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Abstract

We study dynamic multilateral markets, in which players’ payoffs result from coalitional bargain-
ing. The equilibrium payoffs are computed in stationary market equilibria that we show to exist for
any market game. We focus, in particular, on market games with different player types and derive
an explicit formula for each type’s limit payoff as the bargaining frictions vanish. The limit payoff
of a type depends in an intuitive way on the supply and the demand for this type in the market,
adjusted by the type-specific bargaining power. We consider our framework as an alternative to the
Walrasian price-setting mechanism. When we apply it to the theory of labor markets, we find that
the firm size and equilibrium payoffs are determined endogenously, with each worker type being
rewarded its marginal product.
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1. Introduction

Market interactions often involve more than two parties. In some situations these are buyers
and sellers who generate different trade surplus depending on the relative size of the demand and
supply. In other situations each party’s participation is necessary for the completion of the trans-
action. This is a prevailing feature of markets in the presence of intermediaries such as financial
and legal institutions and labor markets. This paper aims to contribute to the growing literature on
dynamic markets (cf. [15],[2], [16], and, more recently [5]) by focusing on multilateral bargaining.
A price formation mechanism based on strategic interactions is studied as an alternative to the Wal-
rasion auctioneer’s search for equilibrium prices. In the context of wage-setting, we also study the
implication of multilateral bargaining for the size and organizational design of the firm (Examples
2-5). We further employ multilateral bargaining in the analysis of two-sided markets with more
than one market participant on each side (Example 7) and endogenize the size of the bargaining
coalition.
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We take [15] as a stepping stone and study a multi-sided market, in which subsets agents meet
every period and bargain over the allocation of a surplus that they can produce jointly. The surplus
is shared either according to the Nash Bargaining Solution with endogenous threat points or a
random player becomes a proposer in an ultimatum game (cf. [14]).

In the case of an unanimous agreement, trade is realized and all agreeing agents trade and leave
the market. These agents are then replaced by replica agents with the same endowments, thus,
the stock of market participants and the distribution of endowments remain constant throughout
the entire game. In case that at least one of the matched agents disagrees, the players from the
disagreeing coalition remain in the market and new sets of agents are matched in the next period.
When we extend the notion of market equilibrium based on stationary strategies to our dynamic
multilateral markets, we show that a market equilibrium exists in all games. Unlike other models
of the firm based on multilateral bargaining, e.g., [10] [18], [19], we find that, in equilibrium, each
factor of production is rewarded by its marginal product. Thus, the bargaining procedure discussed
here may be seen as an alternative to the Walrasian price-setting mechanism, which makes explicit
the role of strategic behavior.

In particular, when we study markets with homogenous labor, we find that in equilibrium,
worker’s relative wage does not depend on bargaining frictions, as embodied in the discount factor
and the matching probabilities. Instead, it depends in an intuitive way on the relative bargaining
power between the entrepreneur and the worker and it is an increasing function of the relative labor
market tightness given by the ratio of total labor supply and the number of vacancies. We further
endogenize firm size (the number of vacancies in each period) in the case when the entrepreneur’s
bargaining power equals the collective bargaining power of the workers. We show that firm size is
positively related to the total labor supply and it is negatively related to the concavity of the pro-
duction function. For the same case when the entrepreneur’s bargaining power equals the collective
bargaining power of the workers, we also study the effect of (ex-post) unionization. Surprisingly,
we find that workers’ payoffs are higher when they bargain for their wage individually than when
they do so collectively as a trade union.

We focus, then, on market games with heterogeneous players. In particular, we analyze the
situation, in which each productive coalition (e.g., a firm) employs a fixed combination of player
types. In the general setting, we show that the aggregate payoff of a type depends on its relative
bargaining power, relative demand and supply for this type and does not depend on the discount
factor and the matching probability. In the case of vanishing bargaining frictions, we derive the
unique market equilibrium payoffs that specify this dependence on the individual level of skill
supply for each player type.

We use these general results to study a dynamic multilateral market with heterogeneous factors
of production that may have asymmetric productivity. Such market features are present in hierar-
chical firms where a worker’s type corresponds to a level in the firm’s hierarchy. The results from
homogeneous-type-firm generalize nicely to the heterogeneous-type framework. In particular, we
generalize the equilibrium wage equation and give it a labor demand-supply interpretation.

Our work differs from other studies on multilateral markets in the bargaining procedure and
matching mechanism. Several other works study multilateral bargaining, however, they do not
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consider a dynamic market. One strand of this literature focuses on games with a characteristic
function form. These authors either aim at supporting all core allocations as equilibrium outcomes
(cf [22]) or focus on the efficiency of the bargaining outcomes (cf. [3] and [12]). In a related
work, [10] allow for “partial agreement” where the agreeing agents leave the bargaining procedure
with their agreed shares, while the proposer and the disagreeing agents proceed to the next stage
of bargaining. While the assumption of “partial agreement” may be valid in certain contexts,
e.g., division of an estate, it is less applicable to others such as production with complementary
inputs. [4] instead study unanimous agreement of all parties in the multi-person ultimatum game.
They, however, assume that bargaining continues until agreement is reached. As our focus is on
anonymous dynamic markets, the assumption that the bargaining coalition dissolves in case of
disagreement seems more plausible.

The main application of our general theory of multilateral dynamic market is built on the labor
market theory. In this respect, our work is related to [18] and [19]. Our bargaining procedure differs
from the one studied by these two author in that it treats all factors of production symmetrically.
In particular, whereas the threat points of the workers in [18] are exogenously given, they are
determined endogenously in our model. The implications that we derive with regards to wages
and firm size differ therefore, not surprisingly, from those of [19]. In this respect, our model
can be viewed as providing an alternative wage-setting mechanism to the tâtonnement process of
competitive equilibrium.

The remainder of the paper is organized as follows: In Section 2 we describe our theoretical
framework and in Section 3 we state our main existence result and apply our general theory to the
theory of the firm. In Section 4, we specialize our discussion of market equilibria by introducing
heterogeneous player types. In this context, we develop the notion of type-separating market equi-
libria and compute the equilibrium payoffs explicitly, when the bargaining frictions vanish. Section
6 provides some concluding remarks.

2. Definitions and Market Interaction

We consider a market with the set N = {1, . . . , N} of replica agents that operates at discrete
dates. Each date starts with a matching stage, in which coalitions of players (subsets of N ) are
randomly matched. We allow for many coalitions (possibly of different sizes) to be matched at
the same date as long as all intersections of the matched coalitions are empty set. The probability
πS of selecting the coalition S ⊆ N is implied by a stationary matching procedure and, hence, is
constant throughout the game. When matched, the members of S can produce a surplus v(S) ≥ 0
by employing their player-specific inputs. We assume that all productive coalitions have a positive
probability of meeting, πS > 0 if v(S) > 0. We assume, further, that either they share this surplus
according to the Nash Bargaining Solution (NBS) or that one of the players is chosen as proposer
in an ultimatum bargaining game. The (absolute) bargaining power of each player i ∈ N will be
parameterized by αi that we assume to be strictly positive. Let the set of all coalitions S ⊆ N
containing player i ∈ N be denoted by Si. Then, the probability that player i is proposer in
S ∈ Si is given by αi/α(S), where α(S) :=

P
k∈S αk, for all i ∈ S. In the context of Nash
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Bargaining, αi/α(S) is the (relative) bargaining power of i in coalition S. The threat points (or
minimum accepted offers) will be determined endogenously in market equilibrium. We note that
the assumption of a simultaneous multilateral bargaining in a matched coalition S is a convenient
simplification. Our results obtain also when the players in S bargain sequentially, as long as the
same player proposes in each bargaining round and we treat all bargaining rounds as occurring in
the same period.

As we will show in the next section, a equilibrium disagreement in S will occur whenever the
sum of threat points (the sum of minimum acceptance levels) exceeds the trade surplus v(S). In
this case, the same set of players proceeds to the next date, where coalitions are selected randomly
and the bargaining process starts again. Otherwise, there is an agreement, in which case all agents
in S receive their agreed shares of v(S) and leave the market. All players that have left the market
are instantly replaced by replica agents with the same endowments. Importantly, all new agents
are treated by the matching procedure in the same way as the ones who left. In particular, the
set of newcomers that have replaced the members of an agreeing coalition S, will be selected
with probability πS in all ensuing periods, in which it stays in the market. We do not rule out
the possibility that players may return to the market some periods after their departure. For our
results to hold, it is only important that players do not anticipate strategically this possibility when
bargaining over their shares. We further assume that all players apply a common discount factor δ
at each stage of the game.

3. Stationary Equilibria in the Market Game

One way to define market equilibria in our game is to follow Rubinstein and Wolinsky (1985)
- RW 1985 thereafter - and set up an extensive form game. This definition specifies histories and
strategies for all players. In particular, a history of an agent at a certain stage of the game is a
sequence of observations made by her up to that stage and. A strategy of an agent is a sequence of
decision rules after all histories such that this agent moves, i.e., makes an offer or responds to an
offer. RW 1985 focus on stationary strategies, i.e., strategies that prescribe a history-independent
bargaining behavior towards the partners with whom an agent is matched. Thus market equilib-
rium (ME thereafter) is defined as a stationary strategy profile such that no agent can improve by
changing her action after any possible history. The formalization of the RW 1985 framework to the
market game with multilateral coalitions is straightforward and will be omitted here. Instead, we
construct MEa by observing that in such an equilibrium all coalitional partners of player i offer her
the discounted continuation payoff δxi and player i is indifferent between accepting and rejecting
this offer. Therefore, the equilibrium payoffs that players expect at the start of each period solve
the following system,

xi =
P
S∈Si

eπS µ αi
α(S)

(v(S)− δx(S\{i})) + α(S\{i})
α(S)

δxi

¶
+ (1−

P
S∈Si

eπS)δxi
= δxi +

P
S∈Si

eπS αi
α(S)

(v(S)− δx(S)), ∀i ∈ N , (1)
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where eπS/πS is the agreement probability in the matched coalition S and x(T ) :=
P

j∈T xj for all
T ⊆ N . A matched coalition S will agree in ME with positive probability only if the agreement is
profitable for all members of S, i.e., whenever the sum of discounted continuation payoffs, δx(S),
does not exceed the productivity v(S). Otherwise, either at least one responder j ∈ S faces an
offer that is below δxj or the proposer i ends up with the residual surplus v(S)− δx(S\{i}) below
her discounted continuation payoff δxi. It follows that eπS must satisfy,

δx(S) < v(S)⇒ eπS = πS,

δx(S) > v(S)⇒ eπS = 0, (2)
δx(S) = v(S)⇒ eπS ∈ [0, πS ],

Formally, a ME for the discount factor δ ∈ [0, 1] is a solution (xδ, eπδ) to the system (1)-(2), where
xδ = (xδi )i∈N is a feasible allocation and eπδ = (eπδS)S⊆N contains the probabilities of cooperation.
We will say that a coalition S is active in the ME (xδ, eπδ) if eπδS > 0, i.e., if the coalition S
cooperates with positive probability in this ME.

Note that re-writing (1) as,

xi = (1−
X

S∈Si
eπS)δxi +X

S∈Si
eπS{δxi + αi

α(S)
(v(S)− δx(S))} (3)

makes clear that the expected payoff xi results also when the outcome of each coalitional meet-
ing is prescribed by the NBS where player’s bargaining power is given by (αi/α(S))i∈S and the
(endogenous) threat points are (δxi)i∈S .

We can also interpret the payoff xi as the price that player i expects for her input in a ME.
In any case, xi is different from the expected i0s per-period payoff, which is equal to the second
term in (3).1 Note that in an anonymous market games, i.e., one in which all players have the
same bargaining power, the value of a coalition depends only on the number of players in that
coalition and the matching probability of all coalitions of equal size is the same, the expected per-
period equilibrium payoff of each player does not depend on δ as stated in Proposition 1. Formally
anonymous markets are characterized by αi = αj for all i, j ∈ N , v(S) = v(T ) and πS = πT for
all S, T ⊆ N with |S| = |T |.

Proposition 1. Consider an anonymous market game and a symmetric market equilibrium of that
game (xδ, eπδ). The expected per-period payoff is given by

P
S∈Si eπS v(S)

|S| for all players i ∈ N .

The individual payoff, xδi for all i ∈ N in this symmetric equilibrium is given by S∈Si
πS

v(S)
|S|

1−δ(1− S∈Si
πS)

.

1This distinction has important implications, when agents enter the market with a stock of inputs. If agents could
trade repeatedly and stay in the market until the stock is exhausted, the disagreement payoffs (1) would not internalize
the utility loss due to delayed cooperations. Although we allow each replica agent to trade only once, our model can be
easily extended in this direction.
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The first part of the statement is straightforward to derive from (3) using that αi
α(S) =

1
|S| and

x(S) = |S|xi for all S ⊆ N and any i ∈ N in a symmetric equilibrium of an anonymous market
game. The second part is easily derived by replacing the second term of (3) with

P
S∈Si eπS v(S)

|S| .
The following example is built on an anonymous market game. It is used to illustrate the further

point, that unlike in the bargaining models of [8] and [21](the expected) ME payoffs (1) may not
be equal to the Shapley value2 and may not be in the core of the corresponding static game.

Example 1 (Pairwise trade). Let N = {1, 2, 3} with αi = 1/3 for all i ∈ N . Let v({i, j}) = 1
for all i, j ∈ N with i 6= j and v(S) = 0, otherwise. Consider a matching procedure π{i,j} = 1/3
for all i, j ∈ N with i 6= j. Since all players are symmetric, the system (1) simplifies to one
equation when all pairs agree,

x = δx+ 2
1

3

1

2
(1− δ2x).

The solution x = 1
3−δ entails that 2δx ≤ 1 for all δ ∈ [0, 1] and, hence, the optimal agreement

condition (2) holds. The expected per-period equilibrium payoff of each player, x− δx/3 = 1/3,
does not depend on δ as stated in Proposition 1. Moreover, the latter value and x differ from the
Shapley value for the productive coalitions, i.e., the coalitions of size two when δ 6= 13, and are
not in the core of the corresponding static game, which is empty.

Moreover, it turns out that a ME, i.e., a solution to the system (1)-(2), exists in any game.

Proposition 2. There exists a ME in any game.

Proof: The proof is relegated to the Appendix.
In the following series of examples, we apply our theoretical framework to the study of the

labor market. We derive the equilibrium wage vector and firm size. In addition, we discuss the
implications of (ex-post) unionization, i.e., when at the bargaining stage workers act collectively.

Example 2 (Labor Market with Homogeneous Workers). At each date, the labor market con-
sists of one entrepreneur, i, and N homogenous workers. We will denote the set of workers byNw

and the common worker’s bargaining power by αw. The productivity of a coalition with n ≤ N
workers and the entrepreneur (a productive coalition) is given by the increasing and concave pro-
duction function F (n) : N 7→ R+, i.e., v(S) = F (n) for all S ⊆ N such that i ∈ S and
|S ∩Nw| = n. In particular, production is impossible without workers, F (0) = 0.

2As Example 7 illustrates there are some market games in which the ME payoffs and the Shapley value do coincide.
3The Shapley value for a productive coalition of size two is given by (1/2,1/2).
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We can compute the ME payoffs for the entrepreneur and the representative worker, xδi and xδw,
respectively, from (1) when only coalitions with n workers are matched. For symmetric matching
probabilities, the system (1) specializes, then, to two equations,

xi = δxi +
αi
α(n)

(F (n)− δxi − nδxw), (4)

xw = δxw +

¡N−1
n−1

¢¡N
n

¢ αw
α(n)

(F (n)− δxi − (n)δxw)

where α(n) := αi + nαw and we assume that agreement is optimal in every productive coalition.
It can be shown that the solution to the latter system confirms the optimality of agreements and that
the ratio of equilibrium payoffs between the entrepreneur and a representative worker satisfies,

xδi
xδw

=
αiN

αwn
, (5)

Notably, expression (5) does not depend on the discount factor δ. Instead, it depends in an intuitive
way on the relative bargaining power between the entrepreneur and the worker and it is an increas-
ing function of the relative labor market tightness, N/n where N measures total labor supply and
n the number vacancies in the firm.

From the solution (xδi , xδw) to 4, we can calculate the limit payoffs,

lim
δ→1

xδi = x1i =
αiF (n)N

αiN + αwn2
, (6)

lim
δ→1

xδw = x1w =
αwF (n)n

αiN + αwn2
,

which do not depend on the matching probabilities and are a special case of the limit payoffs in
Proposition 3 (Section 4). Note that

x1i + nx1w = F (n),

∂x1w/∂N < 0, ∂x1i /∂N > 0 (≤ 0) if F (1n) > 1 ( ≤ 1).

The first equation states that workers and the entrepreneur exhaust the product of their cooperation,
while the derivatives in the second line are similar to the findings in search models, e.g. [17]: the
tighter the labor market (the lower the N ) the higher the worker’s wage (x1w) is. The reverse is
expected to hold with respect to the entrepreneur’s payoff.

So far, our assumption that only coalitions with n workers are matched led to the equilibrium
payoffs (6). In general, however, all productive coalitions should have a (random) opportunity to
cooperate. Interestingly, if we focus on pure strategy, generic limit MEa (GLME)4, a unique firm

4The generic limit ME is formally defined in Definition 12.
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size and the unique limit payoffs (6) emerge endogenously. Pure strategy refers here to the absence
of randomized coalitional agreements, while genericity rules out a specific relationship between
equilibrium payoffs and coalitional productiveness (see definition (12)).

Our Propositions 3 and 4 imply, then, that only coalitions with a particular number, say n, of
workers will agree in a GLME (x1, eπ1) and each player type will earn the limit payoff, given by
(6). Furthermore, Lemmata 1, 6 imply that cooperation for any other firm size, say with k 6= n
workers, is not supported in equilibrium as the coalition’s value falls short of the members’ total
limit payoffs,

x1i + kx1w ≥ F (k), k = 1, ..., N, (7)

with equality for k = n only. In particular, for k = n− 1 and k = n+ 1, the conditions (7) take
the form,

xii + (n− 1)xiw > F (n− 1) & xii + (n+ 1)x
i
w > F (n+ 1),

which, after substituting xii + nxiw = F (n) becomes,

F (n)− F (n− 1) > xiw > F (n+ 1)− F (n). (8)

These inequalities define, essentially, the neoclassical wage for the workers.

Example 3 (Equilibrium firm size). In the homogeneous labor market, discussed in Example 2,
we derive the limit equilibrium payoffs (6). If the bargaining power of the entrepreneur is the same
as the collective bargaining power of the workers, αi = αwn, the payoffs (6) simplify to,

x1i =
F (n)N

N + n
, x1w =

F (n)

N + n
. (9)

On the other hand, the neoclassical wage condition (8) indicates that the wage should approximate
the product of the marginal worker F 0(n). In particular, for the concave Cobb-Douglas production
function F (n) = Anγ , γ ∈ (0, 1), we obtain the limit equilibrium firm size as,

x1w =
F (n)

N + n
= F 0(n)⇒ n =

Nγ

1− γ
, (10)

where we assume that this value is an integer. We validate this claim by substituting (9) and (10)
into (7), which leads to the condition,

p+ 1

p
(

pγ

1− γ
)γ(1− γ) ≥ 1, where p = N/k. (11)

The derivative w.r.t. p of the l.h.s. of this expression is zero for p∗ = (1 − γ)/γ and negative
(positive) below (above) this value. Hence, the l.h.s. of (11) attains its minimum at p∗, or for
k = Np∗ =Nγ/(1− γ). For this value, the condition is satisfied with equality, while for all other
values of p = N/k, it is satisfied with unequality.
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Interestingly, we obtained a full characterization of the limit ME5 - the unique firm size, wage
and profit - without reference to an exogenous wage (the outside option of the worker). Notice that
equilibrium firm size is larger the greater the total labor supply, N , is. Furthermore the firm size
increases in γ, i.e., more concave production functions imply smaller equilibrium firms.

The last example in this section considers the implications of unionization.

Example 4 (Trade unions). We consider the homogeneous labor market from Example 2 with the
GLME firm size n. We suppose that after the matching stage, the selected n workers form a trade
union. We let the bargaining power of the trade union, αu = nαw, be equal to the sum of the
bargaining powers of its n members. Under these assumptions, the original game, in which the
entrepreneur is randomly matched with n workers, is transformed into a bilateral bargaining game,
in which the entrepreneur is randomly matched with one of the eN =

¡N
n

¢
potential trade unions.

The limit payoffs in the transformed game are given in Propositions 3,

bx1i = F (n)αi eN
αi eN + αwn

, bx1u = F (n)nαw

αi eN + αwn
.

for the entrepreneur and the trade union, respectively. When comparing worker’s payoffs x1w andbx1u/n under equal bargaining powers of the entrepreneur and the unionized workers, i.e., αi = nαw,
we obtain - somehow surprisingly - that the ex-post unionization harms the workers (except in the
extreme cases of n = 1 and n = N when it is inconsequential),

bx1u/n
x1w

=
αwF (n)

αi eN + αwn
/

nαwF (n)

αiN + αwn2
=

N + n

n( eN + 1)
≤ 1.

4. Limit Market Equilibria with Many Types

In this section, we specialize our concept of market equilibrium to markets with many types
of players. We assume that the set of players N is partitioned into T types, N = ∪t=1,...,TNt,
∩t=1,...,TNt = ∅ and Nt := |Nt|. The set of all possible player types is denoted by T . A
multilateral coalition (MC) S ⊆ N consists of

P
t∈S nt players, where nt = |S ∩ Nt| denotes

the number of t-type players in this coalition. We will often use the operator T (S) to obtain the
type of the coalition S (players’ type profile). This type is defined as an ordered vector of type
multiplicities, T (S) = (n1, ..., nT ), where nt = |S ∩Nt|. For example, the type of a one-player
coalition is a unit vector, while the type of the grand coalition is (N1, ..., NT ). Crucially for the
following results, we assume that v(S) = v(S0) when T (S) = T (S0). Therefore, we can use the
shorthand v(T (S)) for the productivity of a coalition of type T (S). We assume also that players of
the same type have equal bargaining powers, αi = αj if T (i) = T (j). In order to rule out trivial
equilibria, we assume further that v(S) > 0 for at least one coalition S ⊆ N .

5The limit ME is formally defined in Definition 1.
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Definition 1. A ME (x1, eπ1), where x1 = limδ→1 xδ and xδ is the solution to (1) for given proba-
bilities eπ1, will be called a limit ME (LME).

Note that (xδ, eπ1) is not necessarily a ME in the vicinity of δ = 1 because by keeping the
agreement probabilities eπ1 fixed, some coalitions may be forced to violate the rational agreement
condition (2).

Definition 2. A ME (xδ, eπδ) is generic if,

∀S, S0 : S ∩ S0 6= ∅, T (S) 6= T (S0), v(S)xδ(S0) 6= v(S0)xδ(S). (12)

We will abbreviate generic LME to GLME. In Lemma 6, we prove that a GLME implies that
there are no intersecting coalitions of different types, in which agreement is rational simultaneously.

In order to circumvent technicalities, we will focus on pure strategy GLME, i.e., equilibria in
which all agreements are non-random.6

Proposition 3. For a pure strategy GLME (x1, π1),
(i) There exists δ∗ < 1 such that (xδ, π1) is a ME for δ ∈ (δ∗, 1] and x1 = limδ→1 xδ.
(ii) Each player type cooperates in coalitions of homogeneous types.
(iii) All t-type players, that cooperate in coalitions of type n = (n1, ..., nT ), receive the same

payoff,

x1t = v(n)
ntαt

Q
s6=t:NsP

s(n
2
sαs

Q
k 6=sNk)

, (13)P
tntx

1
t = v(n).

(iv) There is no other pure strategy GLME with the same payoff vector x1.

PROOF. The proof follows from the following lemmata.
(i) Lemma 5, (ii) Lemma 3, (iii) Lemma 7, (iv) Lemma 8.

In many games, a productive cooperation requires participation of all player types, i.e., v(n1, ..,
nT ) > 0 only if nt ≥ 1 for all types t. For example, consider an environment in which all factors
of productions are perfect complements as it is the case in our application to homogeneous labor
markets. For these types of games, we have the following uniqueness result.

Proposition 4. Consider a market game such that v(n) > 0 impliesmin(n) ≥ 1. Then, there is a
unique pure strategy GLME.

Proof. The proof is relegated to the Appendix.

6We can, however, construct a pure strategy GLME that emulates the payoffs in any mixed strategy limit equilibrium.
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5. Examples

In our first example we generalize the results derived for homogeneous labor markets.

Example 5 (Labor Market with Heterogeneous Labor). At each date, the labor market consists
of one entrepreneur and Nt workers of type t ∈ T . The production function takes now the form
F (n1, ..., nT ) : NT 7→ R+, where nt refers to the number of t-type workers employed by the firm.
Alternatively, we can interpret F as the output of a hierarchy with T levels and nt employees at
each level t. We assume further, that productive cooperation is only possible when all types of
workers participate, F (n1, ..., nT ) > 0 implies nt ≥ 1 for any type t.

From Proposition 4 follows that there is a unique pure strategy GLME (x1, eπ1) in this game.
In this equilibrium, only coalitions, composed of the entrepreneur and a particular profile n =
(n1, ..., nT ) of workers, agree and player types earn the limit payoffs (13) that exhaust the product,PT

t=1ntx
1
t = F (n).

In particular, the relative limit wages of different worker types (different levels in a hierarchy)
satisfy,

x1t
x1s
=

ntαtNs

nsαsNt
, s, t ∈ T . (14)

The latter relationship reveals that the relative scarcity of types in the market influences the relative
wages in the expected way: A higher supplyNt of type t workers depresses their relative individual
wages ceteris paribus. On the other hand, the total number nt of workers of type t, employed in
an equilibrium firm, has a positive impact on their relative wages. This is not surprising, when
we observe that nt represents the demand for this type by the equilibrium firm. Therefore, (14)
combines in a clear-cut manner the supply and demand forces in the market, adjusted by the type-
specific bargaining powers).

Furthermore, iterating the argument from Example 2 over types, it is easy to show that the
neoclassical wage holds for each type t ∈ T in this equilibrium,

F (nt, n−t)− F (nt − 1, n−t) > x1t > F (nt + 1, n−t)− F (nt, n−t), t ∈ T . (15)

Our next example generalizes two-sided markets.

Example 6 (N-Sided Markets). In an N-sided market, the value of a coalition of type n= (n1, ..,
nN ), where ni is the number of agents of type i, is given by the Cobb-Douglas function v(n) =

Anβ11 ...nβNN , βi > 0. Note that the special case N = 2 and n1, n2 ≤ 1 corresponds to a homoge-
neous "buyer-seller" market and the LME payoffs follow, then, from (13),

x11 =
αtN2

α1N2 + α2N1
, x12 =

α2N1
α1N2 + α2N1

.

Generally, Proposition 4 implies that there is a unique pure strategy GLME (x1, eπ1) in this game.
In this equilibrium, only coalitions of a particular profile n = (n1, ..., nT ) cooperate. By a similar
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argument as used in previous examples, we can approximate the limit GLME payoff x1t by the
marginal contribution of this type,

∂v(n)

∂nt
=

βt
nt
v(n),

which, together with (13), leads to,

βt
nt
v(n) = x1t ⇒

n2t
n2s
=

βtαsNt

βsαtNs
.

We assume, without the loss of generality, that in this GLME n1 ≤ ns for all s = 1, ...,N . Then,

nt = (
βtαsNt

βsαtNs
)1/2, t = 1, ..., N,

defines the single coalition type that cooperates in the unique GLME if
P

s βs < 1. After substi-
tuting the last expression into (13), we can compute the ratio of total GLME payoffs for the types
t and s,

ntxt
nsxs

=
βt
βs
.

Finally, we show in the last example that GLME payoffs are sometimes more plausible than,
e.g., the Shapley values.

Example 7. Each player {1, ...,N} is indexed by her marginal productivity, i.e., player i increases
the productivity of any coalition by i. Hence, the value of a coalition is the sum of the marginal
productivity of its members. It can be verified that x1 = (1, ..., N) is a LME payoff vector (this
LME is, however, not a GLME. Each player obtains in this LME her marginal productivity. The
LME payoffs in this case are different from Shapley values, as can be seen, e.g., for N = 3, where
sh = (3/2, 2, 5/2).

6. Conclusion

We have developed a price-setting mechanism that makes explicit the role of strategic behavior
in the context of dynamic multilateral markets. We have shown the existence of market equilibria
in stationary strategies in any multilateral market game. Furthermore, we have studied in more
detail the implications of our theoretical framework for the equilibrium price in the labor market.
Unlike, other price-setting mechanisms based on multilateral bargaining applied to the labor mar-
ket, we find that our procedure results in equilibrium prices which equal the respective marginal
product of the factors of production. In this respect, we see our model as providing a strategy-based
microeconomic alternative to the Walrasian auctioneer’s procedure to find the competitive prices.

Further extensions to the current study of the labor market are possible. Similar to [18] one can
address the question of technology choice in the context of the type separating market equilibria and
investigate how the interplay of factors’ productivity and market tightness shape up the equilibrium

12



outcome. In addition, one can explore further the implications of our theoretical framework with
respect to organizational design of the firm. The hierarchical depth and width of the firm may be
derived endogenously in market equilibrium as a function of the relative bargaining powers and the
scarcities of the factors of production.

Last, we want to stress the greater applicability of our general theory to topics beyond the
one of the labor market. Many two-sided markets such as the housing market, credit-card market,
retailing exhibit similar multilateral structure of market interactions.

7. Appendix

PROOF. Proposition 2:
In a stationary ME, all trading partners of i will offer her minimum accepted offer δxi. Hence,

the ME payoffs result from the solution to the system of linear equations for x = (xi)i∈N ,

xi = δxi +
P

S∈SieπS αi
α(S)

(v(S)− δx(S)), ∀i ∈ N . (16)

The acceptance probability eπS/eπS will be positive only if a transaction is profitable for all matched
players in S, i.e., when δx(S) ≤ v(S). Otherwise, by offering the minimum acceptable offer δxi
to each player in S\j, the proposer j would obtain v(S) − δx(S\j) < δxj , i.e., less than her
discounted expected payoff in the next period. Hence,

δx(S) < v(S)⇒ eπS = πS , (17)
δx(S) > v(S)⇒ eπS = 0,
δx(S) = v(S)⇒ eπS ∈ [0, πS ],

A stationary ME is then defined as a solution (xδ, eπδ) ∈ [0, 1]N × [0, 1]2N to the system (16)-(17).
If we re-write (16) in the matrix from,

x = Ax+ b, A = (aij),

with the suitable defined matrix A, then it can be readily verified that ||A||1 = maxi
P

j |aij | = δ,
which implies that (16) is a contraction with a unique solution for δ < 1. In this case, we define
the correspondence Λ(eπ) : [0, 1]2N ⇒ [0, 1]2

N , which first computes the solution x to (16) foreπ = {eπS}S⊆N and then selects eπ0 from (17) for x. As this correspondence is u.h.c., a fixed point
exists.

For δ = 1, we show in Lemma 1 that,

v(S) ≤ x1(S), ∀S ⊆ N ,

with equality for active coalitions. The existence of a solution to the latter system of inequalities
follows from the existence of a solution to the constrained linear optimization,

min
x∈RN

+

x(N ) s.t. v(S) ≤ x(S), ∀S ⊆ N .
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Obviously, there is a x∗ ∈ RN
+ that satisfies all inequalities, i.e., v(S) ≤ x∗(S), ∀S ⊆ N .

Furthermore, for each i ∈ N , there exists a subset Si ⊆ N such that v(Si) = x∗i + x∗(Si/{i})
if x∗i > 0. Otherwise, x∗i could be lowered until meeting the equality. Setting eπ1Si = πSi > 0
completes the construction of the ME for δ = 1.

Lemma 1. In a ME (x1, eπ1), it holds for any S ⊆ N that x1(S) ≥ v(S) (with equality if eπ1S > 0).

PROOF. The system (1) for the ME (x1, eπ1) reads,

0 =
P

S∈Sieπ1 αi
α(S)

(v(S)− x1(S)), ∀i ∈ N . (18)

which rules out that v(S) > x(S) for any coalition S. Otherwise, (18) would be a contradiction
as eπ1S = π1S > 0 if v(S) > x1(S) ≥ 0 and eπ1S = 0 if x1(S) > v(S) by the rational agreement
conditions (2). Equation (18) implies, in particular, that v(S) = x1(S) if eπ1S > 0.

Lemma 2. In a ME (x1, eπ1),
x1(S) = x1(S0) =

PT
t=1ntx

1
t , ∀S, S0 ⊆ N , T (S) = T (S0) = (n1, ..., nT ).

PROOF. We start with S = {i}, S0 = {j}, T (i) = T (j), and assume, for the sake of contradiction,
that x1i > x1j ≥ 0. As x1i > 0, it follows from the last condition in (2) and from Lemma 1 that there
is an active coalition Si := {i} ∪ C, such that v(Si) = x1(C) + x1i > 0. If we replace agent i by
agent j in Si, we obtain the coalition Sj := {j} ∪ C of the same type, T (Sj) = T (Si). But then,
equal productiveness of the two coalitions, v(Si) = v(Sj), and Lemma 1 imply a contradiction,

v(Si) = x1(C) + x1i > x1(C) + x1j ≥ v(Sj) = v(Si).

Therefore, x1i = x1j = x1t for T (i) = T (j) = t. This result implies that, in general,

x1(S) =
PT

t=1ntx
1
t = x1(S0), ∀S, S0 : T (S0) = T (S) = (n1, ..., nT ).

Lemma 3. In a GLME, each player type cooperates in coalitions of homogeneous types.

PROOF. For the sake of contradiction assume that in the GLME (x1, eπ1), t−type players i and j
cooperate in coalitions S and S0, respectively, with T (S) = (n1, ..., nT ) 6= (n01, ..., n0T ) = T (S0).
Let the coalition S00 be the same as S0 except for the player j that we replace with i. Hence, T (S) 6=
T (S0) = T (S00) and i ∈ S ∩ S00. As S and S0 are active, eπ1S > 0 and eπ1S0 > 0. Then, Lemmata 1,
2 and T (S0) = T (S00) imply,

v(S) = x1(S), x1(S0) = v(S0) = v(S00) = x1(S00).

By Lemma 6, v(S) = x1(S) and v(S00) = x1(S00) contradict the genericity of (x1, eπ1) as S∩S00 6=
∅ and T (S) 6= T (S00).
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Lemma 4. If the probabilities eπδ in a ME (xδ, eπδ) for δ < 1 imply that all t−type and all s−type
players cooperate only in coalitions of type n = (n1, ..., nT ), then,

nsαsx
δ(Nt) = ntαtx

δ(Ns).

PROOF. By summing up (1) over all t-type players, one obtains the total payoff of this type when
δ < 1,

xδ(Nt) = δxδ(Nt) + ntαt
X

S:T (S)=n
eπS v(S)− δxδ(S)

α(S)

=
ntαt
1− δ

X
S:T (S)=n

eπS v(S)− δxδ(S)

α(S)
=:

ntαt
1− δ

∆δ(n).

Note that we used the fact that the bargaining power αt is the same across all players of type t. By
the same argument, the total payoff to the s−type players is xδ(Ns) = nsαs∆

δ(n)/(1 − δ) and,
hence, the claim follows.

Lemma 5. For a pure strategy GLME (x1, eπ1), it holds that (xδ, eπ1) is a ME for δ sufficiently
close to one and x1 = limδ→1 xδ.

PROOF. In a pure strategy GLME (x1, eπ1), x1(S) ≥ v(S) for any coalition S by Lemma 1. For
a coalitionS such that x1(S) = v(S), Lemma 6 and the continuity of the solution (xδ, eπ1) with
respect to δ imply that,

∀S0 : T (S) 6= T (S0), S ∩ S0 6= ∅, x1(S) = v(S)⇒ xδ(S0) > v(S0),

for δ sufficiently close to one. For such δ, members of S will not cooperate in any coalition S0 with
type T (S0) 6= T (S). If xδ(S) > v(S), these members would not cooperate in any coalition of type
T (S) either, which leads to the contradiction,

0 = xδ(S) > v(S) ≥ 0.

As (x1, eπ1) is a pure strategy GLME, we conclude that xδ ≤ v(S) and eπ1S = πS > 0 for each
coalition S such that x1(S) = v(S).

On the other hand, if x1(S0) > v(S0) then xδ(S0) > v(S0) for δ sufficiently close to one due to
the continuity of the solution (xδ, eπ1) and eπ1S = 0 is the only rational choice for the members of S.

Hence, there exists δ∗ < 1 such that (xδ, eπ1) is a pure strategy ME for δ ∈ (δ∗, 1]. The vector
xδ converges to x1 (for the fixed eπ1) by the definition of GLME.
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Lemma 6. In a GLME (x1, eπ1),
∀S, S0 : T (S) 6= T (S0), S ∩ S0 6= ∅, x1(S) = v(S)⇒ x1(S0) > v(S0).

PROOF. The case x1(S) = v(S) ⇒ x1(S0) < v(S0) is ruled out by Lemma 1. The case x1(S) =
v(S) ⇒ x1(S0) = v(S0) implies x1(S)v(S0) = x1(S0)v(S). Then, we have to consider three
exhaustive alternatives:

v(S)v(S0) > 0⇒ x1(S)

v(S)
=

x1(S0)

v(S0)
⇒ x1(S)v(S0) = x1(S0)v(S),

v(S) ≥ v(S0) = 0⇒ x1(S) ≥ x1(S0) = 0⇒ x1(S)v(S0) = x1(S0)v(S) = 0,

v(S0) ≥ v(S) = 0⇒ x1(S0) ≥ x1(S) = 0⇒ x1(S)v(S0) = x1(S0)v(S) = 0,

all of which contradict the genericity of (x1, eπ1).
Lemma 7. The GLME (x1, eπ1) payoff to a player of type t that cooperates in coalitions of type
n = (n1, ..., nT ),

x1t = v(n)
ntαt

Q
s6=tNsP

s(n
2
sαs

Q
k 6=sNk)

,
XT

t=1
ntx

1
t = v(n).

PROOF. By Lemma 3, each player type t cooperates in coalitions of homogeneous types. By
Lemma 4, the total payoff for all t−type and all s−type players, that cooperate in coalitions of the
same type n = (n1, ..., nT ), satisfy for δ < 1,

nsαsx
δ(Nt) = ntαtx

δ(Ns).

This equality must hold also for the GLME (x1, eπ1) due to the continuity of (1). By Lemma 2, the
last equality becomes then,

nsαsNtx
1
t = ntαtNsx

1
s.

In particular, x1t = 0 implies x1s = 0 for any two types that cooperate in a coalition S : T (S) = n.
This is only possible in a GLME if v(S) = v(n) = 0. We assume below x1t > 0 for type t that
cooperates in S : T (S) = n. Then, eπS > 0 and,

v(S) = v(n) = x1(S) =
P

snsx
1
s

by Lemmata 1 and 2. We divide the last equation by x1t and obtain the GLME payoff of type t,

v(n)/x1t =
P

snsx
1
s/x

1
t =

P
s

n2sαsNt

ntαtNs
⇒

x1t = v(n)/
P

s

n2sαsNt

ntαtNs
= v(n)

ntαt
Q

s6=tNsP
s(n

2
sαs

Q
k 6=sNk)

.
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Lemma 8. There is at most one pure strategy GLME with a given payoff vector.

PROOF. For the sake of contradiction assume that there are two different pure strategy GLMEa
with the same payoff vector x1, (x1, eπ1) and (x1, bπ1), eπ1 6= bπ1. Therefore, there must exist
coalitions S and S0, T (S) 6= T (S0), S ∩ S0 6= ∅ such that S cooperates only in the first and S0

cooperates only in the second GLME, i.e., eπ1S = π1S > 0, eπ1S0 = 0 and bπ1S = 0, bπ1S0 = π1S0 > 0.
But this contradicts Lemmata 1 and 6 as,

eπ1S = π1S > 0⇒ x1(S) = v(S)⇒ x1(S0) > v(S0)⇒ bπ1S0 = 0.
PROOF. Proposition 4:

For the sake of contradiction, we assume that there are two different pure strategy GLMEa with
payoff vectors x1 6= y1 (x1 = y1 is ruled out by Lemma 8). First, we note that Lemma 6 implies
that only one coalition type, nx = (nx1 , ..., nxT ) and ny = (ny1, ..., n

y
T ), cooperates in the respective

GLME.
Then, the following conditions (i) and (ii) ensure that y1 and x1 form part of the respective

GLME,
(i)

PT
t=1n

x
t x
1
t ≤

PT
t=1n

x
t y
1
t , (ii)

PT
t=1n

y
t y
1
t ≤

PT
t=1n

y
t x
1
t .

A violation of (i), for example, implies that coalitions of type nx would always agree and earn
a higher total payoff than coalitions of type ny, which invalidates the GLME y1. By a similar
argument, (ii) is a necessary condition for the GLME x1.

Then, by Lemma 7,

x1t =
nxt αtNs

nxsαsNt
x1s > 0, y1t =

nytαtNs

nysαsNt
y1s > 0, s, t = 1, ..., T,

and the conditions (i) and (ii) simplify to

(i0)
x1sNs

nxsαs

XT

t=1

(nxt )
2αt

Nt
≤ y1sNs

nxsαs

XT

t=1

(nxt )
2αt

Nt
⇒ x1s ≤ y1s ,

(ii0)
y1sNs

nysαs

XT

t=1

(nyt )
2αt

Nt
≤ x1sNs

nysαs

XT

t=1

(nyt )
2αt

Nt
⇒ y1s ≤ x1s.

Hence, x1s = y1s for any s = 1, ..., T , which contradicts x1 6= y1.
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