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ABSTRACT

The presence and implications of breaks in US monetary policy are investigated through a “struc-

tural” equation that allows for the endogeneity of inflation and unemployment gap forecasts. The

analysis establishes the consistency, for both the number of breaks and their locations within

the sample, when inference is conducted through an information criteria approach with an ap-

propriately specified penalty function. When breaks are taken into consideration in the reduced

form equations for inflation and unemployment forecasts produced within the US Fed, we find

that US monetary policy changes in 1980 and 1986/7. However, despite further changes in the

reduced form coefficients, no break in the US monetary policy rule is detected after 1987.

Keywords: US monetary policy, structural breaks, information criteria

JEL codes: C13, C26, E52



1 Introduction

US monetary policy is widely acknowledged to have altered over the last five decades with changes

in monetary policy often posited as the key explanation for changes in the properties of inflation

and, sometimes, real activity. Studies that explore these issues employ a variety of techniques,

with many treating the date(s) of change as known. For example, Boivan and Giannone (2006)

estimate multivariate vector autoregressive (VAR) and structural models with their sample split

in 1979, reflecting the date at which Paul Volcker became chairman of the US Federal Reserve,

while the VAR analysis of Ahmed, Levin, and Wilson (2004) uses sub-samples covering 1960 to

1979 and 1984 to 2002, with 1980 to 1983 omitted due to uncertainty about the potential date

of change. Clearly, such studies not only assume that the date of any policy (or other) change

is known, at least within a narrow range, but also that no further breaks occur in the overall

period under investigation.

Other studies, using a range of techniques, recognise that US monetary policy and related

relationships may have undergone multiple changes over the postwar period. Among these,

Cogley and Sargent (2001) employ a VAR specification with random parameter variation, while

Sims and Zha (2006) use a multivariate Markov switching model. Another strand of literature

draws conclusions about the role of changes in monetary policy through formal tests for structural

breaks at unknown dates, with these tests typically conducted through an analysis of univariate

inflation series; see, for example, Cecchetti and Debelle (2006). A more direct approach is taken

by Duffy and Engle-Warnick (2006) who apply such tests to a version of the Fed’s monetary

policy reaction function, but they note the limitation of their analysis not being able to allow

for endogeneity and hence they employ only backward-looking specifications.

The present paper examines breaks in US monetary policy through direct estimation of a

‘structural equation’1 representing the monetary policy of the Fed. Endogeneity is taken into

account through the use of a Two Stage Least Squares (2SLS) approach, with the number of

breaks determined using an information criterion. Although information criteria are widely ap-

plied in other model selection contexts, this paper is (to our knowledge) the first to propose their

use for determining the number of breaks for an equation estimated by 2SLS. Methodologically,

1Here the term ’structural equation’ is used in the sense of an equation from a simultaneous system with

endogenous right-hand side regressors. Thus, it not necessarily represent the behavioural response of an optimizing

individual economic agent.
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therefore, we also establish the consistency of (certain) information criteria in this context.

Over recent years, GMM has become a very popular alternative to instrumental variable

estimators (including 2SLS) for an equation with endogenous regressors. However, Hall, Han,

and Boldea (2010) [HHB] show that it is not well suited to break point estimation in this con-

text. Specifically, they show that minimizing the sum of partial generalized method of moments

minimands over all partitions of the sample fails to yield consistent estimates of the break point

in leading cases of interest. This arises because the GMM minimand is the square of sums, which

allows effects of misspecification associated with the selection of an incorrect break point to be

offset in the minimand, thus confounding the break point estimation. In contrast, the 2SLS

minimand is a sum of squares and this construction offers no scope for offsetting effects of such

misspecification to apply.

Hall, Han, and Boldea (2010) establish the consistency of break point estimators based on

a 2SLS minimand when the true number of breaks is known. Their consistency result covers

cases where the reduced form is either stable or subject to instability that takes the form of

discrete changes in the parameters. However, HHB also show that the stability, or lack thereof,

of the reduced form is crucial for the limiting distribution of parameter variation tests in the

structural equation. Therefore, stability of the reduced form should be considered prior to that

of the structural relationship. Conditional on reduced form breaks, HHB propose estimating the

structural equation via 2SLS, with breaks analyzed using a strategy based on partitioning the

total sample into sub-samples within which the reduced form is stable2.

The analysis in this paper follows a similar strategy to that of HHB, and again relies on

prior (and consistent) estimation of breaks in the reduced form equations. However, whereas

HHB rely on hypothesis tests to select the number of breaks in the structural relationship, this

paper employs an information criterion approach. In practical terms, this combines the Bai and

Perron (1998) algorithm for searching for break dates, given the number of breaks, with use of an

information criterion to select a preferred specification from among the set of resulting models,

each estimated by 2SLS for given break dates.

An outline of the paper is as follows. Section 2 sets out a structural equation of interest in

a generic context, with Section 3 then introducing the information criterion approach to break

2This partitioning is crucial for obtaining pivotal statistics and confidence intervals for the break estimators

in the structural equation of interest.
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estimation. The statistical properties of the estimators of both the number and location of the

breaks are analyzed in this latter section, with proofs relegated to a mathematical appendix.

The application to US monetary policy follows in Section 4, while a final section concludes.

2 The Structural Equation

Consider the case in which the equation of interest is a structural relationship from a simultaneous

system, with this equation exhibiting m breaks, such that

yt = x′tβ
0
x,i + z′1,tβ

0
z1,i + ut, i = 1, ...,m+ 1, t = T 0

i−1 + 1, ..., T 0
i (1)

where T 0
0 = 0 and T 0

m+1 = T , where T is the total sample size. Thus, yt is the dependent

variable, while xt is a p1×1 vector of endogenous explanatory variables, z1,t is a p2×1 vector of

exogenous variables including the intercept, and ut is a mean zero error. We define p = p1 + p2.

As usual in the literature, we require the break points to be asymptotically distinct.

Assumption 1 T 0
i = [Tλ0i ], where 0 < λ01 < ... < λ0m < 1.3

As a structural equation, we allow the explanatory variables, xt, to be correlated with the

errors, ut and xt requires a reduced form representation to be estimated using appropriate

instruments. This estimation is done a priori in the first stage of a Two Stage Least Squares

(2SLS) procedure. Furthermore, we allow for this reduced form to be subject to discrete shifts

in the sample period,

x
′

t = z
′

t∆
(i)
0 + v

′

t, i = 1, 2, . . . , h+ 1, t = T ∗i−1 + 1, . . . , T ∗i (2)

where T ∗0 = 0 and T ∗h+1 = T . The vector zt = (z′1,t, z
′
2,t)
′ is q× 1 and contains variables that are

uncorrelated with both ut and vt and are appropriate instruments for xt in the first stage of the

2SLS estimation. The parameter matrices are ∆
(i)
0 = (δ

(i)
1,0, δ

(i)
2,0, ..., δ

(i)
p1,0

), each with dimension

q × p1, and each δ
(i)
j,0 is dimension q × 1 , for j = 1, ..., p1. The points {T ∗i } are assumed to be

generated as follows.

Assumption 2 T ∗i = [Tπ0
i ], where 0 < π0

1 < . . . < π0
h < 1.

3[ · ] denotes the integer part of the quantity in the brackets.

4



Note that the break fractions in the reduced form, π0 = [π0
1 , π

0
2 , . . . , π

0
h]′, may or may not

coincide with the breaks in the structural equation, λ0 = [λ01, λ
0
2, . . . , λ

0
m]′. Also note that (2)

can be re-written as follows

xt(π
0)
′

= z̃t(π
0)
′
Θ0 + v

′

t, t = 1, 2, . . . , T (3)

where Θ0 = [∆
(1)′

0 ,∆
(2)′

0 , . . .∆
(h+1)′

0 ]
′
. z̃t(π

0) = ι(t, T ) ⊗ zt, ι(t, T ) is a (h + 1) × 1 vector with

first element I{t/T ∈ (0, π0
1 ]}, h+1th element I{t/T ∈ (π0

h, 1]}, kth element I{t/T ∈ (π0
k−1, π

0
k]}

for k = 1, 2, . . . , h and I{·} is an indicator variable that takes the value one if the event in the

curly brackets occurs.

Let π̂ = [π̂1, π̂2, . . . , π̂h]′ denote estimators of π0. It is assumed these estimators satisfy the

following condition.

Assumption 3 π̂ = π0 + Op(T
−1)

This condition would be satisfied if, for example, the break dates in the reduced form are

estimated by applying Bai and Perron’s (1998) methodology equation by equation and then

pooling the estimates of the break fractions. Let x̂t(π̂) denote the resulting fitted values that is,

x̂t(π̂)′ = z̃t(π̂)′Θ̂T (π̂) = z̃t(π̂)′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t (4)

where z̃t(π̂) is defined analogously to z̃t(π
0) based on the estimator of the true break points in

the reduced form.

To facilitate our analysis we impose the following assumptions:

Assumption 4 (i) ht = (ut, v
′
t)
′ ⊗ zt is an array of real valued n × 1 random vectors (where

n = (p + 1)q) defined on the probability space (Ω,F , P ), VT = V ar[
∑T
t=1 ht] is such that

diag[ξ−1T,1, . . . , ξ
−1
T,n] = Ξ−1T is O(T−1) where ΞT is the n×n diagonal matrix with the eigenvalues

(ξT,1, . . . , ξT,n) of VT along the diagonal; (ii) E[ht,i] = 0 and, for some d > 2, ‖ht,i‖d < Γ <∞

for t = 1, 2, . . . and i = 1, 2, . . . n where ht,i is the ith element of ht; (iii) {ht,i} is near epoch de-

pendent with respect to {gt} such that ‖ht−E[ht|Gt+mt−m ]‖2 ≤ νm with νm = O(m−1/2) where Gt+mt−m

is a sigma- algebra based on (gt−m, . . . , gt+m); (iii) {gt} is either φ-mixing of size m−d/(2(d−1))

or α-mixing of size m−d/(d−2); (iv) VT (r) = V ar[T−1/2
∑[Tr]
t=1 ht] satisfies VT (r)→rV uniformly

in r ∈ [0, 1] where V is a pd matrix.
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Assumption 5 V ar[ut] = σ2
u, Cov[ut, vt] = Σuv, and V ar[vt] = Σv, for all t.

Assumption 6 rank{Υ0
i } = p where Υ0

i =
[
∆

(i)
0 , Π

]
, for i = 1, 2, · · · , h + 1 where Π′ =

[Ip2 , 0p2×(q−p2)], Ia denotes the a× a identity matrix and 0a×b is the a× b null matrix.

Assumption 7 For ] = 0, ∗, there exists an l] > 0 such that for all l > l], the minimum

eigenvalues of Ail = (1/l)
∑T ]

i +l

t=T ]
i +1

ztz
′
t and of Āil = (1/l)

∑T ]
i

t=T ]
i −l

ztz
′
t are bounded away from

zero for all i = 1, ..., ν] + 1 where ν0 = m and ν∗ = h.

Assumption 8 T−1
∑[Tr]
t=1 ztz

′
t
p.u→ QZZ(r) uniformly in r ∈ [0, 1] where QZZ(r) is positive

definite for any r > 0 and strictly increasing in r. QZZ(r)−QZZ(s) is positive definite for any

r > s.

Assumption 4 allows substantial dependence and heterogeneity in (ut, v
′
t)
′ ⊗ zt but at the

same time imposes sufficient restrictions to deduce a Functional Central Limit Theorem for

T−1/2
∑[Tr]
t=1 ht; see Wooldridge and White (1988). This assumption also contains the restrictions

that the implicit population moment condition in 2SLS is valid - that is E[ztut] = 0 - and

the conditional mean of the reduced form is correctly specified. Assumption 6 restricts the

unconditional variance and covariances of the structural equation and reduced form errors to be

constant over time. (We conjecture that this asusmption can be relaxed but this issue is still

under investigation.) Assumption 6 implies the standard rank condition for identification in IV

estimation in the linear regression model4 because Assumptions 4(ii), 6 and 8 together imply

that

T−1
[Tr]∑

t=[sT ]+1

zt[x
′
t, z
′
1,t]

p→ [QZZ(r)−QZZ(s)]Υ0 = QZ,[X,Z1](r, s) uniformly in r > s+ε, r, s ∈ [0, 1]

(5)

where QZ,[X,Z1](r, s) has rank equal to p for any r, s (satisfying the above conditions). Note this

assumption implies q ≥ p. Assumption 7 requires that there be enough observations near the

true break points in either the structural equation or reduced form so that they can be identified

and is analogous to the extension proposed in Bai and Perron (1998) to their Assumption A2.

4See e.g. Hall (2005)[p.35].
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3 Consistency of an Information Criterion

Suppose now that a researcher knows neither the number nor the location of the breaks in the

structural equation. Consider the case where n breaks are estimated at τ(n) = [τ1, τ2, . . . , τn]
′

with 0 < τ1 < τ2 < . . . < τn < 1, τ0 = 0, and τn+1 = 1. Then, the second stage of 2SLS can

begin with the estimation of (1) via OLS for each possible n-partition of the sample that is,

yt = x̂t(π̂)
′
β∗x,i + z′1,tβ

∗
z1,i + ũt(π̂), i = 1, ..., n+ 1; t = Ti−1 + 1, ..., Ti; (6)

where Ti = [τiT ], and the regressors xt are estimated using the fitted values of the first stage of

2SLS, x̂t(π̂). We further assume that

Assumption 9 Equation (6) is estimated over all partitions (T1, ..., Tn) such that Ti − Ti−1 >

max{q − 1, εT} for some ε > 0 and ε < infi(λ
0
i+1 − λ0i ) and ε < infj(π

0
j+1 − π0

j ).

Assumption 9 requires that each segment considered in the estimation contains a positive

fraction of the sample asymptotically; in practice ε is chosen to be small in the hope that the

last part of the assumption is valid. Letting β∗i
′ = (β∗x,i

′, β∗z1,i
′)′, for a given n-partition, the

estimates of β∗ = (β∗1
′, β∗2

′, ..., β∗n+1
′)
′

are obtained by minimizing the sum of squared residuals

ST (T1, ..., Tn; β) =

n+1∑
i=1

Ti∑
t=Ti−1+1

{
yt − x̂t(π̂)′βx,i − z′1,tβz1,i

}2
with respect to β = (β1

′, β2
′, ..., βn+1

′)
′
. We denote these estimators by β̂(τ(n)). The estimators

of the break points, (T̂1, ..., T̂n), are then defined as

τ̂(n) = (T̂1, ..., T̂n) = arg min
T1,...,Tn

ST

(
T1, ..., Tn; β̂(τ(n))

)
(7)

where the minimization is taken over all possible partitions, (T1, ..., Tn). The 2SLS estimates of

the regression parameters, β̂(τ̂(n)) = (β̂′1, β̂
′
2, ..., β̂

′
n+1)′, are the regression parameter estimates

associated with each of the estimated partitions.

The estimators τ̂(n) and β̂(τ̂(n)) are calculated conditional on n. In practice, n is often

unknown a priori. Hall, Han, and Boldea (2010) propose a method for estimation of n based on

the sequential application of certain test statistics for parameter variation. Here we consider an

alternative approach based on minimization of the following information criterion (IC),

IC (τ(n);n, π̂) = ln
[
σ̂2(τ(n);n, π̂)

]
+K(n, T ), (8)
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where

σ̂2(τ(n);n, π̂) = (T − p)−1RSS(τ(n);n, π̂), (9)

RSS(τ(n);n, π̂) =

n∑
j=1

RSSj(τ(n);n, π̂), (10)

RSSj(τ(n);n, π̂) =

[τjT ]∑
t=[τj−1T ]+1

{
yt − x̂t(π̂)′β̂x,i − z′1,tβ̂z1,i

}2

, (11)

and K(n, T ) is a deterministic penalty term governed by the following Assumption,

Assumption 10 K(n, T ) = o(1) as T → ∞, it is a strictly increasing function of n, and

TK(n, T )→∞ as T →∞.

Then, the estimated number of breaks, denoted n̂, is the value that minimizes the IC, that

is

n̂ = argminn∈N IC (τ(n);n, π̂) . (12)

where N = {0, 1, . . . , N}. The associated estimators of the break locations are τ̂(n̂). N is the

maximum number of breaks considered and we assume this is large enough to ensure m ∈ N :

Assumption 11 N ≥ m.

The proof of consistency of our method rests on the limiting properties of RSS(τ(n);n, π̂).

The following lemma presents the limiting behaviour of RSSj(τ(n);n, π̂).

Lemma 1 Let yt be generated by (1), xt be generated by (2), x̂t(π̂) be generated by (4) and

Assumptions 1-9 hold. Then, for segment j of the data, t = [τj−1T ] + 1, . . . , [τjT ],

(i) If 6 ∃ i such that λ0i ∈ [τj−1, τj ] then

T−1RSSj(τ(n);n, π̂)
p.u→ (τj − τj−1)Γi.

(ii) If there exists i and κ > 0 such that λ0i , λ
0
i+1, . . . , λ

0
i+κ ∈ [τj−1, τj ] then

T−1RSSj(τ(n);n, π̂)
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + . . .

+ (λ0i+k − λ0i+κ−1)Γi+κ + (τj − λ0i+κ)Γi+κ+1 + F.
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where Γi = σ2
u + 2Σuvβ

0
x,i + β0′

x,iΣvβ
0
x,i.

p.u→ denotes limit in probability, that exists uniformly

in a segment defined by τj−1+ε < τj, for ε > 0 and τj−1, τj ∈ [0, 1]. F is a positive constant (that

is defined in the proof) which depends on τj−1, τj, certain limit matrices and the parameters of

the model.

Lemma 1 demonstrates the impact of neglected breaks on the residual sum of squares in seg-

ment j. Part (i) states that if there are no neglected breaks then T−1RSSj(τ(n);n, π̂) converges

to the (scaled) variance (τj − τj−1)Γi; part (ii) shows that if there are neglected breaks then

T−1RSSj(τ(n);n, π̂) converges to its scaled variance plus a positive constant. Notice that the

scaled variance in question is that of ut + β0′
x,ivt, and this reflects both the error ut and the

measurement error inherent in the substitution of x̂t(π̂) for xt.

Given the additivity of RSS(·) in RSSj(·), the results in Lemma 1 can be used to deduce the

limiting behaviour of T−1RSS(·) for any partition . For any partition with no neglected breaks,

T−1RSS(·) converges to Γ =
∑n
i=1 Γi and for any partition with at least one neglected break

T−1RSS(·) converges to Γ + ξ, ξ > 0. This behaviour, combined with Assumptions 10 and 11

implies the consistency of [n̂, τ̂(n̂)]. This is stated formally in the following theorem.

Theorem 1 Under Assumptions 1-11,

[n̂, τ̂(n̂)]
p.u→ [m,λ0]

where λ0 = [λ01, . . . , λ
0
m]′ is the collection of the true break fractions in (1).

Remark 1: To implement the estimation procedure, it is necessary to pick a penalty term that

satisfies Assumption 10. A natural choice is K(n, T ) = (n + 1)p ln(T )/T , which is associated

with BIC (Schwarz (1978)), because this choice has been found to work well in other settings.

Another possibility is K(n, T ) = (n+ 1)p ln[ln(T )]/T which is the choice associated with HQIC

(Hannan and Quinn (1979)). The choice associated with AIC (Akaike (1974)) does not satisfy

Assumption 10 and its use would yield an estimator that would have a zero probability of choos-

ing too few breaks but a non-zero probability of choosing too many breaks in the limit.

Remark 2: HHB propose a methodology for estimation of m based on the sequential applica-

tion of tests for various forms of parameter variation. If these tests are performed with a fixed

significance level then the resulting estimator of m has a zero probability of underfitting but a
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non-zero probability of overfitting in the limit due to the non-zero probability of type one errors

inherent in the decision rules for the tests. Simulation results in HHB suggest that the tendency

to overfit can be substantially reduced by using 1% significance levels; nevertheless, the resulting

estimator of the number of breaks is not consistent. This may be seen as an advantage of the

IC approach.

Remark 3: A further difference between HHB’s approach and the IC approach is in terms of the

assumptions about the limiting behaviour of the instrument cross-product matrix. The theory

underlying certain tests employed in HHB’s methodology requires the standardized partial sum

instrument cross-product matrix to be linear in the sampling fraction within the assumed regimes

under the appropriate null that is, T−1
∑T 0

i−1+[rT ]

t=T 0
i−1+1

ztz
′
t
p→ rQi, uniformly in r ∈ (0, λ0i − λ0i−1],

where Qi is a pd matrix of constants. This rules out changes in the mean and variance of the

instruments at different times from the changes in the structural parameters. This assumption

is more restrictive than Assumption 8. Thus the IC approach is potentially more robust to such

changes in the behaviour of zt (in the limit).

4 US Monetary Policy

Breaks in US monetary policy are examined through a “Taylor rule” type of specification. How-

ever, since monetary policy is conducted in real time, it is important that such evaluations

consider the data as available at the time when monetary policy decisions are taken. This sec-

tion first discusses the form of the monetary policy rule we employ, including data considerations,

before turning to our results.

4.1 Monetary Policy Rules and Data

We examine US monetary policy through a modified version of the ”Taylor rule”:

rt = δππt+i|t + δy ỹt+i|t + δ1rt−1 + δ2rt−2 + c+ εt (13)

where rt is the actual Federal Funds rate while πt+i|t and ỹt+i|t are forecasts of inflation and

a proxy for the output gap, respectively. Unfortunately, however, historical real-time output
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gap forecasts from the Fed are available only from late 1987, yielding a sample that is too short

for a structural breaks analysis. Consequently, following Boivin (2006), we employ a real-time

unemployment gap measure as a proxy for the output gap in (13).

Our empirical analysis employs real-time Greenbook data, namely data prepared within the

Fed in preparation for each meeting of the Federal Open Market Operations Committee (FOMC).

Although FOMC meetings are not quarterly, we follow the usual convention of using the meeting

closest to the middle of the quarter as relating to the specific quarter. Greenbook inflation and

output growth data are currently available from 1968Q4 to 2005Q4, and the series used are

based on forecasts of percentage inflation, as measured by the relevant GNP or GDP deflator,

and forecasts for unemployment. More explicitly, and as in Boivin (2006), ỹt+i|t is measured as

the natural rate of unemployment minus the Fed’s forecast for quarter t + i, where the natural

rate is computed as an average of the historical unemployment rate over data as available at

t. The interest rate series is the average actual federal Funds rate for the third month of the

quarter, with the timing of the third month chosen to ensure that this reflects any monetary

policy change effected during that quarter.

Our analysis recognises that πt+i|t and ỹt+i|t (i = 1, 2) are endogenous to the Fed’s monetary

policy decision. Although the Greenbook forecasts are produced as input to the interest rate

decision, views about the trajectory of the economy are closely bound with these decisions and

hence the exogeneity of the forecasts appears a priori implausible.

To implement the 2SLS methodology for breaks, the stability of the reduced form equations

needs to be be examined. The instrument set used for this purpose includes lags on each of

πt, ỹt, and rt, together with observed GNP/GDP growth (denoted ∆yt) and the interest rate

on long-term (ten year) bonds (lrt). All data are real-time, with the Greenbook data from the

Philadelphia Fed’s real-time database used for πt+i|t and to construct ỹt+i|t . Figures 1 and 2

show the inflation and unemployment gap forecast series used in our analysis, with Figure 3

illustrating the movements in both short- and long-run interest rates.

4.2 Results

The first step in the analysis is the to examine the stability of the Greenbook inflation and

implied unemployment gap forecasts, with results presented in Appendix Tables A.1 and A.2 for
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the two-quarter ahead forecasts (πt+2|t and ỹt+2|t , respectively). All results, for each reduced

form equation and also for the monetary policy rule (13), are obtained allowing a maximum of

five breaks and with a minimum of 15% of the total sample observations required to be in each

regime, with the HQ criterion used for break detection. Due to the serial correlation that results

with overlapping forecast horizons, HAC standard errors are used to compute the t-ratios shown

in Appendix Tables A.1 and A.2.

Breaks are detected in the Fed’s reduced form inflation forecast equation in 1975 and 1981,

with a third break in either 1986 (one quarter ahead) or 1994 (two quarters ahead). Perhaps the

most notable feature of the coefficient changes in the inflation forecast equations in Appendix

Table A.1 is the greater role played by the long-term bond rate after 1981. This contrasts with

the first regime (to 1975), where the only individually significant explanatory variable is the

lagged observed inflation value. Breaks in the unemployment gap forecasts are also uncovered

in 1975 and 1981, with other breaks in 1991 and (for two quarters ahead forecasts only) at the

end of 1999. At least from the mid-1970s, unemployment gap forecasts are explained primarily

by lagged gap observations and past output growth, although the relative contributions of these

variables apparently changes over time (see Appendix Table A.2).

Our main focus is, however, the monetary policy rule of (13), for which results are presented

in Table 1 for both i = 1 and 2. The Hannan-Quinn criterion detects breaks in 1980Q3 and in

either 1986Q1 or 1987Q2, which coincide well with the middle period being the ”non-standard”

monetary policy regime when nonborrowed reserves were targeted. Overall, the results are robust

to the choice of one or two quarter ahead forecasts, although it is notable that in the final regime

(from 1986/7) the estimated Fed responses to future inflation and unemployment are stronger

and more significant when the longer forecast horizon is used.

There are a number of interesting features of the estimated coefficients in Table 1. Firstly,

interest rate smoothing appears to be a feature primarily of the period after 1986/7, with neither

lagged interest rate coefficient individually significant at the 5 percent before this period. In other

respects, the pre-1980 and post-1986/7 regimes are broadly similar in that monetary policy reacts

to future values of both inflation and the unemployment gap. In the middle regime, however,

real activity plays no role.

A further comparison is provided by the implied steady-state monetary policy responses in

Panel B of Table 1. While there is evidence that the relative weights of future inflation and the
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future unemployment gap are interchanged in the period from 1986/7 compared with pre-1980,

the largely constant response of US monetary policy to future inflation is striking.

The break dates detected for the monetary policy rule of the US Fed are effectively in line with

those detected by Duffy and Engle-Warnick (2006). However, our analysis is a very substantial

improvement by allowing for the endogeneity inherent in the use of a forward-looking monetary

policy rule. It is also notable that our finding of no break after 1987 in either specification,

and despite evidence that the reduced form relationships change after this date, supports the

proposition that the monetary policy objectives of the US Fed have remained constant since the

middle of the 1980s.

5 Conclusions

This paper examines the nature of changes in US monetary policy, allowing for endogeneity in the

forecasts embodied in interest rate decisions and with breaks examined through an information

criteria approach applied to both underlying reduced form equations and the monetary policy

rule of promary interest. Assumptions about the relative timing of breaks in these relationships

are avoided by considering each equation separately. Our findings confirm the assumption of

much earlier literature (including, among many examples, Ahmed et al., 2004, and Boivan and

Giannone, 2006) that US monetary policy has experienced regime switches over the post war

period. Indeed, although they employ different techniques to ours, Duffy and Engle-Warnick

(2006) also uncover monetary policy breaks at similar dates to ours. On the other hand, our

results do not confirm that monetary policy switches are associated with changes in the inflation

process (as suggested by Ahmed et al. (2004), Zhang et al. (2008) and others). To be more

precise, by comparing the break dates found in the reduced and structural form relationships, our

findings imply that the inflation forecasting process of the US Fed may have changed separately

from changes in the Fed’s monetary policy responses.

In order to conduct our analysis, the paper develops an information criteria approach to

break detection in an equation with endogenous regressors. This provides an alternative, and

potentially more flexible, approach to that of Hall, Han and Boldea (2010) based on hypothesis

testing. As with that approach, consistent inference on the number and dates of breaks in the

structural relationships of interest relies on breaks in the reduced form equations being detected
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and taken into account. To our knowledge, information criteria have not been previously explored

in the present context. Nevertheless, not all information criteria deliver consistent inference, with

BIC (Schwarz (1978)) and HQIC (Hannan and Quinn (1979)) satisfying the condition required

on the penalty term for consistency to apply, whereas AIC (Akaike (1974)) does not.

However, this paper also raises a number of issues which are the subject of our on-going

research. These include investigation, through Monte Carlo analysis, of the relative performance

of information criteria and hypothesis testing approaches to structural breaks in equations with

endogenous regressors, and extension of the analysis here to allow the researcher to investigate

whether restrictions apply to parameters across regimes.

Table 1. Estimated Monetary Policy Rules

1968Q4- 1980Q3- 1986Q1- 1968Q4- 1980Q3- 1987Q2-

1980Q2 1985Q4 2005Q4 1980Q2 1987Q1 2005Q4

One-quarter ahead forecast values Two-quarter ahead forecast values

A. Estimated coefficients

πt+i|t 0.80 (4.36) 1.66 (11.35) 0.28 (2.17) 0.76 (4.92) 1.83 (9.94) 0.44 (3.65)

ỹt+i|t 1.02 (3.27) 0.03 (0.11) 0.18 (2.07) 1.02 (3.31) -0.48 (0.22) 0.30 (3.71)

rt−1 0.38 (1.29) -0.19 (1.25) 1.24 (7.46) 0.40 (1.33) -0.07 (0.38) 1.27 (8.65)

rt−2 0.05 (0.40) 0.09 (0.50) -0.39 (2.76) 0.15 (0.93) 0.12 (0.62) -0.49 (3.98)

c 0.88 (1.05) 3.92 (3.48) 0.04 (0.30) 0.54 (0.60) 1.03 (0.97) -0.03 (0.24)

B. Implied steady-state monetary policy responses

πt+i|t 1.41 1.49 1.86 1.67 1.94 1.99

ỹt+i|t 1.80 0.02 1.16 2.25 -0.05 1.35

Notes: Breaks in the monetary policy rule (13) are detected using the Hannan-Quinn information

criterion, with a maximum of five breaks and a minmum of 15% of sample observations required

to be in each estimated monetary policy regime. Inflation and unemployment gap forecasts are

treated as endogenous in the monetary policy rule, with breaks detected separately for each

reduced form equation. Figures in parentheses in Panel A are t-ratios. The implied steady-

state responses of monetary policy to inflation and the unemployment gap shown n Panel B

are obtained from the estimated coefficients assuming constant short-term interest rates (rt =

rt−1 = rt−2).
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Appendix

Mathematical Appendix

Proof of Lemma 1

Case(i) Assume that (1) is stable for t = [τj−1T ] + 1, . . . , [τjT ], where τi denotes the estimated

break fraction, so that for some i,

yt = x′tβ
0
x,i + z′1,tβ

0
z1,i + ut t = [τj−1T ] + 1, . . . , [τjT ]. (14)

Let β̂j be the 2SLS estimator of β0
i = [β0′

x,i, β
0′
z1,i

]′ based on (14) using x̂t(π̂) defined in (4), and

define wt(π) = [x̂t(π)′, z′1,t]
′. Then, we have

β̂j =

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)yt = β0
i +

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)ũt(π̂),

where
∑
j denotes

∑[τjT ]

[τj−1T ]+1 and

ũt(π̂) = yt − wt(π̂)
′
β0
i . (15)

To facilitate the analysis of RSSj(τ(n);n, π̂) (henceforth RSSj), we consider yt − wt(π̂)
′
β̂j .

Defining ũt(π
0) and x̂t(π

0) analogously to ũt(π̂) and x̂t(π̂), it can shown that (15) implies

yt − wt(π̂)
′
β̂j = ũt(π

0) +
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i − wt(π̂)

′

∑
j

wt(π̂)wt(π̂)′

−1

×
∑
j

wt(π̂)ũt(π̂). (16)

From (16), it follows that

T−1RSSj = T−1
∑
j

(At +Bt − Ct)2, (17)

where At = ũt(π
0), Bt =

[
x̂t(π

0)
′ − x̂t(π̂)

′
]
β0
x,i, and

Ct = wt(π̂)
′

∑
j

wt(π̂)wt(π̂)′

−1 [Tr]∑
t=[Ts]+1

wt(π̂)ũt(π̂).

. We now consider in turn the terms obtained by multiplying out the quadratic in (17).
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First for A2
t : using (14) and substituting for x̂t(π

0) from (3), we have

T−1
∑
j

ũt(π
0)2 = T−1

∑
j

{
yt − wt(π0)′β0

i

}2
= T−1

∑
j

{
ut + [xt − x̂t(π

0)]′β0
x,i

}2
= T−1

∑
j

{
ut + v

′

tβ
0
x,i − z̃t(π0)

′
[
Θ̂T (π0)−Θ0

]
β0
x,i

}2

. (18)

Θ̂T (π0) is the (infeasible) OLS estimator constructed using the true reduced form break fractions

{π0} as the break dates, and as such, may be decomposed as

Θ̂T (π0) = Θ0 +

(
T∑
t=1

z̃t(π
0)z̃t(π

0)
′

)−1 T∑
t=1

z̃t(π
0)v
′

t.

Substituting this formula into (18) we obtain

T−1
∑
j

A2
t = T−1

∑
j

{at + bt − ct}2 , (19)

where at = ut, bt = v
′

tβ
0
x,i, and ct = z̃t(π

0)
′
(∑T

t=1 z̃t(π
0)z̃t(π

0)
′
)−1∑T

t=1 z̃t(π
0)v
′

tβ
0
x,i.

By Assumptions 4 and 5, it follows that for the terms a2t , b
2
t , and 2atbt in (19), respectively

we have,

T−1
∑
j

u2t
p.u→ (τj − τj−1)σ2

u,

T−1
∑
j

β0′

x,ivtv
′

tβ
0
x,i

p.u→ (τj − τj−1)β0
x,iΣvβ

0
x,i,

T−12
∑
j

utv
′

tβ
0
x,i

p.u→ (τj − τj−1)2Σuvβ
0
x,i.

For the remaining terms in (19), using Assumptions 2 and 8 we have T−1
∑[Tr]
t=[Ts]+1 ztz

′
t
p.u→

QZZ(r) − QZZ(s) = MZZ(s, r) for r > s + ε is also pd and monotonically increasing. Also by

Assumptions 2 and 8, it follows that

T−1
T∑
t=1

z̃t(π
0)z̃t(π

0)′
p.u→ Q̃ZZ(1),

also pd, where Q̃ZZ(1) is the block diagonal matrix diag(Q1, Q2, . . . Qh+1) and Qi = QZZ(π0
i )−

QZZ(π0
i−1) and we set π0

0 = 0, π0
h+1 = 1. Then, for a segment of the data t = [τj−1T ] +

1, . . . , [τjT ], it follows that

T−1
[τjT ]∑

t=[τj−1T ]+1

z̃t(π
0)z̃t(π

0)′
p.u→ Q̃(τj−1, τj) in τj−1, τj , (τj > τj−1 + ε) and pd, (20)
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where - assuming π0
i < τj−1 ≤ π0

i+1 and π0
i+` < τj ≤ π0

i+`+1 without loss of generality -

Q̃(s, r) = [0(h+1)q×iq, A(τj−1, τj), 0(h+1)q×(h−i−`−1)q] and A(τj−1, τj) is the block diagonal matrix

diag{QZZ(π0
i+1)−QZZ(τj−1), Q(i+ 2), . . . , Q(i+ `), QZZ(τj)−QZZ(π0

i+`)}.

Furthermore, it follows from Assumptions 2 and 4, that T−1/2
∑[Tr]
t=1 z̃t(π

0) ⊗ {(ut, vt′)′} is

Op(1) via a central limit theorem. The above suffice to show that for the remaining terms in

(19) we have, T−1
∑
j atct

p.u→ 0, T−1
∑
j btct

p.u→ 0 and T−1
∑
j c

2
t
p.u→ 0.

Combining these results regarding the term A2
t in (17) it follows that

T−1
∑
j

A2
t
p.u→ (τj − τj−1)Γi (21)

with Γi defined in Lemma 1.

The term involving B2
t in (17) can be written as

T−1
∑
j

B2
t = T−1

∑
j

β0′
x,i

[
x̂t(π

0)− x̂t(π̂)
] [
x̂t(π

0′)− x̂t(π̂)′
]
β0
x,i

= β0′
x,i

T−1∑
j

[
x̂t(π

0)x̂t(π
0)
′
+ x̂t(π̂)x̂t(π̂)′ − 2x̂t(π

0)x̂t(π̂)′
]β0

x,i. (22)

The following results will determine the probability limit of (22). From Assumptions 3 and 8 it

follows that

T−1
T∑
t=1

z̃t(π̂)z̃t(π̂)′−1
T∑
t=1

z̃t(π
0)z̃t(π

0)′ + op(1)

p.u→ Q̃ZZ(1) (23)

and also,

T−1
∑
j

z̃t(π̂)z̃t(π
0)′

p.u→ Q̃(τj−1, τj). (24)

From Assumptions 3, 4, and 8 it follows that

T−1
T∑
t=1

z̃t(π̂)x′−1t

T∑
t=1

z̃t(π
0)x′t + op(1)

p.u→ Q̃ZZ(1)Θ0 (25)

By (23), (25), and (4),

T−1
∑
j

x̂t(π̂)x̂t(π̂)
′

= T−1
T∑
t=1

xtz̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1∑
j

z̃t(π̂)z̃t(π̂)
′

×

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ Θ
′

0Q̃
′

ZZ(1)Q̃−1ZZ(1)Q̃(τj−1, τj)Q̃
−1
ZZ(1)Q̃ZZ(1)Θ0

= Θ
′

0Q̃(τj−1, τj)Θ0 (26)
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which is pd by the construction of Q̃(τj−1, τj). Similarly, we have

T−1
∑
j

x̂t(π
0)x̂t(π

0)
′ p.u→ Θ

′

0Q̃(τj−1, τj)Θ0. (27)

For the last term in (22), we combine (23), (24), (25), and (4), and use Assumption 2 to deduce

that

2T−1
∑
j

x̂t(π
0)x̂t(π̂)

′
= 2T−1

T∑
t=1

xtz̃t(π0)
′

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1∑
j

z̃t(π0)z̃t(π̂)
′

×

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ 2Θ
′

0Q̃(τj−1, τj)Θ0. (28)

Combining (26), (27), and (28), the probability limit of (22) is

T−1
∑
j

B2
t
p.u→ 0. (29)

Now consider the terms involving Ct in (17). Start by considering
∑
j wt(π̂)ut(π̂). If we expand

ũt(π̂) similarly to (16), and substitute for x̂t(π̂), then from (4) we obtain

∑
j

wt(π̂)ũt(π̂) =
∑
j

wt(π̂)
{
ũt(π

0) +
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i

}
.

Thus, we have

∑
j

x̂t(π̂)ũt(π̂) =

T∑
t=1

xtz̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 ∑
j

z̃t(π̂)ũt(π0)

+
∑
j

z̃t(π̂)z̃t(π0)
′

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1 T∑
t=1

z̃t(π0)x
′

tβ
0
x,i

−
∑
j

z̃t(π̂)z̃t(π̂)
′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)
′

)−1 T∑
t=1

z̃t(π̂)x
′

tβ
0
x,i

 . (30)

From (23), (24), and (25), the last two terms inside the brackets in (30) cancel out asymptotically.

The same equations and also Assumption 4, after expanding ũt(π0) similarly to (19), give

T−1
∑
j

z̃t(π̂)ũt(π0) = T−1
∑
j

z̃t(π̂)ut + T−1
∑
j

z̃t(π̂)v
′

tβ
0
x,i

−T−1
∑
j

z̃t(π̂)z̃t(π0)

(
T∑
t=1

z̃t(π0)z̃t(π0)
′

)−1 T∑
t=1

z̃t(π0)v
′

tβ
0
x,i

p.u→ 0 (31)
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and therefore it follows from (30) that,

T−1
∑
j

x̂t(π̂)ũt(π̂)
p.u→ 0. (32)

It can also be shown via similar arguments that

T−1
∑
j

z1,tũt(π̂)
p.u→ 0. (33)

Using (32)-(33), together with (26) and (28) it follows that the limiting behaviour of the terms

involving Ct in T−1RSSj are:

T−1
∑
j

C2
t

p.u→ 0 (34)

2T−1
∑
j

AtCt
p.u→ 0 (35)

2T−1
∑
j

BtCt
p.u→ 0 (36)

The last remaining term of T−1RSSj involves 2AtBt,

T−1
∑
j

AtBt = T−1
∑
j

ũt(π
0)
[
x̂t(π

0)
′
− x̂t(π̂)

′
]
β0
x,i

= T−1
∑
j

[
ũt(π

0)x̂t(π
0)
′
− ũt(π0)x̂t(π̂)

′
]
β0
x,i

Using (19), and (4) the first term inside the summation can be expanded as

T−1
∑
j

ũt(π
0)x̂t(π

0)
′

= T−1
∑
j

ut + v
′

tβ
0
x,i − z̃t(π0)

′

(
T∑
t=1

z̃t(π
0)z̃t(π

0)
′

)−1 T∑
t=1

z̃t(π
0)v
′

tβ
0
x,i


×z̃t(π̂)′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t

p.u→ 0

since by Assumption 4, T−1
∑[Tr]
t=[Ts]+1 utz̃t(π

0)
p.u→ 0 and T−1

∑[Tr]
t=[Ts]+1 v

′

tz̃t(π
0)

p.u→ 0. Also

using the same arguments and (23), and (25), T−1
∑
j ũt(π

0)x̂t(π̂)
′ p.u→ 0 as well, resulting in

T−1
∑
j

AtBt
p.u→ 0. (37)

Collecting the results regarding the limit of T−1RSSj in (17), found in (21), (29), (??), (??),

(34), and (37), it follows that

T−1RSSj
p.u→ (τj − τj−1)Γi. (38)
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Case (ii): we first consider the case where segment j contains one neglected break and then

discuss how the argument extends to more than one neglected break. Let the neglected break

be at λ0i so that the model is

yt = x
′

tβ
0
x,i + z

′

1,tβz1,i + ut, t = [τj−1T ] + 1, ..., [λ0iT ]

yt = x
′

tβ
0
x,i+1 + z

′

1,tβz1,i + ut, t = [λ0iT ] + 1, ..., [τjT ]. (39)

Then the residual sum of squares in this segment, RSSj , may be decomposed as

T−1RSSj = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
yt − wt(π̂)

′
β̂j

]2
+ T−1

[τjT ]∑
t=[λ0

iT ]+1

[
yt − wt(π̂)′β̂j

]2
= ξ1 + ξ2, say, respectively. (40)

We focus on ξ1. Substituting for yt from (15), we have

ξ1 = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
wt(π̂)

′
β0
i + ũt(π̂)− wt(π̂)

′
β̂j

]2

= T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
ũt(π̂)− wt(π̂)

′
(
β̂j − β0

i

)]2

= T−1
[λ0

iT ]∑
t=[τj−1T ]+1

[
ũt(π̂)2 − 2ũt(π̂)wt(π̂)

′
(
β̂j − β0

i

)
+
(
β̂j − β0

i

)′
wt(π̂)wt(π̂)

′
(
β̂j − β0

i

)]
. (41)

The first term in this sum can be written as, ũt(π̂)2 =
[
ũt(π

0) +
(
x̂t(π̂)

′ − x̂t(π0)
′
)
β0
x,i

]2
. Using

the results in the proof of Case (i) above for the limits of the terms involving sums of A2
t , B

2
t ,

and AtBt, found in (21), (29), and (37), it can be shown that,

T−1
[λ0

iT ]∑
t=[τj−1T ]+1

ũt(π̂)2
p.u→ (λ0i − τj−1)Γi. (42)

To proceed we need to derive plim
(
β̂j − β0

i

)
where

β̂j =

∑
j

wt(π̂)wt(π̂)′

−1∑
j

wt(π̂)yt. (43)
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Using similar arguments to (26) and (32) we have that

T−1
∑
j

x̂t(π̂)x̂t(π̂)′
p.u→ Ῡ

′

0Q̃(τj−1, τj)Ῡ0 (44)

where Ῡ0 = [Θ0, Π̄], Π̄ = ıh+1 ⊗Π, and

∑
j

wt(π̂)yt = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i + ũt(π̂)

]

+T−1
[τjT ]∑

t=[λ0
iT ]+1

wt(π̂)
[
wt(π̂)

′
β0
i+1 + ũt(π̂)

]
p.u→ Ῡ

′

0Q̃(τj−1, λ
0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i+1. (45)

Combining (43), (44), and (45) results in

plim
(
β̂j − β0

i

)
p.u→
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i+1

}
− β0

i .

(46)

Furthermore, β0
i can be written as,

β0
i =

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, τj)Ῡ0

}
β0
i

=
{

Ῡ′Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , τj)Ῡ0β

0
i

}
.

Substituting this into (46) and after some algebra it is shown that

plim
(
β̂j − β0

i

)
p.u→
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
Ῡ′0Q̃(λ0i , τj)Ῡ0

(
β0
i+1 − β0

i

)
= P1. (47)

P1 is ensured to be non-zero because Q̃(r, s) is a block diagonal matrix and each block is positive

definite via Assumption 9, and also β0
i+1 6= β0

i .

Going back to ξ1, it follows that from (32), (33), (47) and (44) that the last two terms in (41)

have the following probability limits

T−1
[λ0

iT ]∑
t=[τj−1T ]+1

ũt(π̂)wt(π̂)′
(
β̂j − β0

i

)
p.u→ 0 (48)

and

(
β̂j − β0

i

)′ [λ0
iT ]∑

t=[τj−1T ]+1

wt(π̂)wt(π̂)
′
(
β̂j − β0

i

)
p.u→ P

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0P1 > 0, (49)

since Q̃(r, s) is positive definite and P1 6= 0.
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Collecting the results from (42), (48), and (49),

ξ1
p.u→ (λ0i − τj−1)Γi + P

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0P1 > (λ0i − τj−1)Γi. (50)

Analogously for ξ2, we have

ξ2
p.u→ (τj − λ0i )Γi+1 + P

′

2barΥ
′
0Q̃(λ0i , τj)Ῡ0P2 > (τj − λ0i )Γi+1 (51)

where

P2 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0

(
β0
i − β0

i+1

)
6= 0.

T−1RSSj
p.u→ (λ0i − τj−1)Γi + (τj − λ0i )Γi+1 + F1 (52)

where

F1 = P
′

1Θ
′

0Q̃(τj−1, λ
0
i )Θ0P1 + P

′

2Θ
′

0Q̃(λ0i , τj)Θ0P2 > 0. (53)

This line of argument extends to more than one neglected break. We now show how two

neglected breaks in a segment of the structural equation extend the case discussed above. To

do this, we must evaluate the limiting distribution of RSSj in a segment where there are two

neglected breaks, denoted λ0i , and λ0i+1. Therefore, the data generation process is

yt = x′tβ
0
x,i + z

′

1,tβ
0
z1,i + ut, t = [τj−1T ] + 1, ..., [λ0iT ]

yt = x′tβ
0
x,i+1 + z

′

1,tβ
0
z1,i + ut, t = [λ0iT ] + 1, ..., [λ0i+1T ] (54)

yt = x′tβ
0
x,i+2 + z

′

1,tβ
0
z1,i + ut, t = [λ0i+1T ] + 1, ..., [τjT ].

The RSS for this segment can be decomposed as,

T−1RSSj = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

(
yt − wt(π̂)

′
β̂j

)2
+ T−1

[λ0
i+1T ]∑

t=[λ0
iT ]+1

(
yt − wt(π̂)

′
β̂j

)2

+T−1
[τjT ]∑

t=[λ0
i+1T ]+1

(
yt − wt(π̂)

′
β̂j

)2
= ξ1 + ξ2 + ξ3. (55)

Focusing on ξ1, as in (41), this term can be written as

ξ1 = T−1
[λ0T ]∑

t=[τj−1T ]+1

[
ũt(π̂)2 − 2ũt(π̂)wt(π̂)

′
(
β̂j − β0

i

)
+
(
β̂j − β0

i

)′
wt(π̂)wt(π̂)

′
(
β̂j − β0

i

)]
. (56)
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where β̂j is defined as in (43). To analyse the limit of β̂j , note that (44) holds within the scenario

considered here. However, this time we have but in this case,

∑
j

wt(π̂)yt = T−1
[λ0

iT ]∑
t=[τj−1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i + ũt(π̂)

]

+ T−1
[λ0

i+1T ]∑
t=[λ0

iT ]+1

wt(π̂)
[
wt(π̂)′β0

i+1 + ũt(π̂)
]

+ T−1
[τjT ]∑

t=[λ0
i+1T ]+1

wt(π̂)
[
wt(π̂)

′
β0
i+2 + ũt(π̂)

]
and so ∑

j

wt(π̂)yt
p.u→ Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , λi+1)Ῡ0β

0
i+1

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0β
0
i+2.

By a similar argument like the one that lead to (46), for plim
(
β̂x,j − β0

x,i

)
here it follows that

plim
(
β̂j − β0

i

)
p.u→

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0β

0
i + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0β

0
i+1

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0β
0
i+2

}
− β0

i . (57)

We can rewrite β0
i as

β0
i =

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, τj)Ῡ0

}
β0
i

=
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0 + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0

+Ῡ′0Q̃(λ0i+1, τj)Ῡ0

}
β0
i

Then, after substituting this equation into (57) and rearranging terms, we obtain

plim
(
β̂j − β0

i

)
p.u→

{
Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1
{

Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0(β0

i+1 − β0
i )

+ Ῡ′0Q̃(λ0i+1, τj)Ῡ0(β0
i+2 − β0

i )
}

= K1, say. (58)

Using this expression together with (42) and (??), it follows that the limit of ξ1

ξ1
p.u→ (λ0i − τj−1)Γi +K

′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0K1. (59)

Analogously, we have

ξ2
p.u→ (λ0i+1 − λ0i )Γi+1 +K

′

2Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0K2 (60)
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with

K2 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0(β0

i − β0
i+1) + Ῡ′0Q̃(λ0i+1, τj)Ῡ0(β0

i+2 − β0
i+1)

}
and,

ξ3
p.u→ (τj − λ0i+1)Γi+2 +K

′

3Ῡ′0Q̃(λ0i+1, τj)Ῡ0K3 (61)

with

K3 =
{

Ῡ′0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ′0Q̃(τj−1, λ

0
i )Ῡ0(β0

i − β0
i+2) + Ῡ′0Q̃(λ0i , λ

0
i+1)Ῡ0(β0

i+1 − β0
i+2)

}
.

Combining the above (59), (60), and (61) concludes that

T−1RSSj
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + (τj − λ0i+1)Γi+2 + F2 (62)

where

F2 = K
′

1Ῡ′0Q̃(τj−1, λ
0
i )Ῡ0K1 + K

′

2Ῡ′0Q̃(λ0i , λ
0
i+1)Ῡ0K2

+K
′

3Ῡ′0Q̃(λ0i+1, τj)Ῡ0K3 > 0. (63)

To see that F2 is positive definite consider the following. Since Q̃(r, s) is positive definite for

any r > s and Ῡ0 is full rank, it suffices to show that not all K1, K2, and K3 can be zero. By

(58), K1 is defined as the plim
(
β̂j − β0

i

)
and analogously K2 and K3 are plim

(
β̂j − β0

i+1

)
, and

plim
(
β̂j − β0

i+2

)
respectively. From the solution for, say K1, given in (58), it can be deduced

that there can exist a combination of break locations and parameter values for which K1 is zero.

The intuition for this is that β̂j , that is estimated over t = [τj−1T ] + 1, . . . , [τjT ], happens to

converge to β0
i . But if this is the case then at least one of K2 and K3 will be non zero since

β0
i 6= β0

i+1 6= β0
i+2 by the assumption that segment j has two neglected breaks. Therefore, the

sum of terms involving those three in (63) will be strictly positive.

The same argument to the case of two neglected breaks in the segment extends to cases with

more than two neglected breaks but the proofs are supressed here for brevity. Instead, we present

the general form of RSSj , for κ neglected breaks, that is

T−1RSSj(τ(n);n, π̂)
p.u→ (λ0i − τj−1)Γi + (λ0i+1 − λ0i )Γi+1 + . . .

+ (λ0i+k − λ0i+k−1)Γi+k + (τj − λ0i+k)Γi+k+1 + F.

where F is a positive definite matrix defined as,

F = K
′

1Ῡ
′

0Q̃(τj−1, λ
0
i )Ῡ0K1 +K

′

2Ῡ
′

0Q̃(λ0i , λ
0
i+1)Ῡ0K2 + . . . + K

′

κῩ
′

0Q̃(λ0i , λ
0
i+1)
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where Kς is defined as

Kς =
{

Ῡ
′

0Q̃(τj−1, τj)Ῡ0

}−1 {
Ῡ
′

0Q̃(τj−1, λ
0
i )Ῡ0(β0

i − β0
i+ς−1) + Ῡ

′

0Q̃(λ0i , λ
0
i+1)Ῡ0(β0

i+1 − β0
i+ς−1) + . . .

+Ῡ
′

0Q̃(λ0i+κ−1, τj)Ῡ0(β0
i+κ − β0

i+ς−1)
}

for ς = 1, 2, . . . , κ+ 1.

Proof of Theorem 1

Lemma 1 can be used to establish a proof for the consistency of the information criterion

I (τ(n);n, π̂) in selecting the true number of breaks. This can be achieved by considering the

possible cases where the 2SLS procedure may over-fit, under-fit or correctly identify the true

number of breaks (m) in the model. Firstly denote

Γ(λ0,m, β0) =

m+1∑
j=1

(λj − λj−1)
(
σ2
u + 2Σuvβ

0
j + β0′

j Σvβ
0
j

)
where with λ0 = (λ01, λ

0
2, . . . , λ

0
m)′ and β0 = (β0′

1 , β
0′

2 , . . . , β
0′

m+1)′. Γ(λ0,m, β0) is then the sum

of the Γi (21) across all segments of the data. In the cases where there are neglected breaks

in one or more segments, using the results of Case (ii) in (52) and (62) we can show that

by adding the terms involving Γi, i = 1, 2, . . . ,m + 1 across segments, the break fractions of

the incorrectly estimated breaks (τj , τj−1) will cancel out and so the limit of all terms involving

V ar[ut, v
′

t|zt] will be Γ(λ0,m, β0). To illustrate this, consider the case where for only one segment

j s.t. [τj−1T ] + 1, . . . , [τjT ] there is one neglected break λj (as shown in (52)). Then,

Γ(τ(n), n;λ0, β0) = (λ01 − 0)Γ1 + . . . + (τj−1 − λ0j−1)Γj + (λ0j − τj−1)Γj + (τj − λ0j )Γj+1 + F1

+ (λ0j+1 − τj)Γj+1 + . . . + (1− λ0m)Γm+1

= (λ01 − λ00)Γ1 + . . . + (λ0j − λ0j−1)Γj + (λ0j+1 − λ0j )Γj+1 + . . . + (1− λ0m)Γm+1 + F1

= Γ(λ0,m, β0) + F1

since the true vectors of coefficients β0
j are stable in each segment j.

Also, it follows directly from the analysis of Case (ii) that a straight forward generalization

to the case of a segment with more than two neglected breaks will result in a limit function with

the basic characteristics of (62). Denote F (τ(n), λ0) the collection of any terms of the form of F1
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(53), F2 (63), or the equivalent of the general case of more than two neglected breaks, that will

exist when any number of segments [τj−1T ] + 1, . . . , [τjT ] include one, two, or more neglected

breaks. As shown in Lemma 1(ii), all these terms will be strictly positive.

Then, the behaviour of the information criterion can be examined in the following cases:

(1) if n = m. The estimation procedure has identified the correct number of breaks. The

following two scenarios are possible,

(1.1) if τ(n) = λ0 then there will not be neglected breaks in any segment and by Case (i),

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0)

(1.2) if τ(n) 6= λ0 then there must exist j s.t. [τj−1T ] + 1, . . . , [τjT ] contains at least one

neglected break, and therefore

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n), λ0) > 0

(2) if n < m. The estimation procedure has under-fitted the model. Then there must exist a

segment j s.t. [τj−1T ] + 1, . . . , [τjT ] contains at least one neglected break, and

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n), λ0) > 0

(3) if n > m. Then the following two scenarios are possible

(3.1) if τ(n) does not contain λ0 then there must exist j s.t. [τj−1T ] + 1, . . . , [τjT ] includes

at least one λ0i and

I (τ(n);n, π̂)
p.u→ Γ(λ0,m, β0) + F (τ(n), λ0)

where F (τ(n),m) > 0

(3.2) if τ(n) contains λ0 consider

DT =
{
I (τ(n);n, π̂)− I

(
λ0;m

)}
and

DT = T ln
{

Γ̂(τ(n);n, β̂)/Γ̂(λ0;m,β0)
}

+ T {K(q, n, T )−K(q,m, T )}

= −QLRT + T {K(q, n, T )−K(q,m, T )}
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where QLRT is the quasi likelihood ratio test for H0 : τ(n) = λ0 which is a nested test as τ(n) ∈

λ0. Under itsH0 by standard argumentsQLRT = Op(1), and since T {K(q, n, T )−K(q,m, T )} p.u→

+∞ it follows that

DT →∞.

Taken together, cases (1), (2), and (3) imply desired result.
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Appendix Table A.1. Two-Quarter Ahead Inflation Forecast

Reduced Form Estimates

1968Q4 - 1975Q3 - 1981Q2 - 1994Q2 -

1975Q2 1981Q1 1994Q1 2005Q4

rt−1 0.042 (0.20) 0.169 (1.81) 0.005 (0.08) 0.348 (2.23)

rt−2 0.086 (0.62) 0.426 (3.17) 0.193 (3.24) -0.167 (1.11)

πt−1 0.276 (3.20) 0.163 (1.32) 0.088 (1.49) 0.057 (0.94)

πt−2 0.199 (1.65) 0.171 (2.47) 0.268 (6.04) 0.195 (2.47)

ỹt−1 0.634 (0.87) 0.697 (2.23) 0.061 (0.27) -0.207 (1.03)

ỹt−2 -0.935 (1.53) -0.915 (3.12) 0.013 (0.06) -0.038 (0.17)

∆yt−1 0.027 (0.57) -0.144 (2.24) 0.016 (0.74) -0.058 (2.38)

∆yt−2 0.030 (0.63) -0.048 (2.68) 0.043 (1.60) -0.051 (1.88)

lrt−1 0.467 (1.13) -0.086 (0.40) 0.283 (3.17) 0.416 (3.45)

lrt−2 -0.219 (0.45) -0.672 (2.23) -0.326 (4.43) -0.275 (2.43)

constant -0.775 (0.27) 6.84 (3.81) 1.227 (3.39) 0.374 (1.37)

R2 0.881 0.956 0.921 0.801

σ̂ 0.646 0.487 0.397 0.283

Notes: Break dates are detected using the Hannan-Quinn information criterion, allowing a max-

imum of five breaks with a minimum of 15% of the sample in each regime. Values in parentheses

are Newey-West heteroscedasticity and autocorrelation robust t-ratios (in absolute value), which

are computed conditional on the detected breaks.
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Appendix Table A.2. Two-Quarter Ahead Unemployment Gap Forecast

Reduced Form Estimates

1968Q4 - 1975Q4 - 1981Q2 - 1991Q1 - 2000Q1 -

1975Q3 1981Q1 1990Q4 1999Q4 2005Q4

rt−1 0.299 (3.34) -0.207 (1.73) 0.065 (1.59) -0.009 (0.09) 0.153 (1.66)

rt−2 -0.220 (3.69) -0.232 (2.52) -0.120 (2.54) -0.065 (0.80) -0.288 (3.50)

πt−1 -0.097 (1.56) 0.144 (2.69) -0.004 (0.10) 0.058 (1.32) -0.066 (0.95)

πt−2 -0.166 (2.43) -0.005 (0.08) 0.005 (0.18) 0.111 (1.90) 0.065 (1.58)

ỹt−1 0.584 (2.08) 0.768 (3.67) 1.148 (5.24) 0.715 (4.51) 0.386 (2.61)

ỹt−2 -0.119 (0.59) 0.094 (0.33) -0.314 (1.45) 0.422 (2.90) 0.865 (3.90)

∆yt−1 -0.024 (0.67) 0.011 (0.22) 0.095 (4.49) 0.064 (2.57) 0.131 (6.08)

∆yt−2 -0.010 (0.48) 0.063 (2.04) 0.033 (1.90) 0.017 (0.85) 0.117 (5.94)

lrt−1 0.013 (0.13) 0.295 (0.90) -0.185 (2.51) 0.051 (0.71) -0.078 (0.70)

lrt−2 -0.467 (1.68) 0.118 (0.52) 0.178 (2.11) -0.030 (0.31) -0.111 (0.95)

constant 3.335 (1.86) -1.700 (0.95) -0.002 (0.01) -0.284 (0.83) 0.267 (0.59)

R2 0.958 0.893 0.979 0.980 0.977

σ̂ 0.364 0.390 0.276 0.181 0.147

Notes: See Table A.1.
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Figure 1. One and two quarter ahead in�ation forecasts.

Figure 2. One and two quarter ahead unemployment gap forecasts.
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Figure 3. Short and long term interest rates
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