andCI(2, 2), that is, a linear combination of
two I(2) variables isI(0). Again, power is generally high.
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Table 4
REJECTION RATES OFτ .

Panel (a)
Relationship Parameters Sample Size

σ2

ux σ2

uy βy2 ρx,1 ρy,1 50 100 200 300 500

In
d

e
p

e
n

d
e

n
t
D

G
P

s

0.50

0.30
– 0.00 0.00 0.05 0.05 0.05 0.05 0.05
– 0.50 0.50 0.06 0.06 0.04 0.06 0.05

1.25
– 0.00 0.00 0.04 0.04 0.05 0.05 0.05
– 0.50 0.50 0.05 0.05 0.05 0.05 0.04

1.50
– 0.00 0.00 0.05 0.05 0.05 0.05 0.04
– 0.50 0.50 0.06 0.05 0.05 0.05 0.05

1.50

0.30
– 0.00 0.00 0.05 0.05 0.05 0.05 0.06
– 0.50 0.50 0.06 0.05 0.05 0.05 0.05

0.50
– 0.00 0.00 0.05 0.05 0.05 0.05 0.05
– 0.50 0.50 0.06 0.05 0.04 0.04 0.05

1.25
– 0.00 0.00 0.05 0.05 0.05 0.05 0.05
– 0.50 0.50 0.06 0.05 0.05 0.05 0.06

Panel (b)
σ2

ux σ2

uy βy2 ρx,1 ρy,1 50 100 200 300 500

C
o

in
te

g
ra

te
d

1.00 1.00

0.30
0.00 0.00 0.32 0.68 0.92 0.98 0.99
0.50 0.50 0.42 0.72 0.94 0.98 0.99

0.50
0.00 0.00 0.58 0.88 0.98 0.99 0.99
0.50 0.50 0.66 0.90 0.99 0.99 1.00

1.25
0.00 0.00 0.93 0.99 1.00 1.00 1.00
0.50 0.50 0.95 0.99 1.00 1.00 1.00

1.50
0.00 0.00 0.96 0.99 1.00 1.00 1.00
0.50 0.50 0.97 0.99 1.00 1.00 1.00

1.75
0.00 0.00 0.98 0.99 1.00 1.00 1.00
0.50 0.50 0.98 0.99 1.00 1.00 1.00

2.00
0.00 0.00 0.99 0.99 1.00 1.00 1.00
0.50 0.50 0.99 0.99 1.00 1.00 1.00

Panel (a):xt and yt independently generated by DGP (3); panel (b):xt and yt generated by DGP (3), and (5),

respectively (xt, yt ∼ CI(2, 1)).

(not reported but available from the authors upon request) reveal that a Bonferroni correction does

not seem to be necessary, as the size properties of the test are nearly identical to the ones reported

in Tables 3 and 4.

5.2 Spurious regression and cointegration

We have shown that the proposed test has power for distinguishing among independent and coin-

tegrated processes. In order to investigate this issue in more depth, we designed a Monte Carlo

experiment, through which we compare the small sample performance of ourτ statistic with

that of standard cointegration tests, such as the residual based test of Engle and Granger (1987),

and the Johansen (1988) test. For this experiment, we generated 10,000 samples of sizesT =

50, 100, 200, 300, and500 of integrated processes (with drift) foryt andxt, under two hypotheses:
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the variables are independent of each other, and the variables cointegrate. We then calculate the

proportion of times the null hypothesisH0 : βf = 0 in regression model (3) is rejected at the

nominal size of 5%, out of 10,000 replications, under each hypothesis.

As can be seen from column 3 in Table 5, theτ test does a very good job in discerning indepen-

dent processes from cointegrated ones: under the hypothesis of independence, the rejection rate

equals nominal size (5%), while power is nearly 80%, with a sample as small as fifty observations.

In the Table, EG, Tr and Eig stand for the Engle-Granger (1987) test, the trace test of Johansen

(1988), and the eigenvalue test of Johansen (1988), respectively. Note that the performance of the

four tests is very similar for sample sizes above 100 observations. When innovationsuzt in the

DGP are correlated, column 4 of Table 5 shows some size distortions (the rejection rate reaches

10% forT = 50) and lower power (52%). Note, however, that these problems quickly disappear

as the sample size grows.

Table 5
REJECTION RATES OF THEτ , ENGLE-GRANGER, AND JOHANSEN TESTS.

T Case
τ τa EG EGa Tr. Tr.a Eig. Eig.a

1 lag; no det. part

50
I 0.05 0.10 0.05 0.02 0.07 0.09 0.07 0.09

CI 0.78 0.52 1.00 0.33 0.99 0.28 0.99 0.26

100
I 0.05 0.09 0.05 0.02 0.06 0.07 0.06 0.07

CI 0.98 0.77 1.00 0.89 1.00 0.77 1.00 0.78

200
I 0.05 0.07 0.05 0.02 0.06 0.06 0.06 0.06

CI 0.99 0.96 1.00 0.99 1.00 0.99 1.00 0.99

300
I 0.05 0.06 0.04 0.02 0.07 0.06 0.06 0.06

CI 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

500
I 0.05 0.06 0.05 0.02 0.08 0.06 0.07 0.06

CI 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

EG: Engle-Granger test; Tr/Eig: Johansen’s Trace and Eigenvalue tests;a Innovations follow a stationaryAR(1)

process:uzt = 0.75uzt−1 + ǫzt; ǫzt ∼ N (0, 1); µx = 0.03, µy = 0.04, βy = 0.7 (for cointegrated relationships), and

R = 1, 000.

Hence, theτ test could be used not only to distinguish a genuine relationship from a spurious

one, but also to distinguish independent from cointegratedprocesses. There may be gains from

using theτ test as a cointegration test, given its relative simplicity: on the one hand, the Engle-

Granger test must control for autocorrelation by means of augmentation terms; on the other, the

Johansen test requires the specification of the initial VAR model, as well as decisions regarding the

inclusion of deterministic components.

Overall, we believe that the practitioner could benefit fromapplying both tests, given their

different nature: the EG procedure is based on the properties of the residuals whilst ours is based

13



on the parameter estimate. If both tests find evidence of a genuine relationship, the practitioner

should be more confident about the validity of such inference. On the contrary, if the results of the

tests are incompatible, then the practitioner could consider this as evidence of potential misleading

inference and should therefore revise the empirical exercise. The use of theτ statistic could be

therefore considered as a companion test in a cointegrationanalysis, capable of confirming the

inference drawn from other tests or to cast doubts about its validity.

To illustrate these arguments, we performed an additional Monte Carlo experiment. We gen-

erated 10,000 samples of two independentI(1) processes of sizes reported in the first column on

Table 6, in order to study the joint behaviour of theτ test and the EG one. Because the processes

are generated independently of each other, we expect that the tests do not reject their null hypothe-

ses, namely, no relationship, and no cointegration, respectively. To verify this, we counted the

percentage of times this occurs, and present these percentages in column 2 of Table 6. At a nomi-

nal level of 5%, and assuming the tests are independent, we should expect to get something close

to the following probability:

Pr(τ does not rejectH0∩EG does not rejectH0 | H0 is true) = (1−α)2 = (0.95)2 = 0.9025

Table 6
TYPE-I ERRORREJECTION RATES OF THEτ AND EG TESTS.

T Both accept Onlyτ accepts Only EG accepts Both reject
50 0.9061 0.0478 0.0418 0.0043
100 0.9110 0.0446 0.0405 0.0039
150 0.9047 0.0420 0.0479 0.0054
200 0.9065 0.0446 0.0441 0.0048
300 0.9048 0.0419 0.0480 0.0053
500 0.9072 0.0438 0.0431 0.0059

1,000 0.9058 0.0424 0.0473 0.0045

Level of the tests:α = 0.05. Innovations are∼ iidN (0, 1); µx = 0.03, µy = 0.04, andR = 10, 000.

As can be seen from the values reported in column 2 in Table 6, it seems the tests are indeed

independent.Columns 3 and 4 in Table 6 report estimates of thefollowing probability:

Pr(one test does not rejectH0 ∩ the other one does rejectH0 | H0 is true) = (1− α)α

= (0.95)0.05

= 0.0475

From the reported values, we can conclude that at least one ofthe tests does not reject the (true)
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null is around 95% (calculated as the sum of columns 2 and 3, or2 and 4). Finally, column 5

estimates the following probability:

Pr(τ rejectsH0 ∩ EG rejectsH0 | H0 is true) = α2 = 0.0025

which means that it is very unlikely that both tests get the wrong outcome of rejecting the true null.

Turning to power issues, we present Monte Carlo experiments that allow the presence of auto-

correlation in the innovations: in Table 7 innovations follow anAR(1) process with autoregressive

parameter equal to0.75. In this case, the EG test must include one lag of the dependent variable as

an additional regressor in the auxiliary regression. We included such a lag in the EG test and com-

pare the rejection rates of the joint application of theτ test and the EG one. From Table 7, which is

constructed under the alternative hypothesis of cointegration, when the practitioner runs both tests

with a sample of sizeT = 100, there is a 93% chance of rejecting the null with at least one of the

tests (0.613+0.148+0.167), which is better than 76% (0.613+0.148), or 78% (0.613+0.167), the

chances of rejecting the null using only theτ statistic, or the EG test. It appears that, for relatively

small samples (below 100 observations), the application ofboth tests ensures higher power. Hence,

there seems to be potential benefits in the use of both tests instead of only one.

Table 7
TYPE-II ERRORREJECTION RATES OF THEτ AND EG TESTS.

T Both reject Onlyτ rejects Only EG rejects Both accept
50 0.1662 0.3593 0.0977 0.3768
100 0.6131 0.1480 0.1665 0.0724
150 0.8911 0.0116 0.0951 0.0022
200 0.9627 0.0001 0.0372 0.0000
300 0.9952 0.0000 0.0048 0.0000
500 1.0000 0.0000 0.0000 0.0000

1,000 1.0000 0.0000 0.0000 0.0000

Level of the tests:α = 0.05. Innovations are∼ AR(1) with ρ = 0.75; µx = 0.03, µy = 0.04, βy = 0.7 (for

cointegrated relationship), andR = 10, 000.

6 Empirical illustrations

In a frequently cited but insufficiently read paper (as Granger (2001), p.557 argues), Yule (1926)

first discussed the nonsense correlations that can be found “between quantities varying with the

time, to which we cannot attach any physical significance whatever,. . . ”(p. 2). He illustrated this

using annual data for the years 1866-1911 on the proportion of Church of England marriages to all
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marriages (per 1,000 persons) and the mortality rate (per 1,000 persons) in England and Wales.

Yule (1926) found a correlation coefficient between these two variables of0.9512, and argued

that even though it could be possible that the spread of scientific thinking and the progress of

science might be behind the fall in marriages and mortality,respectively, and hence a common

factor influences both series, it is nevertheless clear that“the correlation is simply sheer nonsense;

that it has no meaning whatever; that it is absurd to suppose that the two variables in question are

in any sort of way, however indirect, causally related to oneanother” (p.2).

The purpose of this section is twofold. First, we use real data to illustrate the possibility of

finding spurious statistical relationships between variables which, ona priori grounds, should bear

no relationship to each other. The variables we study are thefollowing:

1. Annual data (1866-1911) on the proportion of Church of England marriages to all marriages

(per 1,000 persons) in England and Wales (marriages, henceforth).12

2. Annual data (1866-1911) on the mortality rate (per 1,000 persons) in England and Wales

(mortality, henceforth).13

3. Monthly data (1991:1-2005:12) on total number of vehiclesales in the US (cars hence-

forth).14

4. Monthly data (1991:1-2005:12) on number of murders in theUS (murders henceforth).15

5. Monthly data (1991:1-2005:12) of the inflation rate in Brazil ( infbrazil, henceforth).16

6. Monthly data (1991:1-2005:12) on cash in vault of commercial and development banks in

Mexico (BCbanks, henceforth).17

Second, after showing that the usual OLS regression techniques indicate the presence of linear

(spurious) relationships between combinations of the variables, we show that, once our proposed

procedure is implemented, the statistical relationship vanishes, leading to what we believe should

be, on a priori grounds, correct inference.

12Data for Church marriages are from Office for National Statistics, U.K.
(http://www.statistics.gov.uk/cci/nscl.asp?ID=7537).

13Data for themortality rate series come from Mitchell (1988).
14The source is Bureau of Economic Analysis: Auto and Truck Sales, Production, Exports and Inventories (thou-

sands), from www.FreeLunch.com - http://www.economy.com/freelunch. The sample period (1991:1-2005:12) com-
prises 180 observations.

15The source is FBI: Crime in the United States; BOC: County City Data Book, from www.FreeLunch.com -
http://www.economy.com/freelunch.

16Calculated as the percentage change in the consumer price index. Central Bank of Brazil (Banco Central do
Brasil). https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries

17Thousands of Pesos, nominal stocks. The source is Bank of Mexico (Banco de Ḿexico).
http://www.banxico.org.mx/sitioingles/billetesymonedas/estadisticas/banknotescoins/banknotescoinsincircu.htm
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We start our empirical investigation by uncovering the order of integration of the variables. As

a first step, we follow Dickey and Pantula (1987), who observed empirically that the probability

of rejecting the null hypothesis of one unit root (denotedH1) against the alternative of stationarity

(H0) increases with the number of unit roots present. In order toovercome this possibility, we

use the methodology suggested by Pantula (1989), which consists of an asymptotically consistent

sequential procedure for testing the null hypothesisHr : exactlyr unit roots, against the alternative

Hr−1 : exactly (r − 1) unit roots, withr = m, ..., d + 1, d, wherem is an assumed maximum

number of unit roots present in the data, andd the true number of unit roots present in the data.

Pantula suggests that the hypotheses must be tested sequentially in the orderHm, Hm−1, ..., Hd.

We assume that it is known a priori that the maximum possible number of unit roots present in the

data is 2. Based on Pantula’s results, we perform unit root tests downwards, starting with a test of

the null hypothesisH2: exactly two unit roots (or a unit root in the first differences of the data). If

the nullH2 is rejected, then we test the nullH1: one unit root, against the alternative of stationarity,

otherwise, we infer there are two unit roots in the series.

This procedure is implemented by using seven tests: the Augmented Dickey-Fuller unit root

test (see Said and Dickey (1984)), the KPSS stationarity test18 (see Kwiatkowski, et.al (1992)), the

ERS point optimal unit root test (see Elliott, et.al. (1996))and the four unit root tests with good

size and power properties of Ng-Perron (see Ng and Perron (2001)). Table 8 summarizes the time

series properties of the variables.

As can be deducted from this Table, most variables seem to follow a unit root process, with the

exceptions ofmurders, which seems to be anI(2) process, andmarriages which is described as

I(1) by some tests, orI(2) by others. Inference from the various tests is summarized inTable 9.

Using several combinations of these integrated series, we examine regression results under two

approaches: simple linear ordinary least squares on (1), and the procedure proposed in section

4, which usesτ = T−1/2tβf
from OLS estimation of equation (3) as the test statistic. Table 10

collects the results.
18In the case of theKPSS stationarity test, we start by testing the nullH1 againstH2, that is, the null of stationarity

in the first differences of the data, against the alternativeof two unit roots. If the nullH1 is rejected, then we stop and
conclude that the series has two unit roots. If the null is notrejected, we proceed to test the null of stationarity,H0,
against the alternative of a unit root,H1.
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Table 8

RESULTS OF THEUNIT ROOT TESTS

Series ADF KPSS† ERS† Ng-Perron

MZa MZt MSB MPT

∆marriage -2.03 0.83*** 3.61* -5.68 -1.67* 0.29 4.36*

marriage —– —– 15.10 —– -1.60 —– 16.11

∆mortality -9.48*** 0.02 3.30* -14.91*** -2.61*** 0.17** 2.11**

mortality -1.19 0.43*** 12.02 -7.49 -1.93 0.26 12.16

∆cars -19.41*** 0.013 0.48*** -122.74*** -7.80*** 0.06*** 0.25* **

cars -1.40 75.90*** 319.00 -0.15 -0.20 1.35 338.37

∆murders -0.81 147.42*** 38.05 -1.07 -0.72 0.68 22.69

murders —– —– —– —– —– —– —–

∆Infbrazil -12.92*** 0.048 0.28*** -149.93*** -8.66*** 0.06*** 0.16* **

Infbrazil -2.48 11.86*** 7.68 -11.93 -2.42 0.20 7.75

∆BCbanks -19.12*** 0.01 0.342*** -122.39*** -7.81*** 0.06*** 0.22* **

BCbanks 0.22 119.45*** 132.67 -1.77 -0.93 0.53 50.86

***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.
† The statistics reported are those which estimate the residual spectrum at frequency zero by OLS

(using OLS-detrended methods does not change the results).

We let the maximum value of lag length atkmax = int(12(T/100)1/4), see Ng and Perron (2001).

The lag length is selected by MBIC, MAIC and MHQ; except in the Ng-Perron test where the lag is

selected like in Perron and Qu (2007).
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Table 9

ORDER OF INTEGRATION FROM UNIT ROOT TESTS.

Series ADF KPSS ERS Ng-Perron

MZa MZt MSB MPT

marriage I(2) I(2) I(1) I(2) I(1) I(2) I(1)

mortality I(1) I(1) I(1) I(1) I(1) I(1) I(1)

cars I(1) I(1) I(1) I(1) I(1) I(1) I(1)

murders I(2) I(2) I(2) I(2) I(2) I(2) I(2)

Infbrazil I(1) I(1) I(1) I(1) I(1) I(1) I(1)

BCbanks I(1) I(1) I(1) I(1) I(1) I(1) I(1)

Table 10

yt xt tδ̂ τ

mortality marriages 23.542*** 0.477

cars Infbrazil -6.390*** -0.062

cars BCbanks 10.108*** -0.006

Infbrazil BCbanks -11.258*** -0.118

mortality ∆marriages 0.688 0.010

cars ∆murders 2.047** -0.068

Infbrazil ∆murders -0.393 0.258

BCbanks ∆murders 4.424*** 0.063

***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.

Results from Table 10 indicate that, in almost all cases, simple OLS regression among appar-

ently independent variables will result in rejection of thenull of no relationship, leading one to

conclude in favour of spurious relationships. The case ofmortality on∆marriages suggests that

marriages is indeedI(1), notI(2). If this was the case, the application of the difference operator

would eliminate the stochastic trend in this variable, i.e.∆marriages ∼ I(0). As shown in Nor-

iega and Ventosa-Santaulària (2007), thet-statistic does not diverge when one of the variables is

trendless. Hence, in this case we conclude that standard inference throughtδ̂ in regression model

(1) for these variables would indicate a spurious rejectionof the null.

The last column of Table 10 shows that the proposed procedureindicates, as one would expect,

that the variables are not statistically related, since theτ statistic is not significant at conventional

levels, using critical values from the left panel of Table 2.
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7 Conclusions

This paper has proposed a simple procedure to overcome the spurious regression problem in a

simple linear regression model when the variables are integrated processes. We study two cases,

one in which both dependent and explanatory variables are integrated processes of order one (with

and without drift), the leading case in many empirical studies in macroeconomics, and one in which

the variables are integrated of order two.

In the context of a simple linear regression model, it is wellknown that, when both dependent

and explanatory variables follow anI(1) plus drift process, thet-statistic of the slope parame-

ter diverges, while the corresponding rescaled statistic converges to a well defined distribution,

expressed in terms of Wiener processes, but dependent on nuisance parameters (the drift param-

eters). We introduce a simple approach based on linear filtering of the data, which results in a

t-statistic with a well defined asymptotic distribution freeof nuisance parameters. We tabulated

both the asymptotic distribution of this statistic and its finite sample counterpart, and report critical

values for various samples sizes and significance levels.

The asymptotic theory behind our proposed procedure implies that, when variables cointegrate,

the test will reject the null of no correlation. On the other hand, when variables are independent,

then the test will not reject asymptotically. A small Monte Carlo experiment reveals that our

proposed test statistic does a very good job in discerning independent from cointegrated variables

and could be therefore considered as a “companion test” in a cointegration analysis.

Finally, we applied the proposed procedure to the famous Yule (1926) data set on marriages

and mortality rates, and found that under our method we no longer find a (spurious) significant

relationship between these two variables. Some additionalempirical exercises confirm that our

procedure seems to work in practice.
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APPENDIX A.1

Equation (1) can be written in matrix formy = Xβ + ε, with y a T × 1 vector ofyt data,

X aT × 2 matrix comprising a constant term and data onxt, andε aT × 1 vector of zero mean

disturbances. The vector ofOLS estimators is defined as:

β̂ =

[
α̂

δ̂

]
= (X ′X)−1X ′y,

where (all sums run fromt = 1 to T ) X ′X =

[
T Σxt

Σxt Σx2

t

]
, andX ′y =

[
Σyt

Σxtyt

]
. The

t-statistic is defined by

tδ̂ = δ̂
[
σ̂2

ε(X
′X)−1

22

]−1/2
,

whereσ̂2

ε is the estimated regression variance,

σ̂2

ε =
Σ(yt − α̂− δ̂xt)

2

T

and(X ′X)−1

22
denotes the2nd diagonal element of(X ′X)−1. With the aid of aMathematica 7.0

code, for each combination of DGPs in the Assumption fory andx, we compute the order of

magnitude of̂δ, σ̂2

ε , and(X ′X)−1

22
, and therefore we derive the order of magnitude oftδ̂. The code

also allows us to derive the expression for the asymptotic distribution oftδ̂. This code is available

at http://dl.dropbox.com/u/1307356/SpRegTest/NVSSpRegTest1.zip

APPENDIX A.2

As in Appendix A.1, Equation (2) can be written in matrix formz = Xβ + ε, with z aT × 1

vector of data (zt = yt, xt), X aT × 2 matrix comprising a constant term and a linear trendt, and

ε aT × 1 vector of zero mean disturbances. The vector ofOLS estimators is defined as:

β̂ =

[
ĉz

b̂z

]
= (X ′X)−1X ′z,

whereX ′X =

[
T Σt

Σt Σt2

]
, andX ′z =

[
Σzt

Σztt

]
. With the aid of aMathematica 7.0 code (avail-

able at http://dl.dropbox.com/u/1307356/SpRegTest/NVSSpRegTest2.zip), we are able to compute

analytic expressions for̂β. The resulting residuals,̂εyt and ε̂xt are then used to estimate by OLS

23



regression model (3):

β̂f = Σε̂ytε̂xt
(
Σε̂2xt

)−1

Note that in this caseΣε̂zt = ĉf = 0, by construction. TheMathematica 7.0 code does the rest,

deriving a limiting expression for̂βf (and also a limiting expression fortβf
). The behaviour of

theR2 is obtained by studying the asymptotics of the residual sum of squares and the total sum of

squares fromR2 = 1−RSS/TSS, whereRSS =
∑

ν̂2

t = T σ̂2

ν andTSS =
∑

ε̂2yt = T σ̂2

εy , both

of which can also be obtained from theMathematica 7.0 code.

APPENDIX A.3

The definitions for the expressions used in Theorem 1 are as follows. Forz = x, y :

Sz = σz

∫
Wz, Sz2 = σ2

z

∫
W 2

z , Sxy = σxσy

∫
WxWy, Stz = σz

∫
rWz, and

S1 = Sx2Sy2 − Sy2S
2

x − Sx2S
2

y + 2SxSySxy − SyS
2

x

S2 = (µ2

x)
−1

[
µ2

yAx + µ2

xAy + 2µxµy(12StxSty − 6StySx − 6StxSy + 4SxSy − 6Sxy)
]

S3 =
∫
W x

∫
W y −

∫
W xW y, S4 =

(∫
W x

)2
−
∫
W

2

x

S5 = 2
∫
W x

∫
W y

∫
W xW y −

(∫
W xW y

)2
−
∫
W

2

x

(∫
W y

)2
−
(∫

W x

)2 ∫
W

2

y +
∫
W

2

x

∫
W

2

y

with Az = Sz2 − 4(3St2z − 3StzSz + S2

z ), andσ2

z = limT→∞(T−1
∑T

t=1
u2

zt).

APPENDIX A.4

The definitions for the expressions used in Theorem 2 are as follows.

N = 6
∫
rWx

(∫
Wy − 2

∫
rWy

)
+
∫
Wx

(
6
∫
rWy − 4

∫
Wy

)
+
∫
WxWy

D = 4
(∫

Wx

)2 ∫
W 2

y − 12
(∫

rWx

)2 [(∫
Wy

)2
−

∫
W 2

y

]
+ 12

(∫
Wx

)2 (∫
rWy

)2

−12
∫
Wx

∫
rWx

[(∫
Wy

)2
− 2

∫
Wy

∫
rWy

]
+wy1

∫
W 2

x+4 (w2 + w3)
∫
WxWy+

(∫
WxWy

)2

Q1 = βy3σxwx1 + σy

[
2(w2 − w3)−

∫
WxWy

]

Q2 = 4
(∫

Wx

)2
−
∫
W 2

x − 12
∫
rWx

(∫
Wx −

∫
rWx

)

Q3 = 12
∫
rWy

[
2
∫
Wx

∫
rWx

∫
Wy −

∫
W 2

x

∫
Wy −

(∫
Wx

)2 ∫
Wy +

∫
W 2

x

∫
rWy

]

+
(∫

Wy

)2 [
4
∫
W 2

x − 12
(∫

rWx

)2]
+ wx1

∫
W 2

y +
∫
WxWy

[
4(w2 + w3) +

∫
WxWy

]

Q4 = 4
(∫

W x

)2
− 12

∫
W x

∫
rW x + 12

(∫
rW x

)2
−

∫
W

2

x
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Q5 = 4
∫
W x

∫
W y − 6

∫
rW x

∫
W y − 6

∫
W x

∫
rW y + 12

∫
rW x

∫
rW y −

∫
W xW y

Q6 =
(∫

W xW y

)2
−4

(
3
∫
rW x

2

−
∫
W

2

x

) (∫
W y

)2
−12

(∫
W

2

x − 2
∫
W x

∫
rW x

) ∫
W y

∫
rW y

+12
[
(
∫
W

2

x −
(∫

W x

)2] (∫
rW y

)2
+Q4

∫
W

2

y

−4
∫
W xW y

(
2
∫
W x

∫
W y − 3

∫
rW x

∫
W y − 3

∫
W x

∫
rW y + 6

∫
rW x

∫
rW y

)

wz1 = 4
(∫

Wz

)2
− 12

∫
Wz

∫
rWz + 12

(∫
rWz

)2
−
∫
W 2

z

w2 = 3
∫
rWx

∫
Wy − 2

∫
Wx

∫
Wy

w3 = 3
∫
Wx

∫
rWy − 6

∫
rWx

∫
rWy
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