
Robust Networks

Abstract

Connections between individuals facilitate the exchange of goods, resources and infor-

mation and create benefits. However, these connections may be exploited by intelligent

adversaries to spread their attacks as well. Links thus create value but also enable the

spread of attacks which are harmful. How does this tension in the role of links shape

network architecture and the nature of conflict?

We first study the pure design problem: a designer chooses a network and an ad-

versary then chooses an attack strategy. An equilibrium network consists of equal size

‘components’ whose number grows (and size falls) with the attack budget of the adver-

sary.

We then suppose that, in addition, the designer has defence resources to protect

the network. If defence and attack budgets are small, relative to the number of nodes,

the equilibrium network is a star; the designer allocates all resources to protect, while

the adversary allocates all resources to attack, the central node. If defence and attack

budgets are large then equilibrium networks are dense and dispersed defence allocation

is more effective.



1 Introduction

Connections between individuals facilitate the exchange of goods, resources and information

and create benefits. However, these connections can also be exploited by intelligent adversaries

to spread their attacks, as the following examples illustrate.

• The Internet is a network of local area networks (LANs). The LAN’s – examples include

interconnected computers in a university or a firm – facilitate communication between

member users. The LAN manager decides on connections between the computers and

the security settings on them (anti-virus software, Firewall etc). A hacker chooses which

computer(s) to attack with a virus. If a computer is infected, the virus may be forwarded

to the mailing list – viz. the connections – of the infected host computer.1

• Criminals/terrorists communicate to coordinate their actions. Communication requires

connections – knowledge of identity, skills, addresses and telephone numbers. But con-

nections also make the gang more vulnerable to the police and intelligence agencies: the

detection of one person may lead, via interrogation and traces of communication, to the

capture of other gang members.2

What are the implications of this trade-off in connections for the design of networks and

the nature of conflict in networks?

We consider a game with two players: a network designer and an adversary. The designer

chooses a network among a set of given nodes and then allocates his defence resources to

protect the nodes. The adversary observes this network design and protection plan and then

allocates his attack resources across the nodes.3 The probability of successful attack on a

1In 2009, it was estimated that roughly 10 million computers were infected with malware designed to
steal online credentials. In Europe, the annual damages caused by malware are of the order of 9.3 billion
Euros, while in the US the annual costs of identity theft are estimated at 2.8 billion USD (Moore, Clayton
and Anderson (2009)). These large losses have fueled the demand for computer and network security. One
indicator of the size of this market is the valuation of security firms: Intel bought McAfee in 2010, for 7.68
billion USD (bbc.co.uk; 19 August 2010).

2The conflict between covert intelligence activity, one the one hand, and terrorist and criminal organizations,
on the other hand, is an old one. The September 11, 2001 attacks in New York and the ensuring public debate
about terrorism has highlighted this conflict. The US government has allocated over 400 billion USD and new
institutions – such as the Counter-terrorism section at the US department of Justice – have been created to
combat terrorism (Baccara and Bar-Isaac (2008) and Zakaria (2008).

3Section 2 describes how our assumptions on conflict and timing of moves between designer and adversary
are appropriate in the study of computer network security. A game with simultaneous moves appears to be
more appropriate for the study of crime and covert intelligence. Section 4 develops analogues of our main
results in a game with simultaneous moves.
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node depends on the defence and attack resources allocated to it. Following Tullock (1980),

we suppose that this probability of attack is increasing in the attack resources and decreasing

in the defence resources allocated to the node. The other key element is the spread of attack

from one node to a neighboring node: we suppose that the probability of spread of attack to

a neighboring node is falling in the amount of defence resources allocated to the neighboring

node.

The conflict between defence and attack resources and the spread of successful attacks

eventually yields a collection of surviving network of (healthy) nodes and links. This surviving

network defines the payoffs of the two players. The payoffs to the designer from a network

are equal to the sum of the returns from the different components and the returns from a

component are increasing and convex in its size.4 We study the (sub-game perfect) equilibrium

of the game between the designer and the adversary.

We begin with an analysis of the pure design game, i.e., when the designer has zero defence

resources. As there are no defence resources, the only way in which the designer can contain

the spread of a successful attack on a node is by separating it from other nodes: in other

words, by breaking the network into distinct components. Since the adversary can observe the

network prior to his choice of attack, he will attack nodes in a larger component in preference

to nodes in smaller components. Anticipating this, the designer chooses components to be of

equal size. Moreover, the number of components grows and size falls as the attack budget of

the adversary increases (Theorem 1). A fall in the size of groups means that fewer and less

complex tasks are performed by the network. These findings on the relation between adversary

budgets, on the one hand, and network size and success of the network, on the other hand,

echo discussions in the popular press with regard to terrorist networks. For instance, the

editor of Newsweek magazine, Mr. Zakaria (2008) writes, “ ...... the world’s governments

have effectively put them on the run ... the Jihadists have had to scatter, work in small local

cells... Terrorists have not been able to hit big, symbolic targets.... So they blow up bombs

in cafes, marketplaces, and subway stations” (Zakaria (2008, p. 3))

We then turn to the study of the general problem of design and defence of networks which

face an adversary. If defence and attack resources are small relative to the number of nodes

then a star network in which the designer and adversary allocate all resources to the central

4A component in a network is a (maximal) set of interconnected nodes; for formal definitions see section
2. If returns from group size are concave then a collection of isolated nodes – the empty network – would
maximize payoffs of the designer, irrespective of whether there is an adversary or not. So convex returns to
component size is the interesting case for our purposes.
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node is an equilibrium (Theorem 2).5 On the other hand, if defence and attack budgets are

large then an equilibrium network is dense and dispersed defence allocation is more effective.

Let us sketch the arguments underlying this result. Consider a star network: for large

enough number of nodes, the marginal value of protecting a periphery node is very small

compared to the value of a slight increase in the chances of protecting the central node (as

elimination of this node then disrupts the network completely). So, in a star network the

designer will choose to concentrate all his resources on the central node. Similar considerations

suggest that it is attractive for the adversary to allocate all resources to attacking the central

node. The probability of the entire network surviving is then simply equal to the probability

of the central node surviving and this is proportional to the relative magnitude of defence and

attack.

Next consider a strategy of creating a core-periphery network and defending the multiple

central nodes.6 Faced with such a network, the adversary can mimic the proportions on the

central node of a star network.7 The key theoretical observation is that the distribution of

surviving nodes in the star network is a mean preserving spread of the distribution in the core-

periphery network. Since the payoffs of the designer are convex in the size of a component,

the designer obtains higher payoffs (and the adversary lower payoffs) in the star network. A

comparison of Figures 3 and 4 illustrates this point. Our proof shows that the argument can

be extended beyond core-periphery networks to cover general network architectures.

Theorem 2’s prediction that resources will be concentrated at key nodes of the network

provides us a possible explanation for the prominent role of the Firewall in internet security.

In his well known book on security engineering, Ross Anderson writes, “The most widely sold

solution to the problem of internet security is the Firewall. This is a machine that stands

between a local network and the Internet, and filters out traffic that might be harmful. The

idea of a ‘solution in a box’ has great appeal to many organizations, and is now so widely

accepted that it is seen as an essential part of corporate due diligence” (Anderson (2008, p.

654)).

5A star network has a central node which is linked to all other nodes, and there are no other connections
in the network. Figure 3 illustrate a star node.

6A core-periphery network structure has two groups of nodes, the core and the periphery. The core nodes
are fully linked among themselves, while the periphery nodes have a single link with one of the core nodes.
Figure 4 illustrates a core-periphery network with two core codes.

7So, for instance, suppose the designer has 4 units and adversary has 8 units of resources. If the designer
allocates 3 and 1 to two central nodes of the core-periphery network the adversary can allocate 6 and 2 units
to the two central nodes, respectively. The ratio on each of the two central nodes – one-half – mimics the ratio
on the single central node of the star network.
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The principal contribution of this paper is to propose and solve a model of conflict in

networks. In doing so, we build on and contribute to two rich strands of research: the theory

of networks and the theory of conflict/contests.8

The research on networks has been concerned with the formation, structure and functioning

of social and economic networks; for book length surveys of this work, see Goyal (2007),

Jackson (2008), and Vega-Redondo (2007). There is also a distinguished tradition of research

in communication networks, see e.g., Bolton and Dewatripont (1994), Radner (1993), van

Zandt (1999), and Garicano (2000). We build on the canonical model in the networks literature

– the connections model – to study design and defence of networks in the face of an intelligent

adversary.9 To the best of our knowledge this is the first paper to do so.

Baccara and Bar-Issac (2007) study networks of power relations which face an adversary.

The elimination of one agent leads to the elimination of connected others. There are two main

differences between our paper and their’s: one, we study design and defence of networks, while

they focus on the pure design problem. Two, in our paper networks facilitate communication

and exchange while in theire paper, networks facilitate cooperation. Due to these differences,

the methods of analysis and the results in the two papers are quite different.

The theory of contests studies allocation of resources in situations of conflict; see e.g.,

Hirshliefer (1983), Tullock (1967, 1980), Sandler and Hartley (2007), Shubik and Weber (1981),

Esteban and Ray (2010), Dixit (1987), Hirshleifer (1991), Skaperdas (1996), Baye (1998),

Clark and Konrad (2007), and Kovenock and Roberson (2009). An extensive literature studies

conflict between two players across multiple battle sites with fixed budgets (the so-called

Colonel Blotto games), see Hart (2008), Bier, Oliveros and Samuelson (2006), Powell (2008),

Szentes and Rosenthal (2003), and Roberson (2006). The interest is in understanding the

equilibrium allocation of resources as conflict functions and budgets vary. Our paper uses

the Tullock contest function and extends the theoretical framework along two dimensions:

one, we locate individual battles within a network of interconnections and allow for successful

resources to be moved from one battle to neighboring battles, and two, we study the design

of optimal interconnections across the battles.

8There is also a literature on network security spread across disciplines such as computer science, statistical
physics, engineering and operations research (Barabasi (1999); Nagaraja and Anderson (2007); Smith (2008).
These literatures are vast but, to the best of our knowledge, the strategic analysis of network design and
defence in the face of an intelligent adversary is novel.

9Bala and Goyal (2000b) study network formation among nodes faced with an exogenously given uniform
probability of link deletion. Hong (2008) investigates the strategic complementarities between linking and
protection. By contrast, our focus is on design and defence of a network faced by an intelligent adversary.
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The rest of the paper is organized as follows. Section 2 presents our model of design, defence

and attack in networks; it also elaborates on the computer network security application to

illustrate the appropriateness of our assumptions. Section 3 contains the equilibrium analysis.

Section 4 studies alternative timing of moves between the designer and the adversary and

develops analogues of our main results to different settings. Section 5 concludes. Appendix

A contains the proofs of our main results, while appendices B and C discuss and provide new

results under alternative modeling assumptions.

2 A Model

We study a zero-sum two player game between a designer and an adversary. The designer

has a collection of nodes and a budget for defense, while the adversary has an attack budget.

The designer moves first and chooses links between the nodes and allocates resources across

the nodes to protect the network. The network and the protection choices of the designer are

observed by the adversary, who then chooses an attack strategy.10 The initial network design

and the subsequent conflict together define a probability distribution on surviving networks.

We now set out the notation and the concepts which formally describe this game.

The designer: The designer, D, has a collection of nodes N = {1, ..., n}, where n ≥ 2;

for expositional simplicity, suppose that n is an even number. D chooses links between the

nodes and allocates a defence budget d ∈ N across the nodes to protect the network. Let

d = (d1, d2, ..., dn) denote this allocation, where di ≥ 0 and
∑

i∈N di ≤ d.

A link between two nodes i and j is represented by gij: we set gij = 1 if there is a link

between i and j, and gij = 0 otherwise. Links are undirected, i.e. gij = gji. The links between

the different pairs of individuals define a network g.

There is a path between two nodes i and j in network g if there exists a sequence of nodes

i1,.., ik such that i1 = i, ik = j and gi1i2 = ... = gik−1ik = 1. Two nodes are said to be

connected if and only if there exists a path between them. A component of the network g

is a maximally connected subset of nodes. C(g) is the set of components of g. We let |Ck|
indicate the cardinality (or size) of a component Ck ∈ C(g). A maximum component of g is a

component with maximum cardinality in C(g).11

10Section 4 studies alternative timing of moves and develops analogues of our main results, Theorems 1 and
2.

11The complete network, gc, has gij = 1,∀i, j. The empty network, ge, has gij = 0 for all i and j. A
core-periphery network has two types of nodes, N1 and N2. Nodes in N1 constitute the periphery and have a
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Following Myerson (1977), we assume that the value of a network is the sum of the value

of the different components. Given n, let fn(m) denote the value from a component of size m.

If fn(.) is decreasing, or increasing and concave, then an empty network maximizes value. As

our interest is in the tension between the pressure to connect nodes to create value and the

threat of contagion of attack via connections, it is reasonable to restrict attention to increasing

and convex fn(.) functions. These considerations lead to:

Assumption A.1: The value of network g is given by∑
Ck∈C(g)

fn(|Ck|). (1)

where fn(.) is increasing, strictly convex, fn(0) = 0 and fn(n) = 1.

By way of illustration, consider the following example.

Example 1 A communication network12

Suppose every individual has one piece of information with value 1, to everyone. A link

between X and Y allows X to access Y’s information as well as information which Y may have

accessed via his links with others. In a network g, X has access to all others in his component

Ck; his payoff is |Ck|/n2 (where the denominator reflects a normalization). As there are |Ck|
nodes in the component, the total payoff in component Ck is |Ck|2/n2. The aggregate social

payoff in a network is the sum of the payoffs from the different components:

∑
Ck∈C(})

|Ck|2

n2
. (2)

The payoffs given in (2) satisfy (A.1). 4

The adversary: The adversary A has a ∈ N attack resources. He observes the network

g and the defence allocation d and then allocates his resources across the n nodes. Let

a = (a1, a2, ..., an) denote the allocation chosen by A, where ai ≥ 0 and
∑

i∈N ai ≤ a.

single link each and this link is with a node in N2; nodes in N2 constitute the core and are fully linked with
each other and with a subset of nodes in N1. When the core contains a single node, we have a star network.
For a a general introduction to network terminology, see Goyal (2007).

12This is a variation on the connections model, developed in Goyal (1993), Bala and Goyal (2000) and
Jackson and Wolinsky (1996).
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Consider the conflict between defence resources di and attack resources ai which are allo-

cated on node i. Our formulation builds on the Tullock (1980) contest function.13 We would

like the probability of successful attack to be small if the attack resources allocated are small,

even if there is no defense available. This motivates:

Assumption A.2: Suppose designer allocates di and adversary allocates ai to node i. If

ai + di > 0, then the probability of successful attack is given by min{ai,
ai

ai+di
}. If ai + di = 0,

then the probability of successful attack is 0. The success of attack is independent across nodes.

Remark 1: Skaperdas (1996) shows that under reasonable axioms on the nature of conflict,

the probability of successful attack on node i is aγ
i /(a

γ
i + dγ

i ), with ai, di > 0 and γ > 0.

Appendix B shows that if ai, di ∈ {0} ∪X, where X = {x ∈ R+|x ≥ 1}, then our principal

results (Theorems 1 and 2) obtain under this general contest function.

Consider next the spread of attack through a network. We suppose that an attack from

i can spread to j only if there is a path between the two nodes. We next suppose that the

likelihood of an attack spreading from node i to node j is declining in the defence resources

allocated to any node on the path between i and j. In the basic model, we assume that a

successful attack on node i spreads to a neighboring node k, if and only if dk < t, for some

t ∈ R. And, for simplicity we set t = 1. A path between two nodes i and j is said to be weak

if and only if dk < 1 for all nodes on the path from i to j.

Assumption A.3: Successful attack on node i spreads to node j if and only if there exists a

weak path between i and j.

Remark 2: An alternative (and smoother) model of spread of attack would be as follows:

successful attack resources move to neighboring nodes and engage in (general) Tullock contests

with defence resources on those nodes. Appendix B develops conditions under which our main

results, Theorem 1 and 2, extend to this setting.

Figure 1 illustrates conflict and the spread of attack across the network. The upper half

of the figure presents a ring network in which d non-adjacent nodes are allocated one unit

of defence resources each. If A allocates a unit of attack resources on a node between the

protected nodes then attack spreads and eliminates all nodes except for the protected nodes.

The lower half of the figure presents a star network with all defence resources allocated on the

13With this contest function, the probability of successful attack on a node i is ai

ai+di
, for ai ≥ 0, di > 0.
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Figure 1: Defense and attack in a network: n = 12, a = d = 4.

central node. Suppose A allocates one unit to each of a periphery nodes: then the a nodes

are eliminated but there is no spread of attack through the network (due to the presence of

the central node which is protected above the threshold level).

Payoffs: A network g′ on N ′ is a sub-graph of g if gij = 1 whenever g′ij = 1. Let G(g) denote

the set of sub-graphs of g. Given a network g, and allocations d and a, assumptions (A.2)

and (A.3) define a probability distribution on the set of sub-graphs g′ ∈ G(g) which survive

the attack. Let P (g′|a,d, g) be the probability that network g′ survives the conflict between

d and a on network g. Then: ∑
g′∈G(g)

P (g′|a,d, g) = 1 (3)

The expected payoff to D from strategy (g,d) when A chooses a is:

∑
g′∈G(g)

P (g′|a,d, g)

 ∑
Ck∈C(g′)

fn(|Ck(g
′)|)

 (4)

So, in Figure 1, the expected payoff to the designer in the ring network is 4f12(1), and in

the star network it is f12(8). We assume that the objectives of the designer and the adversary

are perfectly opposed, i.e., the game is zero-sum. Our analysis focuses on the (sub-game

perfect) equilibrium of this zero-sum game.
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We conclude this section with an application: the aim is to show that our assumptions are

appropriate for the study of conflict in networks.

2.1 Application: computer network security

The Internet is a network of local area networks (LANs). The local area networks – examples

include interconnected computers in a university, a firm, or a government department – facil-

itate communication between users. The returns from joining a network are increasing in the

number of users. This is in line with our assumption (A.1) of convex and increasing returns

in network size.

The network manager decides on connections between computers and makes investments

in security (anti-virus software, Firewall etc). Online criminals – such as hackers and ‘botnet’

herders – take this network structure and the security settings as given, when they attack the

computers. This is consistent with the strategic options and the timing of moves in our game.

Attack on a computer may take the form of a virus or a worm (self-propagating malicious

software). The likelihood of successful infection of the computer is lower the more sophisticated

the security installations on it. This is reflected in our contest function formulation, (A.2).

Upon successful infection of a computer, the virus delivers payload: it corrupts (progressively

larger portions of) the host computer.

Having corrupted its host, the virus can attach itself and be forwarded to the mailing list

of the infected host computer. The probability that the virus succeeds in infecting neighboring

computers varies with the level of security installations on those computers. The transmission

of virus via communication links and subsequent conflict between the virus and the security

installed on neighboring computers is consistent with our model of spread of attack through

a network (see (A.3) and the following remarks).

3 Equilibrium analysis

We start with a consideration of the pure design problem, i.e., when d = 0. The main result

is that, in equilibrium, the adversary targets at most one node in each component and the

network consists of equal size components whose number grows (and size falls) as the attack

budget increases. We then turn to the problem of design with positive defence resources. If

defence and attack resources are small, relative to the number of nodes, then the star is an

equilibrium network; the designer assigns all resources to defend, and the adversary assigns all
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resources to attack, the central node. If defence and attack budgets are large then equilibrium

networks are dense and dispersed defence allocation is more effective.

We first observe that if d = 0 then a component Ck ∈ C(g) survives if, and only if, attack

is unsuccessful on all of its nodes. The probability of this event is simply
∏

i∈Ck
(1 − ai).

14

Then, component additivity implies that the payoff of D, facing attack a, is:

∑
Ck∈C(g)

fn(|Ck(g)|)
∏

i∈Ck(g)

(1− ai) (5)

Our first result characterizes optimal attack strategies and equilibrium networks in this

design game.

Theorem 1 Suppose (A.1)-(A.3) hold and d = 0. (i) If a < n/2 then, in equilibrium, the

adversary targets at most one node in any component; the network contains at least a + 1

maximal components and at most one component which is smaller. (ii) If n/2 ≤ a < n − 1,

the empty network is the unique equilibrium outcome. (iii) If a ≥ n then, in equilibrium, the

adversary eliminates all nodes. Any network can be sustained in equilibrium.

Proof: If a ≥ n then the adversary can always eliminate all nodes, irrespective of the structure

of the network. So, it follows that the designer earns a payoffs of 0 irrespective of the network.

Hence, any network can be sustained in equilibrium. Now let us take up the case of a ≤ n−1.

First, we note that there must be at least a + 1 components: if the number of components

is fewer than a+1, then A can set ai = 1 for one node in each component and thereby ensure

that D earns zero payoff. A network with a + 1 components on the other hand, guarantees

D strictly positive payoff as at least one component survives any attack of A with some

probability.

Second, we show that there are at least a + 1 maximum components. Suppose this is not

the case and let component C1 denote a maximum component. As part of his response, A
must eliminate C1. Next, form a new network g′ from g in which C ′

1 is obtained from C1

by isolating a single node, leaving the rest of the network unchanged. In g′, either C ′
1 is

maximal, or at most a− 1 components have size strictly greater than it. Hence, without loss

of generality, we may assume that C ′
1 is eliminated as part of the best response by A . But

then D does strictly better with g′ as compared to g, since by doing so she saves the node

which has been isolated. This contradicts the hypothesis that g is optimal.

14Here we are assuming that ai ≤ 1; this is without loss of generality as the adversary will never set ai > 1,
given our assumption (A.2) and the hypothesis, d = 0.
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Third, we show that, at most, one component has size strictly smaller than the maximum

size s. Suppose we can find two such components. D can then take a node from the smaller of

the two components and place it in the larger component. The larger component still remains

(weakly) smaller than the maximal components, and it now follows from the convexity of fn(.)

that payoffs to D are strictly increased by this move.

Fourth, at most one node is attacked in a component. Observe there are always more

components than adversary budget. So each component is assigned at most one unit of attack

resource. If A attacks two nodes, there is positive probability of a state in which both nodes

are eliminated and a corresponding state in which neither is eliminated: this is wasteful as

elimination of one node is sufficient to remove the entire component.

Finally, observe that if a ≥ n/2 then A can always eliminate every component with 2 or

more nodes. Hence, the empty network is the unique equilibrium outcome. �

So, loosely speaking, the number of components is (weakly) increasing and the size of each

component is falling in the budget of the adversary. An increase in the returns from size of

component is reflected in an increase in ‘convexity’ of the returns function. Given a fixed

adversary budget, such an increase in convexity makes larger components more attractive

at the margin. Figure 2 illustrates these comparative statics for a specific returns function:

fn(m) = mα/nα, with α > 1 reflecting the ‘convexity’ of the function. In this figure, k refers

to the number of components.

We now turn to the general problem of designing and defending a network which faces an

intelligent adversary. For simplicity, we assume that the value of a node becomes insignificant

as the number of nodes grows:

Assumption A.L Given x ∈ R,

lim
n→∞

fn(n− x) = 1 (6)

Our main result in the design, defence and attack game is:

Theorem 2 Suppose (A.1)-(A.3) and (A.L) hold. Fix a, d ∈ N and consider the set of

connected networks. For n sufficiently large, there is an equilibrium with the star network;

and in this equilibrium, the designer and adversary allocate all resources to the central node.

The proof of this result is given in Appendix A. It builds on three arguments. First, we

show that given a star network in which all defence resources are allocated to the central
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Figure 2: Equilibrium networks: fn(m) = (m/n)α, n = 24, α=2,3 and a = 2, 4

node, if A allocates c units of resource to the center, then he will allocate the remaining a− c

units on a − c peripheral nodes, in other words, it is optimal for adversary to concentrate

the attack on a − c peripheral nodes. Observe that, due to (A.3), a center-protected star

ensures connectedness of all surviving nodes. So, spreading resources across more peripheral

nodes yields a mean-preserving spread in the distribution of interconnected nodes. Given the

convexity of fn(.), it then follows that spreading resources on more peripheral nodes raises

the payoff for the designer and, correspondingly, lowers the payoff for the adversary.

The second step shows that the designer ensures himself a payoff of d/(d + a) in a star

network. Suppose D allocates all his resources to protect the central node. If A allocates k

units of resource to peripheral nodes, then he eliminates k of them for sure. But this allocation

of k units away from the central node lowers the probability of eliminating it correspondingly.

Under assumption (A.L), for large enough n, the marginal value of eliminating a single node

is very small compared to the value of a slight increase in the probability of eliminating the

central node (and hence all nodes). Thus it is optimal for A to allocate all resources to the

central node. But this implies that, with a star network, D can ensure himself a payoff of

d/(d + a).
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Figure 3: Attack & defence on a star

The third step constitutes the heart of the proof: we show that in any core-periphery

network with all core nodes protected, the payoff of the designer is less than d/(d + a). Fix

a core-periphery network with k core nodes and consider a defence strategy d = (d1, d2, ..dk).

The adversary has a feasible strategy in which he allocates ai = di×(a/d) to each of these core

nodes. This configuration of defence and attack resources creates k identical and independent

lotteries each of which has probability of defense success d/(d+a). We then apply Theorem 1

in Rothschild and Stiglitz (1970) to conclude that the probability distribution of the number

of surviving interconnected nodes in the star network is a mean-preserving spread of the

probability distribution of surviving nodes under k identical and independent contests in

the core-periphery network. Given that the returns function fn(.) is convex, it then follows

from standard arguments that the designer prefers the star network to such a core-periphery

network. Figures 3 and 4 illustrate this argument with n = 12 and a = d = 4.15

This argument is then extended beyond core-periphery networks and shows that the payoff

in any connected network is (weakly) lower than d/(d + a). Roughly speaking, there are

two main points here. One, it is better for the designer to connect every pair of protected

nodes. This rules out the state in which subsets of protected nodes are separated into distinct

15Observe that the probability distribution of surviving component sizes for the 2-core network is
Prob(0 nodes) = 1/4, Prob(6 nodes) = 1/2, and Prob(12 nodes) = 1/4. The probability distribution for the
star network is Prob(0 nodes) = 1/2 and Prob(12 nodes) = 1/2. The latter distribution is a mean-preserving
spread of the former one.
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Figure 4: Core-periphery network: attacking the core nodes

components. Two, we show that it is better for the designer to connect a non-protected node

to only one protected node and not to connect it to any unprotected node. This minimizes

the probability that the unprotected node is indirectly attacked. These two points, taken

together, imply that in a strategy which protects k nodes, the designer is best off with a

core-periphery network.

Empirical work on networks has highlighted the salience of hub-spoke structures (see e.g.,

Barabasi (1999) and Goyal (2007)). In an influential paper, Albert, Jeong and Barabasi

(2000) argue (using a set of simulations) that hub-spoke architectures are robust to random

attacks but vulnerable to strategic attacks: the adversary can significantly reduce a hub-spoke

network’s functionality by removing only a few hub nodes. Our result, on the other hand,

highlights the attractiveness of hub-spoke architectures from the point of view of defence.

Successful defence of a few hub nodes contains the spread of attacks through the network.

Thus our work provides an efficiency based foundation for the salience of hubs in real world

networks which face adversaries.

We now comment on three hypotheses in Theorem 2: one, the vanishing value of a node

as the number of nodes grows, (A.L), two, the connectedness of the network, and three, the

role of the relative magnitude of resources and the number of nodes.

14



Let us first take up assumption (A.L). This assumption rules out applications in which

a single node or a few nodes remain important when the total number of nodes grows. The

literature on contests and conflict studies games in which each node is critical for the func-

tioning of the system at large. They are referred to as weakest link games. Recent treatments

include Kovenock and Roberson (2009) and Clark and Konrad (2007). Suppose fn(x) takes

on value 0 for all x < n and takes value 1 for x = n. Let us refer to this as assumption (A.1′).

Observe now that the connectedness of the network is necessary for the designer. On the

other hand, once a single node is infected the designer’s payoff is zero and no further damage

is possible via the spread of attack. Thus the weakest link game does not exhibit the tension

– between the benefits and the costs of connections – which is the focus of our paper. Next,

observe that, if a ≥ 1, then optimal defense involves a dispersed allocation of resources.16

The second hypothesis concerns the connectedness of the network. If fn(.) is sufficiently

convex then D will always choose a connected network. If, on the other hand, fn(.) is (ap-

proximately) linear then multiple components will be more attractive for the designer.17

The third hypothesis is about the relative magnitude of the defence and attack resources

and the number of nodes. We have been unable to characterize equilibrium networks and

defence and attack strategies for all values of a, d, and n. To make progress we study a game

with a specific returns function taken from Example 1: fn(m) = m2/n2. Proposition 1 in

Appendix A characterizes equilibrium networks for general n and for a = 1, d ≥ 1, and when

d = 1 and a ≥ 1, respectively. The following example highlights some of the issues which arise

when budgets are large relative to the number of nodes.

Example 2 The attractions of dense networks and dispersed defence.

Consider the communication network example with payoffs given as in (2). Suppose that

n = 4, d = 4 and a = 1. Fix the star network. If D protects less than four nodes, A
can eliminate one node for sure. So the maximal payoff of D with less than four nodes

protected is f4(3) = 9/16. Next, suppose D allocates one unit of resource on every node in

the network. The optimal response of A is to attack the central node. The resulting payoff

16As the number of nodes gets large, the defence resources assigned to any node become progressively
smaller, and the payoffs of the designer fall accordingly. This is in line with the findings of Clark and Konrad
(2007). For a result on equilibrium networks and optimal defence and attack strategies in the absence of
Assumption (A.L), refer to the working paper version of our paper, Goyal and Vigier (2010).

17In an earlier version of our paper we developed a set of sufficient conditions on the returns function under
which the equilibrium network is connected, see Goyal and Vigier (2010).
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Figure 5: The attractions of dispersed defence

of D is 3f4(1)/2 + f4(4)/2 = 19/32. So, a dispersed defence strategy is better for D. Figure 5

illustrates this point.

Next, consider a complete network and suppose d = 4, a = 1. D can do better with the

complete network. If D protects all nodes in the complete network then his minimum payoff

is f4(3)/2+f4(4)/2 = 25/32. This shows that the complete network with dispersed protection

strictly dominates a star. Figures 6 illustrates this point.18

4

4 Discussion: timing of moves

In the basic model, we study a sequential move game in which the designer moves first, followed

by the adversary. In some contexts, such as crime and terrorism, the designer seeks to conceal

the network structure while intelligence agencies carry out covert operations to identify and

eliminate members. The simultaneous move game appears to be a more natural framework

for the analysis of this problem.19

18For a complete characterization of equilibrium architectures in this example, see the working paper version
of our paper, Goyal and Vigier (2010).

19An alternative is the game in which the designer first chooses a network and the designer and adversary
then simultaneously choose the defence and allocation resources on the network. The pure design problem is
exactly the same as in the benchmark model; the defence and attack game is explored, and a partial analogue
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We start with a consideration of the pure design problem (the defence budget is 0). Here

we establish a partial analogue of Theorem 1: in the class of equal component networks, in

equilibrium, the designer randomizes assignment of nodes across components; moreover, the

number of components is increasing and the size of each component is falling in the budget

of the adversary. The adversary’s strategy involves mixing across different nodes. We then

study the game of defence, design and attack and prove a partial analogue to Theorem 2:

a strategy of mixing across different star networks with all resources devoted to the central

node, is approximately optimal. The adversary’s randomizes his attacks across across nodes.

Let us start with the case d = 0: The designer chooses a network and the adversary

allocates a units of resources (for simplicity, we restrict attention to integer allocations) across

nodes. As in the basic model, suppose that assumptions (A.1)-(A.3) hold. A mixed strategy

of the designer is a probability distribution, σ, on the set of networks and defence allocations

G ×D. Similarly, the mixed strategy of the adversary, ρ, is a probability distribution on the

set of attack allocations A. The expected payoffs to D from strategy σ when A chooses ρ are:

∑
(g,d)∈supp σ;a∈supp ρ

σ(g,d)ρ(a)
∑

g′∈G(g)

P (g′|a,d, g)

 ∑
Ck∈C(g′)

fn(|Ck(g
′)|)

 (7)

to Theorem 2 is developed, in Appendix C.
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Networks with equal size components provide a useful analytical benchmark.20 Suppose

the adversary allocates one unit of resource to a nodes chosen uniformly at random from the

set of nodes. By (A.2)-(A.3) the probability that a component of size m survives is:(
n−m

a

)/(
n

a

)
=

(n−m)!

(n)!

(n− a)!

(n−m− a)!
(8)

The total payoffs of the designer from a network with all components having equal size s

is then:
n

s

(n− s)!

(n)!

(n− a)!

(n− s− a)!
fn(s) (9)

For n large this becomes, approximately:

n

s
n−s(n− a)sfn(s) =

n

s
fn(s)(1− a

n
)s (10)

Abstracting from integer constraints, the optimal size, s∗, solves the following equation:

s∗
[
f ′n(s∗) + fn(s∗) ln(1− a

n
)
]
− fn(s∗) = 0. (11)

For this to be a maximum, the second order condition must be satisfied: f ′′(s)+sf ′(s) ln(1−
a/n) + fn(s) ln(1− a/n) < 0. It is now easy to see that there is an equilibrium in which the

designer randomizes uniformly over all networks with equal size components s∗, while the

attacker allocates one unit of resource to a nodes chosen uniformly at random.

The optimality of mixing across links suggests that flexible networks are attractive for

criminal and terrorist organizations. This is in line with the influential argument that in

modern conflict, flexible networks – which permit quick reconfiguration of connections between

individuals – will be an important organizational form (see e.g., Arquilla and Ronfeldt (1996,

2001)).

Now consider the effect of a change in adversary budget a on equilibrium component size

20Equal size components is a restriction in this setting. Convexity in returns to size makes a network with
unequal size components attractive in the simultaneous game. Suppose n = 4, a = 1, f4(1) = f4(2) = 0,
f4(3) = 1

2 , and f4(4) = 1. It can be shown that in the unique equilibrium the designer randomizes uniformly
over all networks with two components of respective size 3 and 1, while the attacker allocates his unit resource
uniformly at random. In the sequential move game any attempt to exploit convexity by choosing unequal
components is defeated by the elimination of the larger component by the adversary. When players move
simultaneously the designer can conceal the identity of nodes in the larger components.
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s∗.
ds∗

da
=

s∗fn(s∗)n−1(1− a/n)−1

f ′′(s∗) + s∗f ′(s∗) ln(1− a/n) + fn(s∗) ln(1− a/n)
(12)

The numerator is positive while the denominator is negative (from the second order con-

dition). So a growth in adversary budget leads to a fall in component size. This result is

consistent with the observation that terrorist networks have had to “... scatter, work in small

cells”, as the intelligence budgets have grown (Zakaria 2008).

We turn next to the game with positive defence resources. Define σ∗ as a mixed strategy

of the designer which randomizes uniformly over all star networks with defense resources

concentrated on the central node. We will compute a lower bound on the designer’s payoff

from such a strategy.

Let ρ denote a mixed strategy for the adversary. Given the integer allocation restriction,

the maximum number of nodes with ai > 0 is equal to a. So, given σ∗, the maximum

probability that the central node is attacked is a
n
. Now observe that the payoff is at least

fn(n − a) if the central node is not attacked. So it follows that if d ≥ 1 then the minimum

expected payoff of the designer given σ∗ is at least (1 − a
n
)fn(n − a). Next observe that if

(A.L) holds then:

lim
n→∞

(1− a

n
)fn(n− a) = 1 (13)

So, as n becomes large, σ∗ ensures the designer a return close to the maximum payoff

attainable. The intuition is straightforward: by randomizing over all possible star networks,

the designer conceals the identity of the central node from the adversary. For fixed attack

budget, a, as n grows, the probability that the adversary successfully locates the central node

declines and eventually goes to zero.

This derivation also illustrates the designer’s incentives to conceal the network design from

the adversary. Recall, in the sequential model, the equilibrium payoff to the designer is given

by d/(d+a) (see Theorem 2, and the discussion in section 3). By contrast, in the simultaneous

move game the designer can hope to earn (almost) 1, the maximum attainable payoff, in the

absence of any threat from the adversary!

5 Conclusion

This paper explores the design and defence of networks which face an intelligent adversary.

We first study a game in which a designer constructs a network while an adversary attacks
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nodes in this network. Optimal attack involves targeting only a few nodes and ignoring the rest

and the equilibrium networks consist of equal size components. The number of components

grows and size falls as the attack budget of the adversary increases.

We then extend the strategic options of the designer: he can now choose a network and

allocate resources to defend nodes. This defines a game of design, defence and attack. Our

second result is that if the defence and attack resources are small relative to the number of

nodes, then a star network is an equilibrium. In equilibrium, the designer allocates all his

budget to protecting the central node while the adversary allocates all resources to attacking

the same node. On the other hand, if the budgets are large then denser networks with dispersed

defence allocations arise in equilibrium.

6 Appendix A

Lemma 1 Let {I1, .., Ik} denote a set of i.i.d. Bernoulli random variables with P (Ii = 1) = δ

and P (Ii = 0) = 1 − δ, for all i. Then (n1 + .. + nk)I1 is a mean-preserving spread of

n1I1 + .. + nkIk.

Proof. Suppose, without loss generality, that n1 ≤ .. ≤ nk. We prove the result by induction

on k.

Suppose k = 2. Let F and G denote the cumulative distribution functions of (n1 + n2)I1

and n1I1 + n2I2, respectively. Define 1− δ = α. Then

F (x) =

{
α if 0 ≤ x < n

1 if x = n
(14)

and

G(x) =


α2 if 0 ≤ x < n1

α if n1 ≤ x < n2

1− δ2 if n2 ≤ x < n

1 if x = n

(15)

So, using Theorem 1 in Rothschild and Stiglitz (1970), (n1 + n2)I1 is a mean-preserving

spread (MPS) of n1I1 + n2I2 if and only if

α− α2 = 1− δ2 − α (16)
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or, substituting for δ

α− α2 = 2α− α2 − α (17)

So the result holds for k = 2. Next, suppose the result holds up to k ≥ 2. We want to

show that it also holds for k + 1.

Observe that that if Y is a MPS of X then, for any random variable Q independent of X

and Y , Y + Q is a MPS of X + Q.

But then setting X = n1I1 +n2I2 + ...+nkIk, Y = (n1 +n2...+nk)I1, Q = nk+1Ik+1, using

the result for k = 2 and the induction step, it follows that (n1 + n2 + .. + nk+1)I1 is a MPS of

n1I1 + n2I2 + n3I3.. + nk+1Ik+1.

�

Proof of Theorem 2: Cases where a = 0 or d = 0 are trivial. If a = 0 then there is no

attack and any connected network yields payoff 1. If a ≥ 1 and d = 0 then by (A.1)-(A.3)

any connected network yields zero payoff in equilibrium. So the proof will focus on the case

where both designer and adversary have positive budgets.

First we show that with a center-protected star (a star with all defense resources allocated

to the central node) there exists c ∈ N such that the optimal response of A consists in

allocating c units of resource to the central node and exactly 1 unit of resource to a − c

periphery nodes. Two, we show that given a center-protected star the attacker allocates all

resources to the center, resulting in designer payoff d
d+a

. Last we show that, for any other

network and allocation of defense resources the payoff of the designer is at most d
d+a

.

Step 1: Consider a center-protected star If A allocates c units of resource to the central node,

then his best allocation of remaining resources consists in targeting a− c nodes with exactly

1 unit of resource each.

Suppose we can find two periphery nodes, i1 and i2 say, such that 0 < ai1 ≤ ai2 < 1. We

will show that A obtains strictly higher payoff in this sub-game if he transfers a small amount

of resources from i1 to i2.

Let M denote the set of nodes other than i1 and i2 on which attack is unsuccessful, and

let m = |M |. In the event that the central node belongs to N\M , all nodes are removed and

the payoff of D is trivially zero. If on the other hand the central node belongs to M then, by

(A.3), no attack spreads through the network. In addition, observe that the structure of the

network ensures connectedness of M . The payoff of D (conditional on M) can be written as

(1− ai1)(1− ai2)fn(m + 2) + [ai1(1− ai2) + ai2(1− ai1)]fn(m + 1) + ai1ai2fn(m) (18)
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Assume up to relabeling ai1 ≤ ai2 and let a = ai1 + ai2 . The former expression becomes

(1− a)fn(m + 2) + afn(m + 1) + ai1(ā− ai1)[fn(m + 2)− 2fn(m + 1) + fn(m)] (19)

By convexity of fn(.), fn(m+2)− 2fn(m+1)+ fn(m) > 0. So the expression is increasing

in ai1 , and A obtains strictly higher payoff if he transfers a small amount of resources from i1

to i2.

Since the argument above was for arbitrary realization of the set M , transferring resources

also ensures A strictly higher payoff in the overall sub-game. Observe that, by hypothesis,

the designer allocates no resources to protect the peripheral node: so it is never optimal to

raise attack resource allocation on such a node beyond 1 unit.

Putting together these observations, we conclude that if A allocates c units of resource to

the central node, his best allocation of remaining resources consists in targeting a − c nodes

with exactly 1 unit of resource each (this is feasible for large enough n).

Step 2: In a center-protected star the attacker allocates all resources to the center, resulting

in designer payoff d
d+a

.

Consider a center-protected star. By step 1, we can restrict attention to attacks which

consist in allocating c ≥ 0 units of resource to the central node and exactly 1 unit of resource

to a− c periphery nodes. Given d ≥ 1, we have min{c, c
c+d
} = c

c+d
, for all c ≥ 0. So the payoff

of D under such an attack is
d

c + d
fn(n− a + c) (20)

Differentiating with respect to c yields

− d

(c + d)2
fn(n− a + c) +

d

(c + d)
f ′n(n− a + c) (21)

Notice next that since fn(.) is increasing and convex, for all c < a:

fn(n− a + c) ≤ fn(n− a + c) + (a− c)f ′n(n− a + c) ≤ 1 (22)

Hence, by (A.L):

lim
n→∞

f ′n(n− a + c) = 0, ∀ c < a (23)

The derivative in (21) thus tends to − d
(c+d)2

fn(n) < 0 as n becomes large. So the best-

response of A to a center-protected star consists in setting c = 0, i.e. allocating all resources
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to the central node. The resulting payoff of D is then d/(a + d).

Step 3: If the designer does not choose a center-protected star then he obtains at most payoff
d

d+a
.

Consider an arbitrary (connected) network g, and arbitrary allocation of defence resources

across nodes in this network. We will find an attack strategy which leaves the designer with

payoff at most d/(a + d).

In what follows we let X(d) = {i1, ..., ik} denote the set of nodes for which di ≥ 1, and

O = N −X. We next consider separately the cases where k = 0 and k ≥ 1.

If k = 0, choose a node at random, j say, and suppose A sets aj = a. Given that d ≥ 1, it

follows that dj < d. And since min{a, a
a+d

} is non-increasing in d, we have

min{aj,
aj

aj + dj

} ≥ min{aj,
aj

aj + d
} =

a

a + d
(24)

By (A.3), the resulting payoff of D is therefore at most d/(a + d).

Next suppose k ≥ 1 and consider the attack strategy which sets ait = a
d
dit , t ∈ {1, .., k}.

Notice that, for all t in {1, .., k}:

min{ait ,
ait

ai + dit

} =
ait

ait + dit

=
a

a + d
(25)

Let Oit ⊂
(
O ∪ {it}

)
, t = 1, ..., k denote the subset of nodes which can be reached from it

through a path lying in O ∪ {it}. Construct the sequence of sets (Nit(g,d))1≤t≤k recursively

as follows:21

Ni1 = Oi1 , Ni2 = Oi2 −Ni1 , ... , Nik = Oik −
k−1⋃
t=1

Nit

Let nit = |Nit|, t = 1, ..., k. Note that by connectedness of g,
⋃k

t=1 Nit = N . Moreover,

by construction of the sets it follows from (A.3) that nodes in Nit survive only if it survives,

for all t ∈ {1, .., k}. So the distribution of the total number of surviving nodes is first order

stochastically dominated by that of ni1I1 + .. + nikIk, where {I1, .., Ik} denote a set of inde-

pendent Bernoulli random variables such that P (It = 1) = d
a+d

, for all t ∈ {1, .., k}. Given

increasing and convex f(.), the expected payoff of D is thus at most E[fn(ni1I1 + .. + nikIk)].

21Note that in some cases the sequence constructed will depend on the particular order assigned to elements
in X.
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Convexity of f(.) and Lemma 1 then show (see e.g., Rothschild and Stiglitz (1970))

E[fn(ni1I1 + .. + nikIk)] ≤ E[fn((ni1 + .. + nik)I1)] =
d

a + d
(26)

Hence, by step 2, we have found an attack strategy such that the resulting payoff of D is

less than he can guarantee himself with a center-protected star. This completes the proof of

the Theorem. �

Proposition 1 Consider the payoffs in the connections model. Suppose (A.2)-(A.3) hold,

resource allocations take integer values only, and consider the set of connected networks. (i) If

d = 1 then, for all a, the star is an equilibrium network. (ii) If a = 1 then, for d < n, the star

is an equilibrium network. For a = 1, d = n the complete and ring networks are equilibrium

networks, and payoff dominate the star network.

Sketch of Proof: We provide a sketch of the proof; the details are available from the

authors upon request. The first part is straightforward: in a star network suppose D protects

the central node. If A optimally allocates t units to the central node the payoff to D is

f(n− a + t)/1 + t. Next take any connected network g′ and suppose node, α′ is defended. If

A allocates t to node α′, and 1 unit each to a− t other nodes, the payoff of designer is at most

f(n − a + t)/1 + t (as attacks on some of the nodes will spread to unprotected neighboring

nodes). Since the network g was arbitrary and A’s strategy is feasible, the star is robust.

The argument for the second part with a = 1, 0 ≤ d < n, builds on two observations.

Fix some network g and defence allocation d. The first observation is that the probability of

successful attack on a protected node i, 1/(di + 1), is larger than the probability of successful

attack on the central node in the star network with all defense resources allocated to the

center, 1/(d + 1). On the other hand, the set of nodes to which attack eventually spreads

will be smaller than in the case of the case of the center-protected star (where all n nodes are

eliminated). Nonetheless, there always exists a node j such that successful attack on this node

exposes nj unprotected nodes to the spread of attack where nj ≥ n(dj/d). So the maximum

payoff to D from such a network and defence is

dj

dj + 1
f(n) +

1

dj + 1
f(n− dj

d
n) (27)

Indeed, we can write the difference in payoff between this network and allocation of defence
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and the center-protected star as:

dj

dj + 1
f(n) +

1

dj + 1
f(n− dj

d
n)− d

d + 1
f(n) (28)

So the attractiveness of network g and a possibly dispersed defence d relative to a center-

protected star will depend on the payoff function f(.). We show that in the connections

model this difference is always non-positive. Hence the star is robust.

Next we explain why the star is not robust for d = n. If D protects every node and A
attacks the central node, the payoff to D is

n− 1

2
f(1) +

1

2
f(n) (29)

By contrast, in the ring network, with all nodes protected, the payoff to D is

1

2
f(n− 1) +

1

2
f(n) (30)

By convexity of f(.), this is clearly larger. If alternatively D leaves one node unprotected,

and A attacks this node, then payoff to D is at most f(n − 1) which is clearly smaller than

the payoff from the ring. �

7 Appendix B

This section extends the model to allow for a generalized contest function on individual nodes

and then also considers richer models of spread of attack. We show that the principal insights

contained in Theorem 1 and Theorem 2 extend to progressively general settings. Let us start

by defining the general contest function: given a defence di and an attack ai on node i, if

ai + di > 0 then the probability of successful attack is given by:

aγ
i

aγ
i + dγ

i

(31)

for γ > 0. If ai = di = 0, then the probability of successful attack is equal to 0. Let us refer

to this as assumption (A.2′).

In an influential paper, Skaperdas (1996) showed that this is the unique contest function

satisfying a set of plausible axioms on conflict. Observe that as γ grows we approximate a
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threshold attack function: attack is certain to succeed if and only if ai > di, while it is certain

to fail if and only if ai < di. The probability of success is 1/2 at ai = di, for all γ > 0

A simple way to circumvent the problem of very small attacks is to suppose that defence

and attack can only take a value of 0 or values greater than 1. So ai, di ∈ {0} ∪ X, where

X = {x ∈ R+|x ≥ 1}. Let this restriction of the strategy set be denoted by (A.0).

Let us characterize equilibrium networks with this generalized contest function. We first

observe that when d = 0, attack spreads instantaneously across a component. Given the

restrictions on the allocation of attack resources, ai ∈ {0}∪X, A will assign one unit of resource

to at most one node in every component. It is now possible to show that the arguments in

the proof of Theorem 1 carry over directly.

Consider the design, defence and attack game next.

Theorem 2′: Suppose assumptions (A.0)-(A.1) (A.2′), (A.3) and A.L) hold. Fix

budgets a, d ∈ N and let a ≥ d. For n sufficiently large, in equilibrium the network is a star,

and the designer and adversary allocate all their resources to the central node.

Sketch of proof: Steps 1 and 2 follow directly as before. Step 3 is the key step in the proof

and demonstrates that the payoff to D in an arbitrary network with multiple protected nodes is

bounded above by dγ/dγ+aγ. We observe thatA can construct a strategy which mimics attack

success rates at each of the defended nodes and also respects ai ∈ {0} ∪ {x ∈ R+|x ≥ 1},
so long as a ≥ d (this inequality allows the adversary to mimic the ratio and respect the

integer allocation constraint). This strategy, following the arguments in Theorem 2, leads

to a stochastically dominating distribution of surviving networks as compared to the center-

protected star network. Since payoffs of D are convex, the resulting expected payoff of D is

bounded (strictly) above by dγ/dγ + aγ. Putting together steps 1-3 completes the proof. �

We now turn to a richer model of the spread of attack. The key feature is that successful

attack resources at a node i now engages in contests with defence resources at neighboring

node j. This formulation also addresses the discontinuity in indirect attack at d = 1 in the

basic model.

Fix a network g and an allocation of defence (d1, ..., dn) and attack resources (a1, a2, ..., an).

Suppose that in the contest at node i attack ai prevail over the defence di. Then attack

resources ai are available for further attacks on neighboring nodes. If they fail in their attack

then they are neutralized and removed from the network, while defence resources di remain

intact. This first round of contests defines a set of captured nodes and a profile of residual

defence resources which we refer to as (d′1, ..., d
′
n). Observe that d′i ≤ di.

Now consider the follow up round of contests. Once attack resources ai prevail over defence
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resources di at node i, they move to a neighboring node j. Similarly, surviving attack resources

at other nodes also move to a neighboring node (the choice of node could be random or it

is due to deliberate choice by the adversary). If the neighboring node j is defended with

positive resources dj > 0, then the resource engages in contest on the node. If not, it moves

instantaneously across the undefended node to a neighboring node. This flow proceeds until

it encounters a defended node. If there are no defended nodes then the attack takes over the

network and the process ends at the empty network. If there are defended nodes then the flows

of attack will stop within a finite set of steps and yield a new allocation of attack resources in

the network, (a′1, a
′
2, ..., a

′
n). These attack resources engage in contests with defence resources

at the different nodes (d′1, d
′
2, ..., d

′
n). The outcome of contests at nodes 1, 2, 3, .., n is in turn

defined by the contest function (31).

This process continues way until there is no attack resource left or all nodes have been

successfully attacked. We summarize the spread of attack as follows.

Assumption A.3′: Consider a network g.

(i). Successful attack on node i means that the attack resources ai remain intact and the

defence resources di are removed from the network. Similarly, if defence prevails then the

attack resources ai are removed from the network and the defence resources di remain intact.

(ii). The adversary relocates (surviving) attack resources (a1, ...ak) to defended nodes in the

neighborhood of the successfully attacked nodes. If there are no such nodes, then resources

must move to the neighbors of neighboring nodes and so forth. The attack resources move

across nodes i with di = 0 instantaneously. (iii). The game ends when either all the defence

or all the attack resources are removed from the network.

Since any surviving attack resources move to un-captured nodes immediately, in every

period at least one unit of defence or attack resource is removed from the network. So there

is an upper bound on the number of periods for the game, given by a + d.

Anticipating the optimal attack strategy of A, D chooses a network g and a defence

strategy d to maximize his ex-ante expected payoffs at the start of the process.

Let us first consider the case d = 0, i.e., the pure design and attack problem. Observe that

when d = 0, attack spreads instantaneously across a component. Given the restrictions on the

allocation of attack resources, ai ∈ {0} ∪X, A will assign one unit of attack to at most one

node in every component. The arguments in the proof of Theorem 1 now carry over directly.

Let us turn to the design, defence and attack game.

Theorem 2′′: Suppose assumptions (A.0), (A.1), (A.2′), (A.3’) and (A.L) hold. Fix
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a, d ∈ N and consider the set of connected networks. For n sufficiently large, the star network

is ‘almost’ optimal for the designer.

Sketch of Proof: In a connected network, if d < a, then for large enough γ, A can prevail

by starting with an assignment of all resources to a single node and then moving all resources

across nodes one at a time until all defence resources are eliminated. So every node including

the star network yield D zero payoff.

Next consider a < d. Under the assumption on allocations, D can protect a maximum of

d nodes. So for, for large enough n, it must be the case that A can always eliminate a nodes.

So the maximum payoff for D is fn(n−a). Consider the star network and suppose D allocates

all resources to the central node. Given large enough γ, since a < d, D can ensure that the

central node is protected with probability close to 1. Thus D earns a payoff approximately

equal to fn(n− a) in a star network with defended central node.

Finally, consider a = d. Given that γ is large, allocating defence resources to two or more

nodes allows A to eliminate each of the defended nodes, with probability close to 1. Thus a

strategy of protecting multiple nodes yields a payoff of 0 to D. Next consider a strategy of

protecting a single node. In the star network with protected center, clearly the best strategy for

A is to first target a peripheral nodes and then move the successful resources in a coordinated

attack with all a units on the central node. This yields D a payoff of fn(n − a)/2. Observe

that the payoff to D is at most fn(n− a)/2 in any network with a single protected node. So

the star is optimal. �

8 Appendix C: Design followed by conflict

Following a suggestion by one of the referees, we present here an analysis of the game in which

the designer first chooses a network and the designer and adversary then simultaneously choose

the defence and allocation resources on the network. Let us refer to this as the D∗ game.

Define a k-regular core periphery network as a core periphery network in which there are

k core nodes and each core node is connected to (n− k)/k peripheral nodes.

Proposition 2 Consider the D∗ game. Suppose assumptions (A.1)-(A.3) and (A.L) hold

and restrict attention to regular core periphery networks. Given d and a, for large enough n,

the star is an equilibrium network; in equilibrium the designer and adversary assign all their

resources to the central node.

Sketch of Proof: Fix some defense budget d and some attack budget a and let n be large.
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First, in star network, the unique equilibrium is one in which designer allocates d to central

node and adversary allocates a to central node.

Second suppose k = 2. Then there is an equilibrium (in the set of pure strategies) in

which designer allocates d/2 to each core node and periphery allocates a/2 to each core node.

Number the core nodes 1 and 2.

Suppose that adversary allocates a/2 to each core node. Consider an allocation d1 =

d/2 + x, d2 = d/2− x. We will show that it is optimal for the designer to set x = 0.

Observe that under (A.L) it is not optimal to allocate any resources to the periphery

nodes. Next, consider allocations on the two core nodes. For simplicity assume that d ≥ 2;

the case where it is smaller than 2 is uninteresting under our threshold assumption (A.3).

Observe that there are four states of the world: both core nodes are defended, both are

attacked successfully, and two states corresponding to the case where only one of them is

attacked successfully. The payoff to the designer from this strategy is given by:

fn(
n

2
)

[
2da

(d + 2x + a)(d− 2x + a)

]
+ fn(n)

d2 − 4x2

(d + 2x + a)(d− 2x + a)
(32)

We ask how a change in x affects the payoff. Differentiating this payoff with respect to x,

we get:

fn(
n

2
)

[
−8x

(d + 2x + a)2(d− 2x + a)2

]
+fn(n)

[
(−8x)((d + 2x + a)(d− 2x + a)− (d2 − 4x2))

(d + 2x + a)2(d− 2x + a)2

]
.

(33)

Simplifying, we get[
−8x

(d + 2x + a)2(d− 2x + a)2

] [
−fn(

n

2
) + fn(n)(a2 + 2ad)

]
. (34)

This expression in negative if

fn(n)

fn(n/2
) >

1

a2 + 2ad
. (35)

So the designer allocates resources equally to the two core nodes if this inequality is

satisfied. For a, d ≥ 1, this inequality is satisfied for all functions fn(.) which satisfy (A.1).

Now consider optimality of the adversary’s strategy in the face of an equal split of defence

resources d/2 between the two core nodes. As before under (A.L), it follows that the adversary

will not find it optimal to assign any resources to the peripheral node.
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The payoff to an attack strategy a/2 + x, a/2− x is given by:

fn(
n

2
)

[
2da

(d + 2x + a)(d− 2x + a)

]
+ fn(n)

d2

(d + 2x + a)(d− 2x + a)
(36)

It is easily checked that the denominator is falling in x. So it follows that the designer’s

payoff is increasing in x and is minimized at x = 0.

This proves that in a regular core periphery network with 2 core nodes, there exists an

equilibrium in which both the adversary and the designer assign equal resources to the two

core nodes.

This argument can be generalized to cover k ≥ 2 nodes: fix equal allocations for the

protected nodes for the designer and adversary some allocation of k − 2 nodes. Now use the

k = 2 arguments to show show that the adversary gains by equalizing the allocations on the

remaining two nodes. Then repeat the exercise for the designer. �
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