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Abstract

We explore how innovation affects aggregate welfare gains from trade. While it
is well known that exporters invest in productivity during trade liberalizations (“in-
novate”), it is not clear how this affects aggregate welfare. To study this, we build
a model of international trade with innovation and derive analytically the firm’s
size distribution in equilibrium. We then assess the impact of reductions in trade
costs. Entrants (small firms) play a key role: the larger the entrants, the smaller
the change in aggregate innovation. Comparing steady states, a 1% reduction in
iceberg costs increases productivity between 0.17% and 1.30%, depending on the
relative size of entrants. To assess the impact on welfare, we compute analytically
the transition between steady states. The discounted welfare gains are 10 times
larger than models without innovation. This sharply contrasts previous research
that finds that changes in entry levels cancel out the potential effects of innova-
tion. We argue that the way entrants enter matters, and the reason for the previous
results is that entrants were modeled as counterfactually large firms.

1 Introduction

Trade liberalization brings about a series of changes in the industrial organization of the

liberalized country or sector that affects the distribution of firms. First, the increased size

of the export market implies that exporters become relatively larger. This has led most

studies to focus more on the upper tail of the distribution, ignoring what happens at the

bottom. But the bottom also changes: non exporters become exporters; and innovation

affects firm size across the board. Several papers find that exporters have more incentives
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to innovate, while non exporters, faced with increased competition, have lower incentives

to innovate when trade costs fall. All these changes have potentially large effects on

welfare. To understand these effects on welfare, we first need to understand how the

distribution of firms interplays with trade liberalization. In other words, the distribution

of firms talks, it tells us how different policies affects the different firms in the economy.

This paper explores the link between trade liberalization, the firm size distribution,

and welfare. To do this, we develop a model of international trade with innovation,

endogenizing the firm size distribution, measured as number of employees or sales. We

then study the effects of lowering trade costs on welfare and how the distribution of firms

sheds light on the channels that generate those welfare gains.

The model builds on Melitz (2003), modified by adding process innovation. There are

heterogeneous firms that make production, innovation and exporting decisions in every

period, and may exogenously die with a fixed probability. There is a large pool of potential

entrants that would become productive if the expected profits of being a incumbent is

larger than an exogenously given fixed cost of entry. When a firm is born it gets a random

initial level of productivity, thereafter it makes innovation decisions that lead to growth.

The probability distribution of the initial level of productivity determines the distribution

of small firms (entrants), and is one of the main targets of this paper.

We design the model to replicate four well established facts of the industrial organiza-

tion and international trade literature. These are: (i) Gibrat’s law: firm growth rates are

independent of firm size; (ii) Zipf’s law: the upper tail of the firm size distribution is close

to a Pareto distribution; (iii) exporters are larger than non exporters; and (iv) exporters

grow faster than non exporters. The first two facts are well established in the industrial

organization literature. The latter two emerge consistently from empirical papers relating

firms and international trade, starting with Bernard and Jensen (1999).

These four facts are incorporated via the innovation cost function and the existence of

a fixed export cost, as in Melitz (2003). We propose an innovation cost function so that

in equilibrium the rate of growth for a given firm is independent of its size (Gibrat’s law).

Also, the assumption of a sunk export cost implies that, in equilibrium, only large firms

choose to export.

The other two facts emerge in equilibrium. From Gabaix (2011) we know Gibrat’s law

implies Zipf’s law. That is, the equilibrium firm size distribution has a Pareto upper tail

for a very wide range of entrant distributions. We derive this relationship in closed form

solution, as in Acemoglu and Cao (2010), Luttmer (2010), and Benhabib et al. (2011).

The second equilibrium outcome is that exporters grow faster than non exporters. Since
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exporters face larger demands, they choose to invest more in innovation, and therefore

grow faster.

Our equilibrium firm size distribution is a particular version of Zipf’s law. Zipf’s law

characterizes the upper tail of the distribution as close to a Pareto distribution. While

this is true in our equilibrium, we can go one step further and describe the middle part

of the distribution as also close to Pareto, with a different curvature parameter.

Figure 1: The Firm Size Distribution in US (Luttmer, 2007)
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We illustrate this finding by using the plot in Luttmer (2007) to describe the firm size

distribution in the data, replicated in Figure 1. This plot shows the log of the number

of employees (x) in the horizontal axis, and the log of the number of firms with more

than x employees on the vertical one. The dots represent the data, the solid line is an

approximation with a straight line. The straight line approximation is quite accurate,

which is a characteristic of the Pareto distributions.

We show this same plot with model implications in Figure 2. The distribution is a

combination of two straight lines. For relatively small values of x, the slope is steeper

than for larger values. By paying close attention to the plot in Figure 1 we uncover a

similar pattern. It becomes clear that the dots are initially on top of the straight line,

then fall below, and then eventually rise to a level above the straight line.
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Figure 2: The Firm Size Distribution in our Model
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The slope of the distribution is determined by the rate of growth of firms in that

segment of the distribution. Since exporters grow faster, the slope for large firms is

flatter. We are not the first to notice that the slope for exporters is flatter than the slope

for non exporters. di Giovanni et al. (2010) observe this empirically by analyzing the

distribution of firms separating exporters from non exporters. We add theoretical validity

to their empirical observation.

We next turn to studying the effects of a drop in trade costs, and the role of the

distribution in determining the welfare gains. To study welfare gains, we split the gains

into direct and indirect gains, following Atkeson and Burstein (2010). Direct gains are

the gains that occur directly from the removal of a distortion (the trade costs), fixing all

firm decisions. The indirect effect takes into account all the changes in firm decisions.

By comparing steady states, we find that the magnitude of welfare gains, and in par-

ticular the indirect effect, heavily depend on the distribution of small firms. If entrants

(more likely to be in the lower tail of the distribution) enter with relatively low produc-

tivity technologies, then the gains of reducing trade costs are larger. This increase is due

to an increase in the innovation decisions and firm entry (the indirect effect, following

Atkeson and Burstein (2010)). By construction, the direct effect (the one occurring only

because of the removal of a distortion such as the trade costs) is constant independently

of the distribution of entrants.

We also compute the transition to the new steady state in closed form. We focus on
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a special case of our model to compute the transition, in which all entrants enter with

equal productivity. We use this transition path to compute the welfare gains from trade:

the equivalent variation in consumption from a change in marginal trade costs, defined

as the change in consumption at the old steady state that leaves households indifferent

between the old steady state and the transition to the new steady state. We find that

even taking into account the transition to the new steady state, the effects of innovation

on the welfare gains from trade are huge.

This is an important message to those papers that focus only on the upper tail. Papers

such as Gabaix (2011) and di Giovanni and Levchenko (2009) conclude that the behavior

at the top is what really matters for aggregate outcomes. These studies assume that

firm size is exogenous. The fact that the distribution of firms is fat tailed implies that

aggregate outcomes are more heavily affected by the shocks to large firms. But with

innovation, firm size is endogenous, and a change in trade costs has effects on the size of

every firm, both large (exporters) and small (non exporters).

The intuition of why small firms matter stems from the free entry condition. To

see this, suppose all entrants immediately become exporters, as in Krugman (1980). A

drop in trade costs will increase expected profits from entry considerably, and many firms

will want to enter, making entry extremely elastic. But the free entry condition pins

down the expected profits from entry. Entry restores the expected profits for an entrant

to their previous levels, thus restoring the old equilibrium. If profits do not increase,

neither will innovation and welfare will not depend on innovation. On the other hand,

if entrants are very unlikely to become exporters, entry is inelastic with respect to trade

costs, and the gain perceived by exporters will not be counteracted by an increase in

costs, and innovation will increase, producing welfare gains and changes in the firm size

distribution.

The importance of the free entry condition was first discussed in Atkeson and Burstein

(2010). They argue that in many cases, the free entry condition implies that innovation

does not increase welfare gains from trade. These cases are three: when all firms export

as in Krugman (1980); when exporting is inelastic and the interest rate is zero; and when

innovation is inelastic and the interest rate is zero, as in Melitz (2003). Our model delivers

the same result as theirs for these three cases. Also, for the other cases they analyze, we

find similar effects on welfare and the contribution of innovation to welfare increases.

These cases relax the assumption of inelastic exporting, inelastic innovation, and zero

interest rate. The authors conclude that innovation does not add much to the welfare

gains from trade because the indirect effect is very small relatively to the direct effect,
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and any increase via the indirect effect takes a long time to happen, and therefore it is

quite small in present value.

The link between innovation and trade liberalization has been the subject of a vast

recent literature. Rubini (2011) finds that adding innovation is key to account for produc-

tivity gains from trade, when productivity is measured as in the national accounts, and

to account for the large trade elasticity observed by Head and Ries (2001) and Clausing

(2001) during the Canada-U.S. Free Trade Agreement, while being consistent with micro,

high frequency estimates of this trade elasticity. Examples of papers measuring this high

frequency elasticity include estimates using macro models such as Corsetti et al. (2008),

Backus et al. (1994), and Heathcote and Perri (2004), and micro estimates such as Broda

and Weinstein (2006).

Empirically, many papers have found evidence of innovation strongly connected to

trade liberalization. Firms that become exporters during a trade liberalization period

exhibit sharp increases in innovation expense and productivity. Bustos (2011) finds that

Argentine firms that became exporters during the Mercosur increased their innovation

expense dramatically. De Loecker (2007) finds that Slovenian firms that entered the

export market following Slovenia’s independence increased their productivity by up to

fifty percent relative to a control group of firms that did not enter the export market.

Van Biesebroeck (2005) finds similar results for Sub-Saharan African firms. Lileeva (2008)

and Lileeva and Trefler (2010) find that Canadian firms that entered the export market

during the Canada-US Free Trade Agreement increased their investment in innovation

relative to other firms.

2 The Model

The model builds on Melitz (2003). Time is continuous. There are two symmetric coun-

tries that produce a continuum of differentiated goods that can be traded. Each good can

only be produced in one country. There is an infinitively lived representative consumer

that derives utility from consuming as many goods as possible. There are incumbent firms

each period that make production, innovation, and exporting decisions. Firms die each

period with an exogenous probability δ. There is a pool of potential entrants that can

enter by paying an entry cost κE.

With continuous time, the preferences of the consumer in country i are given by the
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following utility function, for i = 1, 2:

Ui (qi(ω, t)) =

∫ ∞
0

e−ρt lnQi(t)dt

Qi(t) =

[∫
Ωi(t)

qi(ω, t)
σ−1
σ dω +

∫
Ω∗i (t)

qi(ω, t)
σ−1
σ dω

] σ
σ−1

where ω is the name of the good consumed, Ωi is the set of goods produced in country i

and Ω∗i is the set of goods produced in country j 6= i and imported into country i. σ > 1

is the elasticity of substitution between goods.

Each instant, there is a continuum of incumbent firms that produce the goods. Firms

are owned by the domestic consumer. Each firm is a monopolist producing each good.

Given a productivity level z and labor services n, the firm producing good ω has access

to the following technology:

y(ω; z, n) = zn

A firm can make innovation expenses to increase its productivity level z. We choose

a functional form for the innovation cost that guarantees that in equilibrium Gibrat’s

law emerges. That is, in equilibrium, firm growth rate is independent of firm size. The

innovation cost is in labor units. The cost of increasing productivity by an amount ż

depends on the current productivity level z, and is given by:

c(z, ż) =
κIz

σ−1

2

(
ż

z

)2

This cost function says that to increase productivity by a certain proportion, a firm must

incur a cost proportional to that proportion squared. Additionally, if a very productive

firm wants to increase its productivity by 10%, it must incur a cost that is greater than

what a low productivity firm would need to incur to increase its productivity by 10%.

This is why the term zσ−1 appears in the cost function. The term σ − 1 in the exponent

is useful for the solution to be in closed form. κI determines how costly innovation is.

As in Ruhl (2008), any firm can export by incurring a sunk export cost equal to κX

units of labor. Once a firm becomes an exporter, it remains an exporter until it dies,

without the need of paying additional export costs.

There is a large pool of potential entrants that can enter anytime by incurring an

entry cost equal to κE units of labor. After paying the entry cost, entrants draw their
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productivity z from an exogenous distribution f(z). It is worth to notice that, in equilib-

rium, younger firms are relatively smaller firms. This distribution function f(z) shapes

the distribution of entrants, and therefore the lower tail of the size distribution of firms.

We assume z ∈ [1,∞).

Exports are subject to trade costs. We model these costs is two ways: as tariffs,

and as iceberg transport costs. In the firms case, exporters produce the same amount

as importers consume. If importers pay a price p to the exporter, additionally it pays a

proportion τ of this price to its government. In turn, the government rebates this revenue

lump sum to the consumer.

When we model trade costs as iceberg costs, we assume that transport depletes a

proportion τ of the good. So if a consumer consumes an amount q of a good, the exporter

must ship an amount (1 + τ)q. Eliminating iceberg costs in this case is an improvement

in the technology set. Eliminating tariffs is a policy experiment, going from a second best

to a first best.

Both of these assumptions are common in the literature. Ruhl (2008) and Rubini

(2011) assume trade costs are tariffs. Atkeson and Burstein (2010) and Melitz (2003)

assume they are iceberg costs. Rubini (2011) discusses the theoretical difference between

these two, arguing that these two assumptions can deliver important quantitative differ-

ences. In this paper we show that this is the case: the gains of reducing tariffs can double

the gains of reducing iceberg costs.

The labor market clearing condition closes the model. Let M(t) be the measure of

entrants at time t. The labor market clearing condition is

1 =

∫
Ωi(t)

(n(ω, t) + c̄(ω, t))dω +M(t)κE (1)

where c̄(ω, t) is the labor demand for innovation of firm ω at time t.

3 Symmetric Equilibrium

We identify a monopolistically competitive symmetric equilibrium for this economy. The

symmetry allows us to drop the subindex i from everywhere.

To solve for the equilibrium, we introduce prices. Let w(t) be the wage rate at time

t. We use this as numeraire, so set w(t) = 1 for all t. The price of good ω is p(ω). In

equilibrium we show that the price before tariffs for an exported good is the same as the

price of the same good sold domestically, so we do not introduce notation for the price of
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an exported good. This price is set by the monopolist to maximize profits subject to the

demand for its product. This demand function comes from the consumer maximization

problem. Each instant, consumers choose how much to consume of each good taking

each price as given. In equilibrium, symmetry implies there is no borrowing and lending

between countries, so the problem of the consumer becomes a static problem:

max lnQ(t)

s.t.

Q(t) =

[∫
Ω(t)

q(ω, t)
σ−1
σ dω +

∫
Ω∗(t)

q(ω, t)
σ−1
σ dω

] σ
σ−1

∫
Ω(t)

p(ω, t)q(ω, t)dω + (1 + τ(t))

∫
Ω∗(t)

p(ω, t)q(ω, t)dω = 1 +

∫
Ω(t)

π(ω)dω +R(t)

The last line is the budget constraint. π(ω, t) is profits of a firm ω. R(t) is tax revenue at

time t. When trade costs are iceberg costs, this term is equal to zero. Let the right hand

side be equal to I(t) (for income). The demand of a particular good is

q(ω, t) =


p(ω, t)−σP (t)σ−1I(t) if ω ∈ Ω(t)

((1 + τ(t))p(ω, t))−σ P (t)σ−1I(t) if ω ∈ Ω∗(t)

0 otherwise

(2)

where P (t) is the Dixit-Stiglitz aggregate price,

P (t) =

[∫
Ω(t)

p(ω, t)1−σdω + (1 + τ)1−σ
∫

Ω∗(t)

p(ω, t)1−σdω

] 1
1−σ

(3)

Firms take the demand function 2 as given to determine the prices and quantities given

their productivity. This is a static maximization problem, and its solution is to set price

equal to a constant mark-up over marginal cost. That is,

p(ω, t) =
σ

σ − 1
z(ω, t)σ−1

where z(ω, t) is the productivity z of the firm producing good ω at time t. Let πd(P, I, z)

be the variable profits for a non exporter (profits before paying innovation or exporting

costs). It is straightforward to show that profits for non exporters before paying for

9



innovation expenses are

Πd(z, P, I) = σ−1IP σ−1zσ−1 = πd(z, P, I)zσ−1 (4)

Variable profits for exporters depend on whether trade costs are tariffs or iceberg transport

costs. With tariffs,

Πx(z, P, I, τ) = (1 + (1 + τ)−σ)πd(z, P, I)zσ−1 = πx(z, P, I, τ)zσ−1 (5)

With iceberg transport costs,

Πx(z, P, I, τ) = (1 + (1 + τ)1−σ)πd(z, P, I)zσ−1 = πx(z, P, I, τ)zσ−1 (6)

From this point onwards, as is common in Dixit and Stiglitz (1977) models, it is

convenient to change variables from the ω state to the z state, since firm decisions depend

on the productivity of a firm and not on the name of the good. Let µ(z, t) be the measure

of firms with productivity z at time t. Abusing our notation, the price of a good with

productivity z is p(z, t).

Firms decide how much to innovate each period, and non exporters choose whether to

become exporters. We start by solving the problem of exporters. Their Hamilton-Jacobi-

Bellman equation is

(ρ+ δ)Vx(z, πx(t)) = max
ż
πx(t)z

σ−1 − c(z, ż) + Vx1(z, πx(t))ż + Vx2(z, πx(t))π̇x(t) (7)

For non exporters, the dynamic problem consists on when to become exporters and

how much to innovate1. Their problem is a stopping time problem:

Vd(z, πd(t), πx(t)) = max
ż(t),T

∫ T

0

e−(ρ+δ)t
[
πd(t)z(t)σ−1 − c(z(t), ż(t))

]
dt+

e−(ρ+δ)T [Vx(z(T ), πx(T ))− κX ] (8)

Let the decision to become an exporter be represented by

X(z, πd(t), πx(t)) =

1 if become exporter

0 if not

1We show in the Appendix that a non exporter will always choose to become an exporter.
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New firms enter the economy whenever their expected profits exceed the entry cost. That

is, in equilibrium, the free entry condition is

κE =

∫ ∞
1

Vd(z, πd(t), πx(t))(1−X(z, πd(t), πx(t)))f(z)dz+∫ ∞
1

(Vx(z, πx(t))X(z, πd(t), πx(t))− κX)f(z)dz (9)

3.1 Equilibrium Definition

An equilibrium for this economy is a list of allocations and prices such that

• The consumer demand function is as in (2)

• Firms solve problems (11) and (13) given (4) and (5) if trade costs are tariffs, or (6)

if they are iceberg transport costs

• Equation (3) defines the aggregate price index

• The labor market clears: equation (1) holds

• The free entry condition (9) holds

• The evolution of the distribution of firms is consistent with firm innovation decisions.

4 Characterizing the Symmetric Steady State

We focus the characterization of our equilibirum on steady state. The reason is that one

purpose of this paper is to characterize the equilibrium in closed form, which we can do

for the steady state. In steady state, the aggregate state variables µ, P, and I do not

change, so we omit the time index.

The exporter value function is

(ρ+ δ)Vx(z) = max
ż
πxz

σ−1 − c(z, ż) + Vx1(z)ż

We solve this problem in the appendix. The solution is the productivity of exporters

grows at a constant rate, and is therefore independent of firm size. Thus, Gibrat’s law
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holds. This rate of growth is

gx =
ż

z
=
ρ+ δ

σ − 1

(
1−

√
1− hx

)
hx =

2πx(σ − 1)2

(ρ+ δ)2κ1

(10)

The rate of growth is increasing in exporter profits and decreasing in innovation costs.

The closed form solution for this value function is

Vx(z) =κ1
ρ+ δ

(σ − 1)2

(
1−

√
1− hx

)
zσ−1 (11)

The non exporter value function is

Vd(z) = max
ż(t),T

∫ T

0

e−(ρ+δ)t
[
πdz(t)σ−1 − c(z(t), ż(t))

]
dt+ e−(ρ+δ)T [Vx(z(T ))− κX ]

This is a stopping time problem. Divide this problem into two steps. Taking T as given,

solve the problem

max
ż(t)

∫ T

0

e−(ρ+δ)t
[
πdz(t)σ−1 − c(z(t), ż(t))

]
dt

s.t.

z(0) = z, z(T ) = zx(z)

where z is the starting point and zx(z) is an ending point, taken as given for now. This

is a problem of calculus of variations. We solve it in the Appendix. The solution is that

non exporter productivity grows at a constant rate

gd =
ż

z
=
ρ+ δ

σ − 1

(
1−

√
1− hd

)
hd =

2πd(σ − 1)2

(ρ+ δ)2κ1

(12)

Once again, Gibrat’s law holds, and the rate of growth is increasing in non exporter

profits, and decreasing in κI .

Step 2 requires us to plug in this solution into the value function, and take derivatives

with respect to T to find the optimal stopping time. The solution, solved in the Appendix,

is that all non exporters grow until they hit a productivity level zx, point at which they
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become exporters. Thus, only large firms export.

The non exporter value function is

Vd(z) =
κIgd
σ − 1

zσ−1 +
κxgd(σ − 1)

(ρ+ δ − gd(σ − 1))

(
z

zx

) ρ+δ
gd

(13)

And

zx =

[
(ρ+ δ)κX(σ − 1)

κI(ρ+ δ − gd(σ − 1))(gx − gd)

] 1
σ−1

(14)

Proposition 1 The smooth pasting condition holds. That is, the non exporter value

function smooth pastes into the exporter value function net of the export cost.

Proof: Rewrite the value functions as

Vx(z) = Bzσ−1

Vd(z) = Czσ−1 + (B − C)z
σ−1− ρ

gd
x z

ρ
gd − κxz

− ρ
gd

x z
ρ
gd

where B = κI
ρ

(σ−1)2

(
1−
√

1− hx
)

and C = κIgd
σ−1

.

These functions smooth paste in the point zx. To see this, first notice that Vd(zx) =

Vx(zx)− κx:

Vd(zx) = Czσ−1
x + (B − C)z

σ−1− ρ
gd

x z
ρ
gd
x − κxz

− ρ
gd

x z
ρ
gd
x = Bzσ−1

x − κx = Vx(zx)

For z < zx, Vd(z) > Vd(z)− κX . Vd(z) is not defined for z > zx. �

Figure 3 shows these value functions for σ = 2, in which case Vx(z) is linear.

We next characterize the steady state distribution. Define µ̂(t, z) as the measure of

firms with productivity z in period t. Define Z = [z1, z2]. The following expression is the

law of motion for the measure of productivity:

µ̂(t+ dt,Z) =

∫
Z
µ̂(t, z − żdt)e−δdtdz +

∫
Z

∫ dt

0

M(t)f(z − żs)e−δsdsdz

That is, the measure of firms with productivity z ∈ Z is the sum of the incumbent firms

that had a productivity z − żdt, dt periods ago, plus all the firms that were born and in

period t+ dt had productivity z ∈ Z. In the Appendix, we show that this expression can

13



Figure 3: The Smooth Pasting Condition for σ = 2
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be reduced to

µ(z) = Mf(z)dt+ e−δdtµ(z − dz)

where µ(z) = µ̂(t, z) in steady state.

For dt small enough

e−δdt ≈ 1− δdt

µ(z − dz) ≈ µ(z)− µ′(z)dz ≈ µ(z)− µ′(z)żdt

Thus,

µ(z) = Mf(z)dt+ (1− δdt)(µ(z)− µ′(z)żdt)

µ(z) = Mf(z)dt+ µ(z)− δdtµ(z)− µ′(z)żdt+ µ′(z)żδdt2

Ignoring terms with dt2 and canceling

δµ(z)dt = Mf(z)dt− µ′(z)żdt (15)
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Divide by dt,

δµ(z) = Mf(z)− µ′(z)ż

For non exporters, that is, z ∈ [1, zx], this is

δµ(z) = Mf(z)− µ′(z)gdz

This is a first order differential equation, with boundary condition µ(1) = Mf(1). The

solution to this equation is

µ(z) = z
− δ
gd [Gd(z) +Mf(1)−Gd(1)]

where Gd(z) = M
gd

∫
z
δ
gd
−1
f(z)dz. Similarly, for exporters, that is, for z > zx,

δµ(z) = Mf(z)− µ′(z)gxz

The boundary condition for this differential equation is µ(zx) = z
− δ

∆n
x [Gd(z) +Mf(1)−Gd(1)].

The solution is

µ(z) = z−
δ
gx

[
Gx(z) + z

δ
gx
− δ
gd

x [Gd(zx) +Mf(1)−Gd(1)]−Gx(zx)

]
Gathering all together

µ(z) =


z
− δ
gd [Gd(z) +Mf(1)−Gd(1)] if z ≤ zx

z−
δ
gx

[
Gx(z) + z

δ
gx
− δ
gd

x [Gd(zx) +Mf(1)−Gd(1)]−Gx(zx)

]
if z > zx

(16)

where Gx(z) = M
gx

∫
z
δ
gx
−1f(z)dz.

Proposition 2 For a wide family of distributions f(z), µ(z) features Zipf ’s law. That

is, as z grows, µ(z) approaches a Pareto distribution.

Proof: We next show that the upper tail of this distribution satisfies Zipf’s law. For this,

focus on the segment z > zx, which is the upper tail. Notice that

µ(z) = z−
δ
gxM

∫
z−

δ
gx
−1f(z) +KMz−

δ
gx for z > zx

15



where K is a constant. Taking limits as z grows of the first term in the right hand side,

lim
z→∞

δ
gx
M
∫
z−

δ
gx
−1f(z)dz

z−
δ
gx

= lim
z→∞

δ
gx
Mz−

δ
gx
−1f(z)dz

δ
gx
z
δ
gx
−1

= lim
z→∞

Mf(z)

Thus,

lim
z→∞

µ(z) = lim
z→∞

M
(
f(z) +Kz−

δ
gx

)
If f(z) goes to zero sufficiently fast (faster than z−δ/gx), then in the limit, µ(z) approaches

a Pareto distribution, that is, Zipf’s law holds. Examples of f(z) that go fast enough to

zero are the uniform distribution, the normal distribution, and the Pareto as long as the

curvature parameter is larger than δ/gx. �

We can solve for the entire steady state equilibrium as a system of three equations and

three unknowns. The unknowns are P, I,M . Given these variables, we can identify all

the remaining variables in the model. The three equations that pin down these variables

are the index price equation, the free entry condition, and labor market clearing. These

equations are:

P 1−σ =

∫ zx

1

p(z)1−σµ(z)dz + (1 + τ)1−σ
∫ ∞
zx

p(z)1−σµ(z)dz

κE =

∫ zx

1

Vd(z)f(z)dz +

∫ ∞
zx

[Vx(z)− κx] f(z)dz

1 =

∫ zx

1

[
πdz

σ−1 +
κIz

σ−1

2
g2
d

]
µ(z)dz +

∫ ∞
zx

[
πxz

σ−1 +
κIz

σ−1

2
g2
x

]
µ(z)dz

where

p(z) =
σ

σ − 1
zσ−1

πd =IP σ−1

πx =

(1 + (1 + τ)−σ)πd if trade costs are tariffs

(1 + (1 + τ)1−σ)πd if trade costs are iceberg costs

Vd(z), Vx(z), gd, gx and zx are as in equations (13), (11), (12), (10) and (14), respectively.
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5 Characterizing the Transitional Dynamics

We compute the equilibrium during the transition between steady states by solving a

system of partial differential equations. These partial differential equations (PDEs) are

given by the measure of exporters and non exporters at each point in time. We assume

the economy is in the high trade cost steady state for all t < 0, and at t = 0 there is an

unexpected (small) reduction in trade costs. Trade costs remain at this low value for all

t ≥ 0.

We make the simplifying assumption that new firms enter the economy with common

productivity z = 1. This implies that the free entry condition is2

κE =Vd(1) =

=

∫ zx

0

(
Πd(t)−

κ1

2
gd(t)

)
e(gd(t)−ρ−δ)(σ−1)tdt+

∫ ∞
zx

(
Πx(t)−

κ1

2
gx(t)

)
e(gx(t)−ρ−δ)(σ−1)tdt

This equation is key to our solution strategy. Suppose that Pid(t) = Pid1 for all t ≥ 0.

This would imply that Pix(t) = Pix1, gd(t) = gd1, gx(t) = gx1 for all t ≥ 0. If this is the

case, then the free entry condition is one equation and one unknown for all t ≥ 0, where

the unknown is Πd1. But it turns out that we know the solution to this equation. The

equilibrium Πd1 is the new steady state level of profits, since the same free entry condition

must be satisfied in the steady state with low trade costs.

If these levels of profits and growth rates satisfy the entire system of equations that

characterize the equilibrium, then we have found an equilibrium transition path. We show

in the Appendix that these equations are satisfied in equilibrium.

This simplifies the analysis a great deal. It implies that we can take profits and growth

rates as given to solve for the PDEs that characterize the transition. We solve these PDEs

in the Appendix . Here, we lay out our results, that is, the measure of firms along the

transition as well as aggregate variables such as price indices and consumption levels.

Our solution strategy divides time into intervals of length t1, where t1 is the time

it takes a new born firm to become an exporter, that is, et1gd1 = zx1. The reason for

this is that we know that for all t > t1, all firms born before the reduction in trade

costs are exporting. This helps us solve the system of equations by grouping cohorts of

firms according to their export status. For example, for t ∈ (0, t1), firms born before the

reduction in trade costs are both exporters and non exporters, but for t > t1, these are

all exporters.

2Since the drop in trade costs is small enough, this condition holds at every point in time.
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Let µ(t, z) denote the measure of firms with productivity z at time t. Essentially, the

PDE to solve is

µt(t, z) + µz(t, z)giz = −δµ(t, z) (17)

where i = x1 if the firm is an exporter, and i = d1 if it is not. Notice that this equation is

the same as the steady state equation where µt(t, z) = 0. Equation 17 is the Kolmogorov

forward equation along the transition. This can be solved given the value of gi and an

initial condition.

Thus, to solve, we need to take into account that different firms differ in their initial

condition. This implies identifying different areas at different points in time and treat

them separately. A full description of the procedure is in the Appendix.

We next describe the solution to these PDEs for two time intervals: t ∈ (0, t1) and

t ∈ (t1, 2t1):

For t ∈ (0, t1),

µ(t, z) = M(t− 1

g1,d

log(z))z
− δ
g1,d if z ≤ z∗(t)

= M0e
tδ
g1,d−g0,d

g0,d z
− δ
g0,d if z∗(t) < z ≤ z1,x

= M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z1,x < z ≤ z1∗(t)

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z3∗(t)

= M0e
tδ
g1,x−g0,x

g0,x z
− δ
g0,x if z > z3∗(t)

where z∗(t) = eg1,dt, z1∗(t) = eg1,xtz1,x, and z3∗(t) = eg1,xtz0,x. A subsript 0 indicates old

steady state. A subscript 1 indicates the new steady state.

18



For t1 < t < 2t1

µ(t, z) = M

(
t− log(z)

g1d

)
z
− δ
g1d if z ≤ z1x

= M

(
t− log(z)

g1x

+

(
1

g1x

− 1

g1d

)
log(z1x)

)
z
δ
“

1
g1x
− 1
g1d

”
1x z

− δ
g1x if z1x ≤ z ≤ z2∗(t)

= M0z
δ
g0d

“
g1d−g1x
g1x

”
1x e

tδ
“
g1d−g0d
g0d

”
z
−δ g1d

g1xg0d if z2∗(t) ≤ z ≤ z1∗(t)

= M0e
tδ
“
g1x−g0d
g0d

”
z
− δ
g0d if z1∗(t) ≤ z ≤ z3∗(t)

= M0e
tδ
“
g1x−g0x
g0x

”
z
− δ
g0x if z > z3∗(t)

where z2∗(t) = z1xe
g1x(t).

Notice that to know the measure of firms, we still need to determine entry at each

point, that is, M(t) for t > 0. We do this via the labor market clearing condition. The

solution implies that entry takes the following shape

For t ∈ (0, t1),

M(t) = m0 +m1e
m2t +m3e

m4

And for t ∈ (t1, 2t1),

M(t) = m̃0 + m̃1e
m̃2t + m̃3e

m̃4

where the m′s and m̃′s are constants. See the appendix for details.

6 Lowering Trade Costs

This section describes the exercise we carry out to study the effects of lower trade costs.

We start with a simplified version of our model, in which the measure of exporters is set

exogenously. This corresponds to cases in which Atkeson and Burstein (2010) have found

that innovation does not contribute to welfare gains when the interest rate is zero or when

every firm exports. We show that this result holds in our model as well.

We next explore the effects of a reduction in trade costs in the full fledge version of

our model. To describe the way we decompose the different sources of productivity and

welfare gains. This decomposition depends on whether trade costs are iceberg or tariffs.
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6.1 Inelastic Exporting

Before turning to analyze the effect of trade costs using our model, we study the effects

on a reduced version of our model, a model in which the measure of exporters is set

exogenously, as in the analytical section in Atkeson and Burstein (2010). We prove results

analytically assuming that the proportion of firms that export is fixed and exogenous. A

proportion λ of firms face an infinite export cost, and therefore choose not to export

independently of the variable trade costs, while the remaining firms face zero export costs

and always export.

The derivation of our results focuses on the resources devoted to production. We show

that when the interest rate is zero, the proportion of resources devoted to production is

independent of trade costs. This implies that the aggregate variable profits do not change,

which in turn implies that aggregate innovation does not change (where innovation is

measured now as the sum of innovation as previously defined, plus resources devoted to

firm entry and entry into the export market).

In addition, when λ = 0 (every firm exports), a drop in trade costs does not increase

aggregate innovation even with positive interest rates. The reason for this is that when

all firms export, and in particular, entrants export, a reduction in trade costs makes it

more profitable to export, and therefore firms would like to increase innovation. But if

all firms demand more labor for innovation, and the amount of labor is fixed, the relative

price of innovation must increase enough to drive demand for innovation to its previous

level.

When λ ∈ (0, 1), we find that a drop in trade costs does not increase aggregate

innovation only when the interest rate is zero. Exporters increase innovation, but non

exporters reduce their innovation, exactly offsetting the increase by exporters. This result

no longer holds under a positive interest rate.

These results are the same as in Atkeson and Burstein (2010), which shows that our

model results are consistent with theirs.

Proposition 3 If the proportion of exporters is independent of variable trade costs and

the interest rate is zero, a drop in trade costs does not affect aggregate innovation.

Proof: The proof shows that the ratio of production workers to workers in the innovation

sector does not depend on trade costs. Given that the total number of workers is fixed,

the fact that these shares remain constant implies that aggregate innovation does not

depend on trade costs.
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First note that production workers are proportional to variable profits (before paying

for innovation or sunk export costs). For i = x, d,

πi(z) =
p(z)qi(z)

σ
= p(z)qi(z)− hi(z)⇒

hi(z) = πi(z)

(
σ − 1

σ

)
This result implies that we can focus on variable profits as opposed to production workers.

The average variable profits for an exporting firm is

π̄x =

∫ ∞
1

∫ ∞
0

πxz
σ−1e(gx(σ−1)−δ)tf(z)dtdz ⇒

π̄x = Ef (z
σ−1)

πx
δ − gx(σ − 1)

(18)

Where Ef is the expectation operator under the distribution f . To see this, notice that an

exporter born with productivity z̄ with age t makes profits egxtπxz̄
σ−1. The total number

of exporters born with productivity z̄ is (1 − λ)
∫∞

0
e−δtf(z̄)dt. Thus, the sum of profits

of exporters born with productivity z̄ is (1− λ)πx
∫∞

0
egxtzσ−1f(z)dt. Taking an average

across z shows equation (18).

For a non exporting firms, this is

π̄d = Ef (z
σ−1)

πd
δ − gd(σ − 1)

Total average variable profits are a weighted sum of these numbers:

π̄ = Ef (z
σ−1)

[
λ

πd
δ − gd(σ − 1)

+ (1− λ)
πx

δ − gx(σ − 1)

]
Similarly, average expenditure on innovation is

Ē = Ef (z
σ−1)κI/2

[
λ

g2
d

δ − gd(σ − 1)
+ (1− λ)

g2
x

δ − gx(σ − 1)

]
The free entry condition is

κE = λ

∫ ∞
1

Vd(z)f(z)dz + (1− λ)

∫ ∞
1

Vx(z)f(z)dz
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In this case,

Vx(z) =

∫ ∞
0

e−(ρ+δ)t(egxtz)σ−1
(
πx −

κI
2
g2
x

)
dt = zσ−1

(
πx − κI

2
g2
x

ρ+ δ − gx(σ − 1)

)
Vd(z) =

∫ ∞
0

e−(ρ+δ)t(egdtz)σ−1
(
πd −

κI
2
g2
d

)
dt = zσ−1

(
πd − κI

2
g2
d

ρ+ δ − gd(σ − 1)

)
Then free entry implies

κe + E(zσ−1)

[
λ

κIg
2
d

ρ+ δ − gd(σ − 1)
+ (1− λ)

κIg
2
x

ρ+ δ − gx(σ − 1)

]
=

E(zσ−1)

[
λ

Πd

ρ+ δ − gd(σ − 1)
+ (1− λ)

Πx

ρ+ δ − gx(σ − 1)

]
It is straightforward to see that if ρ = 0, then π̄ = Ē, and transport costs cannot affect

the proportion of innovation workers to production workers. �

Proposition 4 If all firms export (λ = 0) a drop in trade costs does not affect aggregate

innovation.

Proof: We leave the formal proof for the Appendix. Intuitively, if all firms enter as

exporters, a reduction in trade costs increases profits across the board, which increases

the incentives to enter considerably. More firms wanting to enter implies more demand for

labor resources, which is fixed, so the price of labor must increase (or P falls), offsetting

the initial increase in profits and leaving the profits (and therefore innovation) unchanged.

6.2 The Full Model

In this section we use our framework to study how a change in trade costs affects welfare.

We focus on how the distribution affects these results, especially whether assumptions

on entrants are important. The exercise consists in studying how a drop in trade costs

affects welfare under different assumptions for the distribution of entrants. Entrants are

relatively more abundant in the lower tail of the distribution, so if the lower tail does

not matter, changing the distribution of entrants should not affect the welfare gains from

trade.

We concentrate on two statistics to study the effects of a drop in trade costs: welfare

and productivity. The change in productivity measures the additional output that a

production worker can produce with lower trade costs. The change in welfare measure

the additional consumption an individual can consume. Since the number of production
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workers changes when trade costs change, the increase in welfare does not equal the

increase in productivity.

Following Atkeson and Burstein (2010), we decompose the change in productivity

into a direct effect and an indirect effect. The direct effect represents the gains just

because of the removal of a distortion, that is, the export cost. That is, this is the gain

that occurs keeping constant the dynamic decisions of firms, including entry, exporting,

and innovation decisions. The indirect effect is the gain that happens because of the

reallocation of resources in the economy. We further decompose the indirect effect into

the gains from a change in entry, from a change in innovation by exporters, and the change

in innovation by non exporters.

Let Np be total labor used for production.

Np =

∫ zx

1

n(z)µ(z)d(z) +

∫ ∞
zx

n(z)µ(z)dz

From the production function, n(z) = q(z)z−1. From the demand function,

q(z) =

p(z)−σP σ−1I if the good is not exported

(1 + (1 + τ)−σ)p(z)−σP σ−1I if the good is exported

The pricing rule sets p(z) = σ
σ−1

z−1. From the budget constraint, PQ = I. Combining

these expressions, production labor in each firm is

n(z) =

P σQzσ−1 if the good is not exported

(1 + (1 + τ)1−σ)P σQzσ−1 if the good is exported

Thus,

Np =P σQ

[∫ zx

1

zσ−1µ(z)dz +

∫ ∞
zx

zσ−1(1 + (1 + τ)1−σ)µ(z)dz

]
(19)
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From the price index equation (3),

Np =Q

[∫ zx

1

zσ−1µ(z)dz +

∫ ∞
zx

zσ−1((1 + τ))1−σµ(z)dz

]
×(

σ

σ − 1

)σ [∫ zx

1

zσ−1µ(z)dz +

∫ ∞
zx

zσ−1((1 + τ))1−σµ(z)dz

] σ
1−σ

= Q

(
σ

σ − 1

)−σ [∫ zx

1

zσ−1µ(z)dz +

∫ ∞
zx

zσ−1((1 + τ))1−σµ(z)dz

] 1
σ−1

Let Zd =
R zx
1 zσ−1µ(z)dz

M
and Zx =

R∞
zx
zσ−1µ(z)dz

M
. We can interpret Zd as the average pro-

ductivity of a non exporter, and Zx as the average productivity of an exporter. Then

Q =

(
σ

σ − 1

)−σ [
M
(
Zd + (1 + (1 + τ)1−σ)Zx

)] 1
σ−1 Lp (20)

The term [M (Zd + (1 + (1 + τ)1−σ)Zx)]
1

σ−1 is productivity3. The average productivity

per firm is

Z =
[M (Zd + (1 + (1 + τ)1−σ)Zx)]

1
σ−1

M

A change in trade costs changes Z. It is interesting to understand the composition of

these changes. The next proposition, decomposes the change in productivity into several

components.

Proposition 5 The total change in productivity from a change in trade costs and be

decomposed into a direct effect and an indirect effect. Moreover, the indirect effect can

be decomposed into an entry effect, a non exporter productivity effect, and an exporter

productivity effect. The following expression describes this decomposition:

∆ log(Z) = −sx∆ log(D)︸ ︷︷ ︸
direct effect

+
1

σ − 1

∆ log(M)︸ ︷︷ ︸
entry effect

+

(
1− sx

1 +D1−σ

D1−σ

)
∆ log(Zd)︸ ︷︷ ︸

non exporter productivity effect

+ sx
1 +D1−σ

D1−σ ∆ log(Zx)︸ ︷︷ ︸
exporter productivity effect


︸ ︷︷ ︸

indirect effect

(21)

3This is not the way the national accounts compute the productivity of a country (see Rubini (2011)).
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where

sx =
ZxD

1−σ

Z̃
, Z̃ = Zσ−1

D = 1 + τ

Proof: Recall that for every X ∈ R

∆X

X
= ∆ log(X)

Take logs of Z

logZ =
1

σ − 1

[
logM + log

(
Zd + (1 +D1−σ)Zx

)]
Now take derivatives

∆ logZ =
1

σ − 1

[
∆ logM + ∆ log Z̃

]

∆ log Z̃ =
1

Z̃

(
∆Zd + (1 +D1−σ)∆Zx + (1− σ)D−σ∆DZx

)
From the definition of sx,

D−σ∆DZx

Z̃
= sx

∆D

D
= sx∆ logD

Zx

Z̃
=

sx
D1−σ

(1 +D1−σ)
∆Zx

Z̃
= (1 +D1−σ)

∆Zx
Zx

Zx

Z̃
= sx

(1 +D1−σ)

D1−σ ∆ logZx

Zd

Z̃
= 1− (1 +D1−σ)Zx

Z̃
= 1− sx

(1 +D1−σ)

D1−σ

∆Zd

Z̃
=

∆Zd
Zd

Zd

Z̃
=

(
1− sx

(1 +D1−σ)

D1−σ

)
∆ logZd

�

Note that this derivation works well only for infinitesimal changes.
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7 Results

In this section we present the quantitative effects of dropping trade costs on productivity

and welfare. Furthermore, we decompose the productivity effects into a direct effect

and an indirect effect. The indirect effect is further deconstructed into an entry effect,

an exporter productivity effect, and a non exporter productivity effect, as specified in

equation (21).

We next describe the way we discipline our parameters. Our goal is to bring discipline

in similar ways to models in international trade, and then explore the role of changing

the density of firms in the lower tail. Two common targets in the literature are: (i) the

export volume, as a ratio of total GDP; and (ii) the shape of the distribution of firms

among large firms. Thus, all the cases we study are calibrated so that the export to GDP

ratio is the same and the slope of the distribution of firms around the upper tail is the

same.

We set the initial trade cost τ = 0.1. We set the export volume equal to 10%. The

slope of the distribution of firms in the upper tail is determined by the rate of growth of

exporting firms. We set this equal to 10%, which implies a slope in the upper tail of -1.5.

We also set κE = 7.

Next we need to choose a functional form for the distribution of entrants. This function

determines the relative number of small firms, since entrants are relatively small firms.

Thus, if entrants tend to be concentrated around one point, then the relative number of

small firms is large. We choose a Pareto distribution4 because it is easier to work with

this kind of distribution. Therefore:

z ∼ f(z) = θz−θ−1, z ∈ [1,∞)

To change the relative number of small firms we change the parameter θ. A larger θ

implies a larger relative number of small firms.

We also experiment with the case when all entrants enter as non exporters with z = 1,

that is, the lowest possible draw. This corresponds to the case with θ =∞.

We then drop our trade costs to τ = 0.09 and compute the changes in export volumes,

welfare, and productivity. We report our results as elasticities. That is, the numbers we

show represent the change per percentage point drop in (1 + τ).

Table 1 shows our results when trade costs are iceberg transport costs. It shows that

4The Pareto shape of the endogenous distribution does not depend on this assumption.
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the assumptions we make about small firms matter, and they matter quite a lot. Our

welfare calculations of reducing an iceberg transport cost by one percentage point vary

from a gan of 0.36 percentage points to as much as 2.67 percentage points! When entrants

are relatively small firms (large θ), reducing trade costs has much larger effects on welfare,

productivity, and the trade volume. And the increase in productivity takes place via the

indirect effect. With relatively small entrants, a change in trade costs produces more

reallocation of resources, and a larger aggregate effect.

Table 1: Lowering an Iceberg Transport Cost
θ 2.5 3 4 ∞
Export volume 4.20 4.66 5.33 5.97
Productivity 0.17 0.18 0.20 1.30

Direct effect 0.10 0.10 0.10 0.10
Indirect effect 0.07 0.08 0.10 1.20

Entry effect -0.74 -0.85 -1.01 -0.08
Productivity avg. firm 0.82 0.94 1.11 1.28

Non exporter effect -0.05 -0.05 -0.06 -0.06
Exporter effect 0.87 0.99 1.09 0.08

Welfare 0.36 0.40 0.45 2.67

7.1 The Transition

We now present the results of a reduction in trade costs on welfare by considering the

transition to the new steady state. We compute the transition as specified in section

5, which implies that entrants enter with z = 1. We assume that the economy reaches

the news steady state in 2t1 periods. This implies that we assume that welfare jumps

discretely from its level in t = 2t1 to the steady state level. We do this because these

levels are very close. For example, assuming that welfare stays at the level it has in t = 2t1

would produce almost no change.

Table 2 shows the gains welfare. Our welfare metric is the equivalent variation in

consumption from a change in marginal trade costs, defined as the change in consumption

at the old steady state that leaves households indifferent between the old steady state and

the transition to the new steady state.

We report these increases as elasticities and compare them with the effect of reducing

trade costs in a model in which every firm exports. In this model, innovation plays no
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Figure 4: The Endogenous Distribution of Firms
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role, as described in section 6.1. We calibrate the variable trade costs in this model so

that the trade volume relative to total output is the same as in the full fledge model.

Table 2: Welfare Gains in the Transition
Iceberg Costs

Change in Welfare across steady states 2.67
Total Discounted Increase in Welfare 1.00
Change in Welfare in a model where every firm exports 0.10
Gain relative to all firms export 0.90

The present value value of the increase in welfare is 90 percent larger than what a

model without innovation would observe in the case of iceberg costs. These numbers are

large, and it implies that innovation is a key determinant of welfare gains.

8 Discussion: Comparison to the Literature

As established in the previous section, we find that the indirect effect is an important

component of welfare gains from trade. That is, innovation matters. This contrasts the

results in Atkeson and Burstein (2010), who find that the transition is so slow, that the
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discounted flow of welfare is barely larger than a model with no innovation. We focus on

the model with iceberg costs, the assumption made in Atkeson and Burstein (2010).

Our estimates of the gains in models with no innovation are very close. We find an

elasticity of welfare to tariffs of 0.1 percent, while Atkeson and Burstein (2010) find it is

0.08 percent.

The difference between both results emerge in two different calculations: the compari-

son of steady states, and the comparison of transitions. Comparing steady states, we find

that reducing tariffs by one percent increases welfare across steady states by 267 percent.

Atkeson and Burstein (2010) find this number equal to 75 percent in their largest esti-

mate. Thus, we compute gains that are 4 times as large. This is not surprising given that

we deal with very different models.

The most surprising difference comes from the transition. We find that the discounted

gains are 90 percent larger than the model with no innovation. This is much larger that

Atkeson and Burstein (2010)’s estimate of 0.8 percent larger. Thus, the relevant question

is therefore why our transition speeds are so different.

A key difference with Atkeson and Burstein is that the entrants in their model are rel-

atively large. Precisely, they are about 40% larger than the average firm in the economy.5

In our case, the average entrant is about 60% as large as the average firm in the economy,

which is more consistent with the data (see for example Dunne et al. (1988) and Geroski

(1995)).

At this stage, we are still working on understanding the difference between the esti-

mates.

9 Conclusion

We investigate the importance of the distribution of firms in determining welfare gains

from trade liberalization. We find that the assumptions we make about the distribution

of firms matter when thinking about trade policy. While previous research suggests that

the distribution of large firms is important to determine the consequences of a change in

trade policy, we show that our assumptions on smaller firms also matter. In particular,

the larger the relative measure of small firms, the larger the effects of trade liberalization

on welfare and trade volumes.

The finding that small firms are important contradicts existing research such as Gabaix

(2011), who suggests that large firms are what really determine aggregate outcomes. This

5While this number is not in the paper, we have calculated it using their Matlab codes.
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conclusion is based on the fact that the distribution of firms is fat tailed, and the shocks

to firms are exogenous.

We relax the assumption of exogenous shocks and study the reaction of firms to a

change in trade costs, allowing firms to determine endogenously their size via innovation.

We find that while big firms react to lower trade costs by expanding, small firms also

react by contracting. In the aggregate, the reaction of small firms is as important as

the reaction of large firms. This suggests that all analysis on trade policy should model

carefully the entire distribution of firms, not only the large ones.
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A Deriving the Endogenous Distribution of Firms

Define Z = [z1, z2]

µ̂(t+ dt,Z) =

∫
Z
µ̂(t, z − żdt)e−δdtdz +

∫
Z

∫ t+dt

t

M(s)f(z − żs)e−δsdsdz

Taking limits as z1 → z2 → z

µ̂(t+ dt, z) = µ̂(t, z − żdt)e−δdt +

∫ t+dt

t

M(s)f(z − żs)e−δsds

For small dt, the following holds:

µ̂(t+ dt, z) ≈ µ̂(t, z) + µ̂1(t, z)dt

µ̂(t, z − żdt) ≈ µ̂(t, z)− µ̂2(t, z)żdt

f(z − żs) ≈ f(z)− f ′(z)żs

e−δdt ≈ (1− δdt)

Thus,

µ̂(t, z) + µ̂1(t, z)dt =µ̂(t, z)− µ̂2(t, z)żdt− δdt (µ̂(t, z) + µ̂2(t, z)żdt) +∫ t+dt

t

M(s)(f(z)− f ′(z)żs)(1− δs)ds

Note that in steady state µ̂1(t, z) = 0 and M(s) = M . Putting all together,

µ̂(t, z) = µ̂(t, z)− µ̂2(t, z)żdt− δdt (µ̂(t, z) + µ̂2(t, z)żdt) +M

∫ t+dt

t

(f(z)− f ′(z)żs)(1− δs)ds
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Solving for the last integral ∫ t+dt

t

f(z)ds = f(z)dt∫ t+dt

t

−f ′(z)żsds = −f ′(z)ż(dt)2/2∫ t+dt

t

−δsf(z)ds = −δf(z)(dt)2/2∫ t+dt

t

−δf ′(z)żs2ds = −δf ′(z)ż(dt)3/3

Eliminating all the terms with dt elevated to a power larger than 1,

µ̂(t, z) = µ̂(t, z)− µ̂2(t, z)żdt− δµ̂(t, z)dt+Mf(z)dt

Cancelling terms and dividing by dt,

δµ̂(t, z) = Mf(z)− µ̂2(t, z)ż

B Proof of Proposition 4

We prove that when all firms export (because κX = 0), the elasticity of welfare with

respect to a change in tariffs is the same as this elasticity in a model where firms cannot

make innovation or entry decisions. Given that these elasticities are the same, innovation

does not contribute to welfare when all firms export.

B.1 Model with no change in innovation or entry decisions

We assume that all firms export. Additionally, following a drop in trade costs, firms are

not allowed to change their productivity, exporting decisions, or entry decisions. This is

the direct effect of section 6.2.

Notice that in this case the measure of firms is exogenous. We normalize the measure

of firms equal to 1 without loss of generality, distributed with an exogenous distribution

f(z).
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The equilibrium conditions are the price equation(
σ

σ − 1

)σ−1

P 1−σ =
(
1 + (1 + τ)1−σ) ∫ ∞

1

zσ−1f(z)dz

And labor market clearing:

L̄ = Πd

(
1 + (1 + τ)1−σ) ∫ ∞

1

zσ−1f(z)dz + κe

Let
∫∞

1
zσ−1f(z)dz = Ef , the expected value of zσ−1 under the distribution f(z), we

rewrite the above equations as(
σ

σ − 1

)σ−1

P 1−σ =
(
1 + (1 + τ)1−σ)Ef

L̄ = Πd(σ − 1)
(
1 + (1 + τ)1−σ)Ef + κe

We know

Πd = P σ−1Iσ−σ(σ − 1)σ−1

Which implies

I =
Πd

P σ−1

σσ

(σ − 1)σ−1

Welfare is

W = C =
I

P
=

Πd

P σ

σσ

(σ − 1)σ−1

From market clearing

Πd =
(L̄− κe)

(σ − 1) (1 + (1 + τ)1−σ)Ef
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Thus, welfare is

WI =
Πd

P σ

σσ

(σ − 1)σ−1
=

[
1

P

σ

σ − 1

]σ
(L̄− κe)

(1 + (1 + τ)1−σ)Ef

Notice that from the price equation[
σ

σ − 1

1

P

]σ
=
[(

1 + (1 + τ)1−σ)Ef] σ
σ−1

Thus,

WI =(L̄− κe)
[(1 + (1 + τ)1−σ)Ef ]

σ
σ−1

(1 + (1 + τ)1−σ)Ef

WI =(L̄− κe)
[(

1 + (1 + τ)1−σ)Ef] 1
σ−1

Taking logs,

lnWI =
1

σ − 1
ln((L̄− κe)Ef ) +

1

σ − 1
ln
(
1 + (1 + τ)1−σ)

Taking derivatives

∂ lnWI

∂(1 + τ)
= − (1 + τ)−σ

(1 + (1 + τ)1−σ)

Multiplying by (1 + τ)

ηI = − (1 + τ)1−σ

((1 + τ)1−σ + 1)

For illustration purposes, setting σ = 2,

ηI = − 1

2 + τ

We next show that allowing for innovation and entry decisions does not change this

elasticity when all firms export.

37



B.2 Model with innovation and entry decision, and all firms

export

In this section we show that allowing for innovation and entry decisions, the elasticity of

welfare with respect to tariffs is given by equation (??). Thus, in a model in which all

firms export innovation does not increase the response of welfare to a drop in tariffs.

Note: this proof is incomplete. This proof is for σ = 2. We are working on the proof

for a general σ. Also, we do not include here the proof for the case in which transport

costs are iceberg. This will also be included shortly.

The proof proceeds as follows. We first derive expressions assuming that the measure

of firms M does not change with tariffs. Then we show that this is true. The proof is

incomplete since it is done for the case with σ = 2. However, it works for general values

of σ.

Start with the free entry condition:

κe =

∫ ∞
1

Vx(z)f(z)dz = B

∫ ∞
1

zσ−1f(z)dz = BEf (z
σ−1)

Where B = κ1
ρ

(σ−1)2

(
1−
√

1− hx
)
. Let P̃ = P × I. Given any change in trade costs dτ

it must true that:

0 =

[
∂B

∂τ
dτ +

∂B

∂P̃
dP̃

]
Ef (z) (22)

Thus,
dP̃

dτ
= −

∂B
∂τ
∂B
∂P̃

Differentiating and doing some algebra

∂B

∂P̃
=

(1 + (1 + τ)−σ)

ρ+ δ − gx

and
∂B

∂τ
=
−2P̃ (1 + τ)−σ−1

ρ+ δ − gx
then

dP̃

dτ
=

2P̃ (1 + τ)1−σ

(1 + τ)σ + 1
(23)
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Set σ = 2.6 Given P̃ and M , the following must hold:

2P−1 =
(2 + τ)

(1 + τ)

∫ ∞
1

zµ(z)dz

Let Eµ(z) =
∫∞

1
zµ(z)dz and notice that it is a function of both P̃ and τ through gx.

Then, differentiating the above equation, and assuming dM = 0, we get:

−2dP

P 2
= − dτ

(1 + τ)2
Eµ +

(2 + τ)

(1 + τ)

∂Eµ
∂gx

∂gx
∂τ

dτ +
(2 + τ)

(1 + τ)

∂Eµ
∂gx

∂gx

∂P̃
dP̃

−2dP

P 2
= − dτ

(1 + τ)2
Eµ +

(2 + τ)

(1 + τ)

∂Eµ
∂gx

[
∂gx
∂τ

dτ +
∂gx

∂P̃
dP̃

]
(24)

Since B is an affine function of gx, equation (22) implies ∂gx
∂τ
dτ + ∂gx

∂P̃
dP̃ = 0, therefore

−2dP

P 2
= − dτ

(1 + τ)2
Eµ

2dP

P
= P

dτ

(1 + τ)2
Eµ

2dP

P
=

2
(2+τ)
(1+τ)

Eµ

dτ

(1 + τ)2
Eµ

dP

P
=

1

(2 + τ)

dτ

(1 + τ)

This last equation gives the elasticity of the price to changes in tariffs. Next we work

an expression that translate the change in price into a change in welfare. Welfare is

W = C = I
P

.

dP̃ =

[
∂P

∂τ
I +

∂I

∂τ
P

]
dτ (25)

dW =

[
∂I
∂τ
P − ∂P

∂τ
I

P 2

]
dτ

6The proof for a general value of σ will come shortly.
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dW

W
=

[
∂I
∂τ
P − ∂P

∂τ
I

P̃

]
dτ

From equation (25),
∂I

∂τ
P =

dP̃

dτ
− ∂P

∂τ
I

Thus
dW

W
=

[
dP̃
dτ
− ∂P

∂τ
I − ∂P

∂τ
I

P̃

]
dτ

dW

W
=
dP̃

dτ

dτ

P̃
− 2

∂P

∂τ

dτ

P

Using the change on P̃ from free entry we get

dW

W
=

2(1 + τ)−1

(1 + τ)2 + 1
dτ − 2

∂P

∂τ

dτ

P

In addition, from the elasticity of the price change we get,

∂P

∂τ

1

P
=

1

(2 + τ)(1 + τ)

Then,
dW

W
=

2(1 + τ)−1

(1 + τ)2 + 1
dτ − 2

dτ

(2 + τ)(1 + τ)

dW

W
=

−2τ

[(1 + τ)2 + 1](2 + τ)
dτ

Thus, the elasticity of welfare to changes is in the tariff is

ηw,τ =
dW
W
dτ

(1+τ)

=
−2τ(1 + τ)

[(1 + τ)2 + 1](2 + τ)

This is the same expression as equation (??). So, assuming ∂M
∂τ

= 0, we have shown that

if all firms export innovation does not contribute to the increase in welfare from a drop

in tariffs. Next we show ∂M
∂τ

= 0.

Equation (24) becomes

−2dP

P 2
= − dτ

(1 + τ)2
Eµ +

(2 + τ)

(1 + τ)

∂Eµ
∂gx

[
∂gx
∂τ

dτ +
∂gx

∂P̃
dP̃

]
+

(2 + τ)

(1 + τ)

∂Eµ
∂M

dM
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The free entry condition, guarantees the middle term is zero, so

−2dP

P 2
= − dτ

(1 + τ)2
Eµ +

(2 + τ)

(1 + τ)

∂Eµ
∂M

dM

Since the Eµ is a linear function of M we have

∂Eµ
∂M

=
Eµ
M

Then,

2dP

P 2
=

dτ

(1 + τ)2
Eµ −

(2 + τ)

(1 + τ)

Eµ
M
dM

Multiplying by P and substituting,

dP

P
=

1

(2 + τ)

dτ

(1 + τ)
− dM

M
(26)

Notice that the market clearing condition can be written as,

L̄ =
P̃

2
[1 + (1 + τ)−2]Eµ +

κ1

2
g2
xEµ + κeM

or

L̄ =

[
P̃

2
[1 + (1 + τ)−2] +

κ1

2
g2
x

]
Eµ + κeM

Let h(τ, P̃ ) = P̃
2

[1 + (1 + τ)−2] + κ1

2
g2
x, then

0 =

[
∂Eµ

∂P̃
dP̃ +

∂Eµ
∂τ

dτ +
∂Eµ
∂M

dM

]
h(τ, P̃ ) + Eµ

[
∂h

∂P̃
dP̃ +

∂h

∂τ
dτ

]
+ κedM

For the same arguments used before, that is, P̃ and τ affect µ only trough gx, we have

that ∂Eµ
∂P̃
dP̃ + ∂Eµ

∂τ
dτ = 0. Then

0 = h(τ, P̃ )
Eµ
M
dM + Eµ

[
∂h

∂P̃
dP̃ +

∂h

∂τ
dτ

]
+ κedM

or

dM

M
= −

Eµ

[
∂h
∂P̃
dP̃ + ∂h

∂τ
dτ
]

h(τ, P̃ )Eµ + κeM
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From the market clearing condition,

dM

M
= − 1

L̄
Eµ

[
∂h

∂P̃
dP̃ +

∂h

∂τ
dτ

]
(27)

The sign and magnitude of the change on M is given by the total differential of the

function h(τ, P̃ ). This total differential is

∂h

∂P̃
=

1 + (1 + τ)−2

2
+ κ1gx

∂gx

∂P̃

∂h

∂τ
= −P̃ (1 + τ)−3 + κ1gx

∂gx
∂τ

Then, given that ∂gx
∂τ
dτ + ∂gx

∂P̃
dP̃ = 0,

∂h

∂P̃
dP̃ +

∂h

∂τ
dτ =

1 + (1 + τ)−2

2
dP̃ − P̃ (1 + τ)−3dτ

Using equation (23) in the above

∂h

∂P̃
dP̃ +

∂h

∂τ
dτ =

[
[1 + (1 + τ)−2]

2

2(1 + τ)−1

(1 + τ)2 + 1
− (1 + τ)−3

]
P̃ dτ

∂h

∂P̃
dP̃ +

∂h

∂τ
dτ = 0

Thus,
dM

M
= 0 (28)

That is, M does not depend on trade costs, which shows that the gains from trade when

all firms export is independent of whether there is innovation or not.

C The Distribution Along the Transition

In this section we derive the partial differential equations that characterize the measure of

firms along the transition between steady states following a drop in trade costs. In period

t = 0, the economy is in the steady state with high tariffs. That period, we introduce an

unexpected drop in tariffs. We model the economy for t > 0. We assume that all entrants

enter with productivity z = 1.

As specified in section 5, we take as given the rates of growth and the profits for
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exporters and non exporters before and after the tariff drop. Also, we take as given the

export thresholds.

We proceed as follows. First, we derive the PDEs assuming that there are no exporters,

for illustration purposes. Then we add back the non exporters. Thus, assume that no

firm exports in what follows.

Define µ(t, z) as the measure of firms with productivity z at time t. Let µn(t, z) be

the measure of firms born in t > 0 (n = new), and µo(t, z) be the measure of firms born

in t < 0 (o = old). Consider new firms first. The partial differential equation to be solved

is7

µnt (t, z) + µnz (t, z)g1z = −δµn(t, z)

where a subindex denotes a partial derivative.

The solution for this equation is characterized by the characteristics functions

dt =
dz

g1z
= −dµ

n

µnδ
(29)

Solving the equality dt = dz
g1z

we get

t− log(z)

g1

= C1

Where C1 is a constant of integration. Solving the equality dt = −dµn

µnδ
we get,

t+
log(µn)

δ
= C2

And the general solution is given by an arbitrary function F such that

C2 = F (C1)

or

t+
log(µn)

δ
= F (t− log(z)

g1

) (30)

We find F using the boundary condition µn(t, 1) = M(t), which implies log(µn(t,1))
δ

=
log(M(t))

δ
. From the above equation,

7Notice that we recover the steady state Kolmogorov forward equation when µn
t = 0.
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t+
log(µn(t, 1))

δ
= F (t)

Therefore,

F (x) =
log(M(x))

δ
+ x

Thus, from (30) and replacing x = t− log(z)
g1

we get that

t+
log(µn)

δ
=

log(M(t− log(z)
g1

))

δ
+ t− log(z)

g1

log(µn(t, z)) = log(M(t− log(z)

g1

))− δ log(z)

g1

Which implies

µn(t, z) = M(t− 1

g1

log(z))z
− δ
g1

Notice that 1
g1

log(z) is the age of a firm, say s. Thus, t−s determines in which period

the firm was born and therefore it determines how many other firms alike, M(t − s)

are in the economy. Of course, as long as z ≤ z∗(t) we know that t − s ≥ 0 and that

µn(t, z) = µ(t, z) for all z ≤ z∗(t). Thus,

µ(t, z) = M(t− 1

g1

log(z))z
− δ
g1 if z < z∗(t)

Next, focus on firms born in t < 0. We know µo(t, z) = 0 for z < z∗(t). For z ≥ z∗(t),

the PDE is

µot (t, z) + µoz(t, z)g1z = −δµo(t, z)

The solution is the same as before, but now we write it in a different way

etz
− 1
g1 = C1

and

et(µo)
1
δ = C2
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where g1 is the growth rate after the drop in trade costs. The solution is given for an

arbitrary function F satisfying

et(µo)
1
δ = F [etz

− 1
g1 ]

The difference with the case solved before is that now to pin down F we use the initial

condition µo(0, z) = M0z
− δ
g0 , where g0 is the growth rate before the drop in trade costs,

which implies

(µo)
1
δ = F [z

− 1
g1 ] = M

1
δ

0 z
− 1
g0

Therefore

F (x) = M
1
δ

0 x
g1
g0

Using the above function in the solution we get

et(µo)
1
δ = e

t
g1
g0 z
− 1
g0

or

µo(t, z) = M0e
tδ
g1−g0
g0 z

− δ
g0 (31)

Notice that this equation seems to diverge, especially if g1 > g0 and it would do so at

a rate δ g1−g0

g0
. However, this set is shrinking at a rate g1 > δ g1−g0

g0
(because z∗(t) grows at

this rate). Therefore, the distribution of firms is given by

µ(t, z) = M(t− 1

g1

log(z))z
− δ
g1 if z ≤ z∗(t) (32)

= M0e
tδ
g1−g0
g0 z

− δ
g0 if z > z∗(t)

We now add back the exporters. Let gij be the rate of growth of a firm type j = d, x

(non exporter, exporter), at time i = 0, 1 (before and after the shock, respectively). Define

t1 as the time it takes the first firm born after the shock to become an exporter, that is,

eg1dt1 = z1x. For t < t1, define z∗(t) = eg1dt as the maximum productivity of a firm born

after the shock. We know that g1,x > g0,x, g1,d < g0,d and z1,x < z0,x.

Focus on non-exporters first.If t ≥ t1 it is clear that all non-exporters were born after
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the shock. The measure of new non-exporters is

µ(t, z) = M(t− 1

g1,d

log(z))z
− δ
g1,d if t ≥ t1

If t < t1 then some non-exporters were born before the shock, that is, z∗(t) < z1,x. In

this case the measure of non-exporters would be as (32). Therefore we have

µ(t, z) = M(t− 1

g1,d

log(z))z
− δ
g1,d if z < z1,x and t < t1 (33)

= M(t− 1

g1,d

log(z))z
− δ
g1,d if z < z∗(t) < z1x and t < t1

= M0e
tδ
g1,d−g0,d

g0,d z
− δ
g0,d if z∗(t) < z < z1x and t < t1

For the exporters we need to consider two areas. The first one is [z1,x, z0,x], the set of

firms that became exporters immediately after the shock, and the second is [z0,x,∞]. First

we focus on the area [z1,x, z0,x]. This case has a small trick, when there is an unexpected

shock in tariff at the initial instant the distribution of firms changes in a discontinuous

way. The measure of firms by productivity does not change but the firms that export or

not do. In particular, all firms with z ∈ [z1,x, z0,x] that before the shock were producing

only for the domestic market become exporters. Hence their productivity growth rate

jumps from g0,d to g1,x. This effect should be taken into account during the simulations.

Define t2 = 1
g1,x

[log(z0,x) − t1g1,d], which is the time that it takes to a new firm to reach

the upper boundary of this area. Notice that t2 − t1 is the time that it takes to a firm

to transit the particular area. If t > t2 clearly all firms in this area would be firms

born after the shock. The age of this firm would be given s = 1
g1,x

[log(z) − t1g1,d] =
1
g1,x

[log(z) − log(z1,x)] = 1
g1,x

[log( z
z1,x

)]. This would solve a PDE as in equation (30) but

now to pin down F we need the initial condition µ(t, z1,x) = M(t − 1
g1,x

log(z1,x))z
− δ
g1,d

1,x

or in a more convenient form 1
δ

log[µ(t, z1,x)] = 1
δ

log[M(t − 1
g1,d

log(z1,x))] − 1
g1,d

log[z1,x].

Thus, using (30), F must satisfy

t+
1

δ
log[M(t− 1

g1,d

log(z1,x))]−
1

g1,d

log[z1,x] = F (t− log(z1,x)

g1,x

)

Which generates
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F (x) =
1

δ
log

[
M

(
x+ [

1

g1,x

− 1

g1,d

] log(z1,x)

)]
+ x−

[
1

g1,d

− 1

g1,x

]
log(z1,x)

Using this in the general solution for the PDE we get

t+
log(µ(t, z))

δ
=

1

δ
log

[
M

(
t− log(z)

g1,x

+ [
1

g1,x

− 1

g1,d

] log(z1,x)

)]
+t− log(z)

g1,x

−
[

1

g1,d

− 1

g1,x

]
log(z1,x)

µ(t, z) = M

(
t− 1

g1,x

log(z) + [
1

g1,x

− 1

g1,d

] log(z1,x)

)
z
− δ
g1,d

1,x

[
z

z1,x

]− δ
g1,x

(34)

The above equation is the measure of firms z ∈ [z1,x, z0,x] when t > t2. Notice that

this would remain true for new firms with z > z0,x. That is for every t the measure of

exporters with productivity z < z
g1,x(t−t1)
1,x will be given by equation (34).

If t < t1, then no new firm has made it until this area, but there are two kinds of old

firms. Those that were in the area before the shock and those who were non-exporters

before and immediately after the shock but with time they have become exporters. Given

this fact the number of old exporters in this area would be given for those old firms

that are coming from the non-exporting sector and those firms that became exporters

right after the shock and they haven’t grown beyond z0,x. (if the area is small it might

happen that all initial exporters left already, check this later). Let z1∗(t) = z1,xe
tg1,x . If

z1∗(t) ≤ z0,x there are still firms in this area that were born before the shock and became

immediately exporters. The measure of these firms would be given by (31), that is

µ(t, z) = M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z0,x and t < t1 (35)

For the firms with z ≤ z1∗ (the same applies if z1∗ > z0,x) they measure would solve

the already seen PDE, that is

et(µ)
1
δ = F [etz

− 1
g1,x ]

But now to pin down the the function F , the initial condition is µ(t, z1,x) = M0e
tδ
g1,d−g0,d

g0,d z
− δ
g0,d

1,x ,

that is all old non-exporters that are becoming exporters. Which implies

etM
1
δ

0 e
t
g1,d−g0,d

g0,d z
− 1
g0,d

1,x = F [etz
− 1
g1,x

1,x ]
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M
1
δ

0 e
t
g1,d
g0,d z

− 1
g0,d

1,x = F [etz
− 1
g1,x

1,x ]

Then,

F (x) = M
1
δ

0 z

1
g0,d

„
g1,d
g1,x
−1

«
1,x x

g1,d
g0,d

Therefore,

et(µ(t, z))
1
δ = M

1
δ

0 z

1
g0,d

„
g1,d
g1,x
−1

«
1,x

(
etz
− 1
g1,x

) g1,d
g0,d

(µ(t, z))
1
δ = M

1
δ

0 z

1
g0,d

„
g1,d
g1,x
−1

«
1,x e

t

„
g1,d
g0,d
−1

«
z
−

g1,d
g1,xg0,d

µ(t, z) = M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d (36)

If t ∈ [t1, t2], there are three possible types of firms in the area, new, old that were in

the are before the shock and old that were non-exporters before shock and with time got

into the area. In particular, a new firm cannot have a z larger than z∗2(t) = et1g1,d+(t−t1)g1,x .

Thus, all firms with z ≤ z∗2(t) will be new and will have a measure given by (34), while

all firms with z∗2(t) < z < z∗1(t) will be old firms that got there with time, will have a

measure given by (36) and finally, firms with z∗1(t) < z < z1,x they were there before the

shock and they still remain there (if this last inequality does no hold this measure would

be zero). In short,

µ(t, z) = M

(
t− 1

g1,x

log(z) + [
1

g1,x

− 1

g1,d

] log(z1,x)

)
z
− δ
g1,d

1,x

[
z

z1,x

]− δ
g1,x

if z1,x ≤ z ≤ z0,x and t ≥ t2

= M

(
t− 1

g1,x

log(z) + [
1

g1,x

− 1

g1,d

] log(z1,x)

)
z
− δ
g1,d

1,x

[
z

z1,x

]− δ
g1,x

if z1,x ≤ z ≤ z2∗(t) and t1 < t < t2

= M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z2∗(t) < z ≤ z1∗(t) and t1 < t < t2

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z0,x and t1 < t < t2

= M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z1,x < z < z1∗(t) and t < t1

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z0,x and t < t1 (37)
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What happens with the measure of firms above z0,x? First consider the firms that

were already in this area before the shock. Clearly all firms with productivity z0,x ≤ z <

z0,xe
tg1,x already left or died. Thus, of the firms that were there before the shock only

those with z ≥ z0,xe
tg1,x = z3∗(t) remain there, and their measure is similar to (31). The

difference is that now the initial condition is

µ(0, z) = M0z
δ

g0,x
− δ
g0,d

0,x z
− δ
g0x

The resulting distribution is

µ(t, z) = M0e
tδ
g1,x−g0,x

g0,x z
δ

g0,x
− δ
g0,d

0,x z
− δ
g0,x if z ≥ z3∗(t)

What about firms with z0,x ≤ z < z3∗(t)? This depends on t, if t < t2 no new firm has

made to this area. But if t ≥ t2 some new firms are in this area. In particular, they could

have made it as high as z2∗(t) only, and their measure would be given by (34). Hence, if

t ≥ t2 we would have

µ(t, z) = M

(
t− 1

g1,x

log(z) + [
1

g1,x

− 1

g1,d

] log(z1,x)

)
z
− δ
g1,d

1,x

[
z

z1,x

]− δ
g1,x

For all z0,x ≤ z < z2∗(t).

In between there would be only old firms. Those that became exporters immediately

after the shock and they made it beyond z0,x and those that were non-exporters at the

very beginning and again they made it as well beyond z0,x. Of course, if these two kinds

of firms are present depends on t. If t is small only the first will be there and when t

becomes larger the second start to show up. The first firms to start to show up would be

those that were closer to z0,x before the shock. Hence, firms with z1∗(t) ≤ z < z3∗(t) will

have a measure

µ(t, z) = M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) ≤ z < z3∗(t)

Then, old firms that remained non-exporters after the shock will appear, with measure

M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z2∗(t) ≤ z < z1∗(t)
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Therefore, the measures in this area will be given by

µ(t, z) = M0e
tδ
g1,x−g0,x

g0,x z
− δ
g0,x if z ≥ z3∗(t)∀t (38)

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z3∗(t)∀t

= M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z2∗(t) < z < z1∗(t)t > t1

= M

(
t− 1

g1,x

log(z) + [
1

g1,x

− 1

g1,d

] log(z1,x)

)
z
− δ
g1,d

1,x

[
z

z1,x

]− δ
g1,x

if z0,x ≤ z ≤ z2∗(t) and t ≥ t2

Re-writing the firms distribution

If t = 0 the distribution of firms is the same as before the shock with the only difference

that the number of exporters is given by z > z1,x instead of z > z0,x. This initial jump

allows us to pin down M(0) (not M0) and I(0) given the new level of Πd.

Define t1 : egdt1 = zx1, z
∗(t) = eg1,dt, z1∗(t) = min{eg1,xtz1,x, z0x} (if z1∗(t) > z0,x set

z1∗(t) = z0,x ), z3∗(t) = eg1,xtz0,x, z
∗2(t) = et1g1,d+(t−t1)g1,x

If t < t1,

µ(t, z) = M(t− 1

g1,d

log(z))z
− δ
g1,d if z ≤ z∗(t)

= M0e
tδ
g1,d−g0,d

g0,d z
− δ
g0,d if z∗(t) < z ≤ z1,x

= M0z

δ
g0,d

„
g1,d
g1,x
−1

«
1,x e

tδ

„
g1,d
g0,d
−1

«
z
−δ

g1,d
g1,xg0,d if z1,x < z ≤ z1∗(t)

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z1∗(t) < z ≤ z0,x

= M0e
tδ
g1,x−g0,d

g0,d z
− δ
g0,d if z0,x < z ≤ z3∗(t)

= M0e
tδ
g1,x−g0,x

g0,x z
− δ
g0,x if z > z3∗(t)

The way to identify M is using the labor market clearing condition. This is

1 =Πd(t)

[∫ zx(t)

1

zµ(t, z)dz + (1 + (1 + τ)−2)

∫ ∞
zx(t)

zµ(t, z)dz

]
+

κ1

2

[
gd(t)

2

∫ zx(t)

1

zµ(t, z)dz + gx(t)
2

∫ ∞
zx(t)

zµ(t, z)dz + κeM(t)

]
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Or alternatively, assuming z1∗(t) > z0x, for t < t1,

1

Πd(t)
= (1 + κ1gd)

[∫ z∗(t)

1

zµ(t, z)dz +

∫ zx1

z∗(t)

zµ(t, z)dz

]
+(

1 + (1 + τ)−2 + κ1gx
)
×[∫ z1∗(t)

z1x

zµ(t, z)dz +

∫ z0x

z1∗(t)

zµ(t, z)dz +

∫ z3∗(t)

z0x

zµ(t, z)dz +

∫ ∞
z3∗(t)

zµ(t, z)dz + κeM(t)

]

Integral 2

∫ zx1

z∗(t)

M0e
tδ
“
g1d−g0d
g0d

”
z

1− δ
g0d dz =

M0

2− δ
g0d

(
e
tδ
“
g1d−g0d
g0d

”
z

2− δ
g0d

x1 − et(2g1d−δ)
)

Integral 3

∫ z1(t)

zx1

M0z
δ
g0d

“
g1d−g1x
g1x

”
x1 e

tδ
“
g1d−g0d
g0d

”
z

1− δg1d
g1xg0d dz =

M0z
2− δ

g0d
1x e

tδ
“
g1d−g0d
g0d

”
2− δg1d

g1xg0d

[
e
t(2g1x−

δg1d
g0d

) − 1

]

=
M0z

2− δ
g0d

1x

2− δg1d

g1xg0d

[
et(2g1x−δ) − etδ

“
g1d−g0d
g0d

”]

Integral 4

∫ z3(t)

z1(t)

M0e
tδ
“
g1x−g0d
g0d

”
z

1− δ
g0d dz =

M0e
t(2g1x−δ)

2− δ
g0d

[
z

2− δ
g0d

0x − z
2− δ

g0d
1x

]
Integral 5

∫ ∞
z3(t)

M0e
tδ
“
g1x−g0x
g0x

”
z

1− δ
g0x dz =

M0z
2− δ

g0d
0x

−2 + δ
g0x

et(2g1x−δ)

Notice that the average productivity of exporters is given by

Ex(z) =
M0z

2− δ
g0d

1x

2− δg1d

g1xg0d

[
et(2g1x−δ) − etδ

“
g1d−g0d
g0d

”]
+
M0e

t(2g1x−δ)

2− δ
g0d

[
z

2− δ
g0d

0x − z
2− δ

g0d
1x

]
+
M0z

2− δ
g0x

0x

−2 + δ
g0x

et(2g1x−δ)
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then

Ex(t, z) = ψ0e
ψ1t + ψ2e

ψ3t (39)

where

ψ0 = M0


(
z

2− δ
g0d

0x − z
2− δ

g0d
1x

)
2− δ

g0d

− z
2− δ

g0x
0x

2− δ
g0x

+
z

2− δ
g0d

1x

2− δg1d

g1xg0d


ψ1 = 2g1x − δ < 0

ψ2 = −M0z
2− δ

g0d
1x

2− δg1d

g1xg0d

ψ3 = δ

(
g1d − g0d

g0d

)
< 0

The average productivity of non-exporters is given by

En(t, z) =

∫ z∗(t)

1

µ(t, z)zdz +
M0

2− δ
g0d

(
e
tδ
“
g1d−g0d
g0d

”
z

2− δ
g0d

x1 − et(2g1d−δ)
)

En(t, z) =

∫ z∗(t)

1

µ(t, z)zdz + En1(t, z)

En(t, z) = En0(t, z) + En1(t, z)

En(z) = En0(z) + ψ4e
ψ3t + ψ5e

ψ6t

where

ψ4 =
M0z

2− δ
g0d

x1

2− δ
g0d

ψ5 = − M0

2− δ
g0d

ψ6 = 2g1d − δ

Then we can write market clearing as
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1 =Πd1

[∫ z1x

1

zµ(t, z)dz + (1 + (1 + τ)−2)

∫ ∞
z1x

zµ(t, z)dz

]
+

κ1

2

[
g2

1d

∫ z1x

1

zµ(t, z)dz + g2
1x

∫ ∞
z1x

zµ(t, z)dz

]
+ κeM(t)

1 =

[
Πd1 +

κ1g
2
1d

2

] ∫ z1x

1

zµ(t, z)dz +

[
Πd1(1 + (1 + τ)−2) +

κ1g
2
1x

2

] ∫ ∞
z1x

zµ(t, z)dz + κeM(t)

1 =

[
Πd1 +

κ1g
2
1d

2

]
[En0(t, z) + En1(t, z)] +

[
Πd1(1 + (1 + τ)−2) +

κ1g
2
1x

2

]
Ex(t, z) + κeM(t)

Let a0 = Πd1 +
κ1g2

1d

2
and a1 = Πd1(1 + (1 + τ)−2) +

κ1g2
1x

2
, then

1 =a0[En0(t, z) + ψ4e
ψ3t + ψ5e

ψ6t] + a1[ψ0e
ψ1t + ψ2e

ψ3t] + κeM(t)

Then we must have

En0(t, z) =
1

a0

− ψ4e
ψ3t − ψ5e

ψ6t − a1

a0

[ψ0e
ψ1t + ψ2e

ψ3t]− κe
a0

M(t) (40)

For this reason we proposed the following function for M(t)

M(t) = m0 +m1e
m2t +m3e

m4t
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Integrating the remaining part we get

En0(t, z) =

∫ z∗(t)

1

zµ(t, z)dz

= − m0

2− δ
g1d

+

[
m0

2− δ
g1d

+
m1

2− δ+m2

g1d

+
m3

2− δ+m4

g1d

]
etψ6 −

[
m1e

tm2

2− δ+m2

g1d

+
m3e

tm4

2− δ+m4

g1d

]

We have five unknowns, m’s, but we have five ψ’s that we can use to pin them dow.

First, we can arbitrarily set m4 = ψ3 and m2 = ψ1. Then we can write the above equation

as

En0(t, z) = − m0

2− δ
g1d

+

[
m0

2− δ
g1d

+
m1

2− δ+ψ1

g1d

+
m3

2− δ+ψ3

g1d

]
etψ6 −

[
m1e

tψ1

2− δ+ψ1

g1d

+
m3e

tψ3

2− δ+ψ3

g1d

]

and rewriting (40) we have

En0(t, z) =
1

a0

− κe
a0

m0 −
[
ψ4 +

a1

a0

ψ2 +
κe
a0

m3

]
eψ3t − ψ5e

ψ6t −
[
a1

a0

ψ0 +
κe
a0

m1

]
eψ1t

From here we immediately get

− m0

2− δ
g1d

=
1

a0

− κe
a0

m0

m1

2− δ+ψ1

g1d

=
a1

a0

ψ0 +
κe
a0

m1

m3

2− δ+ψ3

g1d

=

[
ψ4 +

a1

a0

ψ2 +
κe
a0

m3

]

Now, we need ψ5 but we have no m left. However, notice that the above assignment

would be a solution only if,

ψ5 =
1

a0

− κe
a0

m0 −
a1

a0

ψ0 −
κe
a0

m1 −
[
ψ4 +

a1

a0

ψ2 +
κe
a0

m3

]
But, the above equality is implied by equation (40) when t = 0.
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For t1 < t < 2t1

µ(t, z) = M

(
t− log(z)

g1d

)
z
− δ
g1d if z ≤ z1x

= M

(
t− log(z)

g1x

+

(
1

g1x

− 1

g1d

)
log(z1x)

)
z
δ
“

1
g1x
− 1
g1d

”
1x z

− δ
g1x if z1x ≤ z ≤ z2∗(t)

= M0z
δ
g0d

“
g1d−g1x
g1x

”
1x e

tδ
“
g1d−g0d
g0d

”
z
−δ g1d

g1xg0d if z2∗(t) ≤ z ≤ z1∗(t)

= M0e
tδ
“
g1x−g0d
g0d

”
z
− δ
g0d if z1∗(t) ≤ z ≤ z3∗(t)

= M0e
tδ
“
g1x−g0x
g0x

”
z
− δ
g0x if z > z3∗(t)

Integral 3

∫ z1∗(t)

z2∗(t)

M0z
δ
g0d

“
g1d−g1x
g1x

”
1x e

tδ
“
g1d−g0d
g0d

”
z

1−δ g1d
g1xg0d dz = et(2g1x−δ)M0z

2− δ
g0d

1x

2− δ/g1d

g1xg0d

(
1− e−t1

“
2g1x−δ

g1d
g0d

”)

Integral 4 ∫ z3∗(t)

z1∗(t)

M0e
tδ
“
g1x−g0d
g0d

”
z

1− δ
g0d dz =

M0e
t(2g1x−δ)

2− δ/g0d

(
z

2−δ/g0d

0x − z2−δ/g0d

1x

)
Integral 5 ∫ ∞

z3∗(t)

M0e
tδ
“
g1x−g0x
g0x

”
z

1− δ
g0x dz =

M0e
t(2g1x−δ)

−2 + δ/g0x

z
2−δ/g0d

0x
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Define

Ẽx(t) =

∫ z1∗(t)

z2∗(t)

M0z
δ
g0d

“
g1d−g1x
g1x

”
1x e

tδ
“
g1d−g0d
g0d

”
z

1−δ g1d
g1xg0d dz+∫ z3∗(t)

z1∗(t)

M0e
tδ
“
g1x−g0d
g0d

”
z

1− δ
g0d dz+∫ ∞

z3∗(t)

M0e
tδ
“
g1x−g0x
g0x

”
z

1− δ
g0x dz

Ẽx(t) =et(2g1x−δ)M0z
2− δ

g0d
1x

2− δg1d

g1xg0d

(
1− e−t1

“
2g1x−δ

g1d
g0d

”)
M0e

t(2g1x−δ)

2− δ/g0d

(
z

2−δ/g0d

0x − z2−δ/g0d

1x

)
M0e

t(2g1x−δ)

−2 + δ/g0x

z
2−δ/g0x

0x

Then

Ẽx(t) =ψ7e
tψ1

where

ψ7 = M0

 z
2− δ

g0d
1x

2− δg1d

g1xg0d

(
1− e−t1

“
2g1x−δ

g1d
g0d

”)
+
z

2−δ/g0d

0x − z2−δ/g0d

1x

2− δ/g0d

+
z

2−δ/g0x

0x

−2 + δ/g0x


Notice

ψ7 = ψ0 + ψ2e
−t1(ψ1−ψ3)

Next we need to solve the integrals where M(t) appears. One thing to notice is that

we know M(t) for some new firms, the ones born before t1. These can be exporters or non

exporters. Since it takes t1 periods to become an exporter, when t < 2t1, some new firms

born before t1 are non exporters. For t > 2t1, all new firms born before t1 are exporting.

Define z4(t) as the productivity of a firm born in t1.

z4(t) =

eg1d(t−t1) if t < 2t1

zx1e
gx1(t−2t1) if t > 2t1
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For t < 2t1 ∫ z1x

1

zµ(t, z)dz =

∫ z4(t)

1

zµ(t, z)dz +

∫ z1

z4(t)

zµ(t, z)dz

Let

Ẽd(t) =

∫ zx1

z4(t)

zµ(t, z)dz

∫ z1x

z4(t)

zµ(t, z)dz =

∫ z1

z4(t)

M

(
t− log z

g1d

)
z

1− δ
g1d dz =

∫ z1

z4(t)

[
m0z

1− δ
g1d +m1e

m2tz
1− δ+m2

g1d + . . .

]
dz

=
m0

2− δ
g1d

(
z

2− δ
g1d

1x − z4(t)
2− δ

g1d

)
+

m1e
m2t

2− δ+m2

g1d

(
z

2− δ+m2
g1d

1x − z4(t)
2− δ+m2

g1d

)
+ . . .

=
m0

2− δ
g1d

(
z

2− δ
g1d

1x − eg1d(t−t1)
“

2− δ
g1d

”)
+

m1e
m2t

2− δ+m2

g1d

(
z

2− δ+m2
g1d

1x − eg1d(t−t1)
“

2− δ+m2
g1d

”)
+ . . .

=
m0

2− δ
g1d

(
z

2− δ
g1d

1x − e(t−t1)(2g1d−δ)
)

+
m1e

m2t

2− δ+m2

g1d

(
z

2− δ+m2
g1d

1x − e(t−t1)(2g1d−δ−m2)

)
+ . . .

=
m0

2− δ
g1d

(
z

2− δ
g1d

1x − e(t−t1)(2g1d−δ)
)

+
m1

2− δ+m2

g1d

(
em2tz

2− δ+m2
g1d

1x − et(2g1d−δ)e−t1(2g1d−δ−m2)

)
+ . . .

∫ z1x

z4(t)

zµ(t, z)dz =
m0z

2− δ
g1d

1x

2− δ
g1d

− etψ6

(
m0e

−t1ψ6

2− δ
g1d

+
m1e

−t1(2g1d−δ−m2)

2− δ+m2

g1d

+
m3e

−t1(2g1d−δ−m4)

2− δ+m4

g1d

)

+
m1z

2− δ+m2
g1d

1x em2t

2− δ+m2

g1d

+
m3z

2− δ+m4
g1d

1x em4t

2− δ+m4

g1d
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Since ψ6 = 2g1d − δ

∫ z1x

z4(t)

zµ(t, z)dz =
m0z

2− δ
g1d

1x

2− δ
g1d

− etψ6

(
m0e

−t1ψ6

2− δ
g1d

+
m1e

−t1(2g1d−δ−m2)

2− δ+m2

g1d

+
m3e

−t1(2g1d−δ−m4)

2− δ+m4

g1d

)

+
m1z

2− δ+m2
g1d

1x em2t

2− δ+m2

g1d

+
m3z

2− δ+m4
g1d

1x em4t

2− δ+m4

g1d

=
m0z

2− δ
g1d

1x

2− δ
g1d

− etψ6e−t1ψ6

(
m0

2− δ
g1d

+
m1e

t1m2

2− δ+m2

g1d

+
m3e

t1m4

2− δ+m4

g1d

)

+
m1z

2− δ+m2
g1d

1x em2t

2− δ+m2

g1d

+
m3z

2− δ+m4
g1d

1x em4t

2− δ+m4

g1d

Since m2 = ψ1 and m4 = ψ3

∫ z1x

z4(t)

zµ(t, z)dz =
m0z

2− δ
g1d

1x

2− δ
g1d

− etψ6e−t1ψ6

(
m0

2− δ
g1d

+
m1e

t1ψ1

2− δ+ψ1

g1d

+
m3e

t1ψ3

2− δ+ψ3

g1d

)

+
m1z

2− δ+ψ1
g1d

1x

2− δ+ψ1

g1d

eψ1t +
m3z

2− δ+ψ3
g1d

1x

2− δ+ψ3

g1d

eψ3t

then

En1(t) = ψ−1n + ψ̃8e
ψ1t + ψ̃4e

ψ3t + ψ̃5e
ψ6t

where

ψ̃−1n =
m0z

2− δ
g1d

1x

2− δ
g1d

ψ̃4 =
m3z

2− δ+ψ3
g1d

1x

2− δ+ψ3

g1d

ψ̃5 =− e−t1ψ6

(
m0

2− δ
g1d

+
m1e

t1ψ1

2− δ+ψ1

g1d

+
m3e

t1ψ3

2− δ+ψ3

g1d

)

ψ8 =
m1z

2− δ+ψ1
g1d

1x

2− δ+ψ1

g1d
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And,

Ex(t) =

∫ z2∗(t)

z1x

zµ(t, z)dz + Ẽx(t)

∫ z2∗(t)

z1x

zµ(t, z)dz =

∫ z1xe(t−t1)g1x

z1x

z
δ
“

1
g1x
− 1
g1x

”
1x z

1− δ
g1xM

(
t− log z

g1x

+

(
1

g1x

− 1

g1d

)
log z1x

)
dz =

m0z
2− δ

g1x
1x

2− δ
g1x

[
e(t−t1)(2g1x−δ) − 1

]
+
∑
i=1,3

etmi+1
miz

(δ+mi+1)
“

1
g1x
− 1
g1d

”
1x z

2g1x−(δ+mi+1)
1x

2− δ+mi+1

g1x

[
e(t−t1)(2g1x−(δ+mi+1)) − 1

]
notice that when 2g1x − (δ +m2) = 0, therefore

∫ z2∗(t)

z1x

zµ(t, z)dz =

m0z
2− δ

g1x
1x

2− δ
g1x

[
e(t−t1)(2g1x−δ) − 1

]
+
etm4m3z

(δ+m4)
“

1
g1x
− 1
g1d

”
+2g1x−(δ+m4)

1x

2− δ+m4

g1x

[
e(t−t1)(2g1x−(δ+m4)) − 1

]

∫ z2∗(t)

z1x

zµ(t, z)dz = −m0z
2− δ

g1x
1x

2− δ
g1x

+
e−t1ψ1m0z

2− δ
g1x

1x

2− δ
g1x

etψ1+

e−t1(ψ1−m4)m3z
(δ+m4)

“
1
g1x
− 1
g1d

”
+2g1x−(δ+m4)

1x

2− δ+m4

g1x

etψ1 − m3z
(δ+m4)

“
1
g1x
− 1
g1d

”
+2g1x−(δ+m4)

1x

2− δ+m4

g1x

etm4

Since m4 = ψ3

∫ z2∗(t)

z1x

zµ(t, z)dz =

− m0z
2− δ

g1x
1x

2− δ
g1x

+ e−t1ψ1

m0z
2− δ

g1x
1x

2− δ
g1x

+
et1ψ3m3z

(δ+ψ3)
“

1
g1x
− 1
g1d
−1
”

+2g1x

1x

2− δ+ψ3

g1x

 etψ1 − m3z
(δ+ψ3)

“
1
g1x
− 1
g1d
−1
”

+2g1x

1x

2− δ+ψ3

g1x

etψ3

Thus the average productivity of exporters is
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Ex(t, z) = ψ−1 + ψ̃0e
ψ1t + ψ̃2e

ψ3t (41)

where

ψ−1 = −m0z
2− δ

g1d
1x

2− δ
g1x

ψ̃0 = ψ0 + e−t1ψ1

m0z
2− δ

g1d
1x

2− δ
g1x

+
et1ψ3m3z

(δ+ψ3)
“

1
g1x
− 1
g1d
−1
”

+2g1x

1x

2− δ+ψ3

g1x

+ ψ2e
t1ψ3



ψ̃2 = −m3z
(δ+ψ3)

“
1
g1x
− 1
g1d
−1
”

+2g1x

1x

2− δ+ψ3

g1x

Thus,

ψ̃0 = ψ0 + e−t1ψ1

[
−ψ−1 − et1ψ3ψ̃2 − ψ2e

t1ψ3

]
Therefore, market clearing is

1 =a0[En0(t, z) + ψ−1n + ψ̃8e
ψ1t + ψ̃4e

ψ3t + ψ̃5e
ψ6t] + a1[ψ−1 + ψ̃0e

ψ1t + ψ̃2e
ψ3t] + κeM(t)

Then

En0(t, z) =

(
1

a0

− ψ−1n −
a1

a0

ψ−1

)
−
(
ψ̃8e

ψ1t + ψ̃4e
ψ3t + ψ̃5e

ψ6t +
a1

a0

[ψ̃0e
ψ1t + ψ̃2e

ψ3t]

)
− κe
a0

M(t)

En0(t, z) =

∫ z4(t)

1

zµ(t, z)dz =

∫ z4(t)

1

z
1− δ

g1dM

(
t− log z

g1d

)
dz

Propose

M(t) = m̃0 + m̃1e
m̃2t + m̃3e

m̃4t
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En0(t, z) =

∫ z4(t)

1

z
1− δ

g1dM

(
t− log z

g1d

)
dz =

m̃0

(
z4(t)

2− δ
g1d − 1

)
2− δ

g1d

+

m̃1e
tm̃2

(
z4(t)

2− δ+m̃2
g1d − 1

)
2− δ+m̃2

g1d

+ · · · =

m̃0

(
etψ6e−t1ψ6 − 1

)
2− δ

g1d

+
m̃1

(
etψ6e−t1(ψ6−m̃2) − em̃2t

)
2− δ+m̃2

g1d

+ · · · =

− m̃0

2− δ
g1d

+ etψ6

(
m̃0e

−t1ψ6

2− δ
g1d

+
m̃1

(
e−t1(ψ6−m̃2)

)
2− δ+m̃2

g1d

+
m̃3

(
e−t1(ψ6−m̃4)

)
2− δ+m̃4

g1d

)
−(

m̃1e
tm̃2

2− δ+m̃2

g1d

+
m̃3e

tm̃4

2− δ+m̃4

g1d

)

As before, set m̃2 = ψ1, m̃4 = ψ3, and this will take care of the exponents where t

shows up.

En0(t, z) =− m̃0

2− δ
g1d

+ etψ6

(
m̃0e

−t1ψ6

2− δ
g1d

+
m̃1

(
e−t1(ψ6−ψ1)

)
2− δ+ψ1

g1d

+
m̃3

(
e−t1(ψ6−ψ3)

)
2− δ+ψ3

g1d

)
−

(
m̃1e

tψ1

2− δ+ψ1

g1d

+
m̃3e

tψ3

2− δ+ψ3

g1d

)

The solution to the unknowns is therefore given by

1

a0

− ψ−1n −
a1

a0

ψ−1 −
κe
a0

m̃0 =− m̃0

2− δ
g1d

a1

a0

ψ̃0 + ψ̃8 +
κe
a0

m̃1 =
m̃1

2− δ+ψ1

g1d

a1

a0

ψ̃2 + ψ̃4 +
κe
a0

m̃3 =
m̃3

2− δ+ψ3

g1d

For this to be an equilibrium, we need the following to hold.

−ψ̃5 =
m̃0e

−t1ψ6

2− δ
g1d

+
m̃1

(
e−t1(ψ6−ψ1)

)
2− δ+ψ1

g1d

+
m̃3

(
e−t1(ψ6−ψ3)

)
2− δ+ψ3

g1d

or
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−ψ̃5 =−
[

1

a0

− ψ−1n −
a1

a0

ψ−1 −
κe
a0

m̃0

]
e−t1ψ6+[

a1

a0

ψ̃0 + ψ̃8 +
κe
a0

m̃1

]
e−t1(ψ6−ψ1)+[

a1

a0

ψ̃2 + ψ̃4 +
κe
a0

m̃3

]
e−t1(ψ6−ψ3)

Clearly this condition is implied by the market clearing condition when t = t1.(just

multiply both sides by et1ψ6)

Redefining the m̃′s,

m̃0 =
a1

a0
ψ−1 + ψ−1n − 1

a0

−κe
a0

+ 1
2− δ

g1d

m̃1 =
a1

a0
ψ̃0 + ψ̃8

−κe
a0

+ 1

2− δ+ψ1
g1d

m̃3 =
a1

a0
ψ̃2 + ψ̃4

−κe
a0

+ 1

2− δ+ψ3
g1d
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