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Abstract

It has been empirically shown that structural holes in social networks enable potential large

benefits to those individuals who bridge them (Burt, 2004). The pioneering paper Goyal and

Vega-Redondo (2007) offers a new incentives based explanation of this phenomenon. But the main

equilibrium network of their model does not display a basic empirical regularity: the architecture

of social networks is characterized by the existence of densely linked communities loosely connected

to one another (Granovetter, 1983). This paper analyzes the conditions under which agents who

benefit from bridging structural holes can be sustained in equilibrium networks constituted by

densely linked groups.
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1 Introduction

Networks provide answers to many economic questions. They are often means of communication and for

the allocation of goods and services not traded in markets. For example, a network of personal contacts

plays a critical role in obtaining information about job opportunities1; networks underlie the trade

and exchange of goods in non-centralized markets2 and also define the configuration of international

alliances and trading agreements3, among others.

In environments where social networks provide a platform for the flow of information, two relevant

aspects need to be considered: timing and control. With respect to timing, social contacts can accelerate

the acquisition of information generating a first-mover advantage. People can seize such opportunities

or pass information along to another member of the network who can benefit from it. Research environ-

ments are examples of this relevant aspect. Control is another important feature. A person that is the

unique contact between two different people or groups of people benefits from the control over the flow

of information, adapting it to specific strategic interests. Timing and control suggest that the payoffs

an agent obtains are highly dependent on the position in the social network and, in particular, on the

agent’s capacity to bridge gaps among agents. This argument is central in Granovetter (1974) and in

the story behind the structural holes phenomenon. The notion of structural hole was first introduced

by Burt (1992) and can be defined as a disconnection among agents on a network structure. Several

authors4 provide empirical evidence that people who bridge structural holes in social networks have

significantly higher payoffs. In particular, Burt (2004) shows, in a firm environment, that compensa-

tion, positive performance evaluations, promotions and good ideas are disproportionately in the hands

of people whose networks span structural holes.
1See Granovetter (1974), Calvó-Armengol (2004)
2See Kranton and Minehart (2001), Charness et al. (2001)
3See Goyal and Joshi (2006)
4See Burt (1992), Mehra et al. (2003), Podolny and Baron (1997), Ahuja (2000)
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Economic theory has recently focused on the issue to provide incentives based answers to the fol-

lowing question: How can structural holes and their associated large payoffs differentials be sustainable

when agents strategically decide their connections? Classical Economics can provide several arguments

to explain this empirical fact. First, agents who bridge structural holes (bridge-agents hereafter) may

have an a priori advantage with respect to the rest. For example, they can have higher communication

skills that imply lower link formation costs. This heterogeneity among agents’ features would explain

the heterogeneity among agents’ equilibrium payoffs. Second, imperfect information can also explain

the existence of bridge-agents in equilibrium. If agents ignore the actual payoffs of their neighbors or

the structure of links among them, they do not even realize the potential gains of a deviation. Beyond

these arguments, the pioneering paper Goyal and Vega-Redondo (2007) provided an alternative answer

to the question that requires neither ex-ante heterogeneity among agents nor imperfect information.

The authors present a model where every pair of linked agents (directly or indirectly) create a unit

of surplus. If the connection is direct the two players split the surplus equally while if it is indirect then

intermediate players also get a share of the surplus. Thus individuals form links with others to create

surplus, to gain intermediation rents and to circumvent others who are trying to become intermediary.

The star network is prominent in Goyal and Vega-Redondo (2007) for a certain cost range (neither too

low nor, obviously, too high). This equilibrium structure benefits the central agent with an extraordinary

potential for obtaining uncommonly high payoffs. In consequence, the authors show how self-interested

individuals can organize themselves forming equilibrium topologies that enable potential large benefits

to bridge-agents in a setting with perfect information and ex-ante identical agents.

Actual social networks present very complex topologies. Empirical research shows that these net-

works usually consist of densely connected groups (also called clusters) with a few links across them.

Some examples of these clusters are communities in a geographic region, departments in a firm, groups

within a profession or members of a sports team. Figure 1 corresponds to a division of labor familiar
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from Durkheim (1893) and it clearly illustrates the commented network structure.

Figure 1: A real network with highly connected clusters

The network in figure 1 represents a view of the world which has been often put forward to explain

the ’strength of weak ties’ theory5. According to this theory, the world consists of families or com-

munities with very strong ties among their members. These families are connected by trade relations

or occupational colleagueships to other families but these interfamily ties are typically weaker than

intrafamily ties. In our analysis we omit the discussion about the strength of the ties but we focus on

this empirically based network architecture. This network structure has been observed not only in large

social networks but also in organizations and firms. Burt (2004) focus on data describing 673 managers

who ran the supply chain in 2001 for one of America’s largest electronic companies. The study shows

that there are clusters of managers within business units. To make the clusters more apparent, Burt

looked at the top 89 senior people to see the core of the supply-chain network, drawn in figure 2. Shaded

areas indicate business units. Managers not in a shaded area work at corporate headquarters. There

are 514 connections in the sociogram at the top figure 2: 62% between managers in the same business

unit, 35% with managers at headquarters and only 3% between managers in different business units.
5See, for example, figure 2 in Granovetter (1973) or figure 1 in Friedkin (1980).
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The bottom of figure 2 (headquarters are removed) provides a stark illustration of the fragile contact

across business units.

Figure 2: Clusters in a small network

The objective of this paper is to link the theoretical model Goyal and Vega-Redondo (2007) with

the empirical evidence related to the shape of social networks. In particular, this work aims to analyze

the conditions for having bridge-agents in equilibrium using the theoretical setting introduced above
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when society is exogenously organized forming densely connected communities.

We apply the widely used Pairwise-Nash Equilibrium concept (PNE)6 to our analysis and show that

in order to sustain bridge-agents in equilibrium, (i) the size of the communities should be sufficiently

small and (ii) bridge-agents cannot connect a pair of sufficiently large (groups of) communities. These

results generalize the argument by Goyal and Vega-Redondo (2007) that players bridging structural

holes can exist in a setting with ex-ante identical agents and perfect information to the case with

densely connected communities. These bridge-agents can obtain large equilibrium payoffs differentials

as illustrated by the examples at the end of Section 3.

The rest of the paper is organized as follows: in the next section we present the basic setting of the

model and notation. In Section 3 we discuss the results of the model. Section 4 concludes.

2 The Model

The set up of the model is based on Goyal and Vega-Redondo (2007).

Let N = {1, 2, ..., n} be the finite set of ex-ante identical agents that make up the population. These

agents play a network-formation game with the following characteristics: the strategy of every player

consists of making an announcement of intended links. These announcements are simultaneous. Let

si = (si1, ..., si,i−1, si,i+1, ..., sin) be the strategy vector of player i, where sij ∈ {0, 1} and sij = 1 means

that player i intends to form a link with player j, while sij = 0 means that player i does not intend to

form such a link. Links represent pairwise relations among agents. A link between two individuals is

undirected (both agents benefit from its existence and participate in its cost), can be severed by one of

them unilaterally but can only be created by mutual consent of the two implied individuals. Formally,

a link between two players i and j is formed if and only if sijsji = 1. Let gij = 1 denote the existence

6See Goyal and Yoshi (2006), Calvó-Armengol (2004) and Bloch and Jackson (2005) for definitions and applications

of this concept.
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of a link between i and j while gij = 0 denotes the absence of a link. Notice that a strategy profile

s = (s1, s2, ..., sn) induces a unique network g(s). A path in g connecting i1 and in is a set of distinct

nodes {i1, i2, ..., in} ⊂ N such that gi1i2 = gi2i3 = ... = gin−1in
= 1. All players with whom i has a path

constitute the component of i in g, which is denoted by Ci(g). If all the players belong to the same

component, the network is said to be connected.

2.1 Topological assumptions

As commented in the introduction, we are interested in reproducing the kind of network topologies that

present densely connected clusters of agents. To this end, we assume that agents are exogenously located

in an underlying structure, and that the cost of having a link between two players (c(d)) depends on

the distance between their locations in this underlying structure7. Henceforth, we refer to this distance

as topological distance. The geodesic distance between two agents is defined as the number of nodes of

the shortest path between them.

The effects of topological distance on the cost of links can be motivated along the following lines.

First, one may want to think of distance from a geographic point of view. In that case, the cost of a

link between two agents directly depends on the physical distance between them. Second, topological

distance may be interpreted relative to some social characteristic space. A direct relationship between

linking costs and topological distance in this social metric will reproduce agents’ tendency to associate

with others similar to them (according to age, race, gender, religion, profession). This tendency is

known as homophily and has been documented quite broadly8.

In this paper we assume that agents are exogenously distributed in communities or neighborhoods

and that the cost of a link depends on the community of the two implicated individuals: c(d) = cl

if the two agents belong to the same community and c(d) = ch otherwise (where ch > cl). As we

7See Gilles and Johnson (2000) and Galleotti et al (2006)
8see McPherson et al (2001)
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already mentioned, we attempt to reproduce densely connected groups of agents in equilibrium. This

will happen when cl is sufficiently small. For simplicity, we assume that cl = 0. Let M be the total

number of communities (M ≥ 3). Let Mi be a typical community and let mi = |Mi|. We consider that

mi > 1 ∀i 9.

2.2 Payoff function and equilibrium concept

The payoff function is such that any pair of connected players (i and j) generates one unit of surplus.

The distribution of this unit depends on the intermediaries between i and j and on the nature of

competition between intermediaries. We assume that any two paths between any two players fully

compete away the entire surplus (à la Bertrand competition). Therefore, an intermediary between i

and j (say k) can retain part of the surplus generated by i and j if and only if this intermediary lies

on all paths connecting i and j. If this condition holds, we will say that player k is an essential player

for i and j. For example, in a star network10 the central player is essential since no pair of players can

ever avoid her on any path connecting them.

Two agents connected by a link incur a cost c(d) ∈ {ch, cl}. Let E(j, k; g) be the set of essential agents

in g between j and k and let e(j, k; g) = |E(j, k; g)|. Then, for every strategy profile s = (s1, s2, ..., sn),

net payoffs to player i are given by:

Πi(s) =
∑

j∈Ci(g)

1
e(i, j; g) + 2

+
∑

j,k∈N

I{i∈E(j,k)}

e(j, k; g) + 2
− [ηi(g)ch + µi(g)cl]

where I{i∈E(j,k)} is an indicator function specifying whether i is essential for j and k, ηi(g) ≡ |{j ∈ N :

j /∈ Mi, gij = 1}| denotes the number of external links of i, and µi(g) ≡ |{j ∈ N : j ∈ Mi, gij = 1}|

denotes the number of non-external links of i. The first term represents i’s access payoffs while the

second term represents her intermediation payoffs.
9The case mi = 1 ∀i is analyzed in Goyal and Vega-Redondo (2007).

10In a star network a unique agent is linked to all agents and no other agent has any additional link.
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Given that link creation requires mutual consent of the two players involved and that agents can

announce any combination of links they wish (multidimensional strategy space), a coordination problem

arises. As such, the game displays a multiplicity of Nash equilibria where mutually beneficial links can be

left aside11. This is solved if players are allowed to coordinate bilaterally. For this reason, refinements on

Nash equilibrium that allow for coalitional moves are usually applied to this kind of network-formation

games. One of the most widely used refinements is the pairwise-Nash equilibrium that is defined as

follows:

Definition 1 A strategy profile sPN is a Pairwise-Nash equilibrium (PNE) if the following conditions

hold:

◦ for any i ∈ N and every si ∈ Si , Πi(sPN ) ≥ Πi(si, s
PN
−i )

◦ for any pair of players i, j ∈ N and every strategy pair (si, sj) in which sil = sPN
il , ∀l 6=

j and sjk = sPN
jk , ∀k 6= i,

Πi(si, sj , s
PN
−i−j) > Πi(sPN

i , sPN
j , sPN

−i−j)⇒ Πj(si, sj , s
PN
−i−j) < Πj(sPN

i , sPN
j , sPN

−i−j).

Networks generated by a PNE strategy profile g(sPN ) are robust to deviations of unilateral multilink

severance (that is the usual Nash Equilibrium requirement) and to deviations of bilateral commonly

agreed one-link creation. That is, a PNE network is a Nash Equilibrium network where, in addition,

no mutually beneficial link can be formed.

Alternative equilibrium notions that allow for coalitional moves have been used in the literature 12.

One of them is the Bilateral Equilibrium (BE) concept used in Goyal and Vega-Redondo (2007). A

BE network must be robust to deviations consisting of bilateral commonly agreed one-link creation,

to unilateral multilink severance and to deviations consisting of a simultaneous combination of the
11For example, a strategy profile in which no player announces a link (resulting in the empty network) is always a Nash

equilibrium.
12See Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2000)
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previous deviations by any given pair of individuals. Thus, the BE concept is stricter than the PNE.

The analysis of our model under the BE concept is beyond the scope of this paper but it can be showed

that no network (apart from the pseudo-empty network defined below) can be sustained as a BE because

agents have too many deviation possibilities. In consequence, individuals can always deviate to gain

intermediation rents or to circumvent others who are trying to become intermediary.

Before the analysis of the model, we review some graph-theoretic notions that will be used repeatedly

throughout the paper. If a component Ci(g) contains an essential player i then Ci(g) can be split in,

at least, three parts: two i-groups and i. Each player in Ci(g) is included in one of these parts. Two

players j, k ∈ Ci(g) are members of different i-groups if i is essential for connecting them.

If gij = 1 for all pairs i, j ∈Mi, the network among the members of Mi is said to be complete. A link

between two agents of different communities is said to be external. A community with no external links

is said to be isolated. A community Mi is essential if there is a pair of communities Mj and Mk such

that every path that links any member of Mj to any member of Mk contains some member of Mi (not

necessarily the same). If such a pair of communities does not exist then Mi is said to be non-essential.

A non-essential community can be extreme or non-extreme. Mi is extreme if all the external links of

its players connect them to members of the same community. If the members of Mi have, at least, two

external links to two different communities, Mi is non-extreme.

Finally, let us define some particular network topologies. A network is said to be pseudo-empty if

it has no external links. A group of p communities constitute a cycle if they can be ordered in a list

M1,M2, ...,Mp such that Mp and M1 are connected and Mi is linked to Mi+1 for i = {1, 2, ..., p − 1}

and there is no other external links among them.

3 Results

We start by clarifying the implications of having cl = 0.
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Remark 1 For cl = 0, a PNE network should not contain agents that are essential for two members

of the same community.

Notice that if there is an essential agent (say i) between two members of the same community,

then they can create a link between them and, in consequence, they would avoid the payment of the

intermediation rents to agent i with no cost. This implies that, in any PNE network, members of any

given community should form a sufficiently dense network among them. This would guarantee the

non-existence of essential agents for two members of the same community. For example, the complete

network between members of the same community always satisfy this requirement for any community

size.

Given Remark 1, we can focus on the analysis of the equilibrium inter-community structures. The

following result is the first step on this direction.

Lemma 1 A PNE network that contains some non-essential agent with external links must be con-

nected.

Proof. See Appendix.

In other words, a multi-component network cannot be sustained as a PNE when some non-essential

agent has external links. In the proof we show that in such a case there always exists a profitable

deviation consisting on the creation of a critical link.

We can go one step further and announce the next result:

Proposition 1 In a PNE network there can be at most one component Ci containing more than one

community. Moreover, for a given ch, isolated communities should be smaller than any non-essential

community in Ci.

Proof. See Appendix.
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This result narrows the set of PNE networks. In particular, in equilibrium we can have (i) a

connected network, (ii) a pseudo-empty network, or (iii) a network with a unique multi-community

component and isolated communities. The last two networks reflect a coordination problem and they

can be sustained when ch is sufficiently high13. The result also establishes an upper bound on the size

of the isolated groups. Notice that for a given ch, a network with sufficiently big isolated communities

would offer the possibility of profitable deviations to the creators of critical links.

Our interest is to show whether bridge-agents who get a significantly larger payoff due to their

strategic position on the network can be sustained in equilibrium. That is, we want to see whether

essential players can exist in PNE. For this reason, we focus on the multi-community component Ci

and show the conditions that must be satisfied for having bridge agents in Ci (notice that there can

be equilibrium networks with no essential agents; for example, a cycle of communities with no essential

agents can be sustained as a PNE).

The next result imposes an important restriction on the set of PNE networks that contain essential

agents. Let m
¯

be the size of the smallest community in Ci.

Proposition 2 A PNE network cannot contain essential agents when m
¯

is sufficiently large .

Proof. Let us assume that g is a PNE network with an essential player i ∈Mi. Notice that there are,

at least, two i-groups. The smallest group has, at least, m
¯
− 1 agents (the rest of members of Mi). If

m
¯

is large, then there is always the possibility to create a new link between two players of two different

i-groups circumventing the essential player i. Once that link is created, the deviators increase their

access payoff with respect to the members of the other i-group. Since the minimum size of these groups

is proportional to m
¯

, we conclude that, for any ch, there is always a sufficiently large m
¯

which makes

that deviation profitable. This contradicts the initial statement of stability and concludes the proof.
13In the pseudo-empty network, the creation of an external link between Mi and Mj is unprofitable if its cost exceeds

the profit of linking the other community which is equal to 1
2

+ 1
3

(mj − 1) + 1
3

(mi − 1) + 1
4

(mj − 1)(mi − 1).
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Thus, sustainability of bridge-agents in equilibrium imposes an upper bound on community size.

For sufficiently large m
¯

, the gross gains derived from circumventing a bridge-agent always exceeds the

costs of the additional link. So the upper bound on m
¯

is a function of the costs of forming links ch. This

result is in accordance with the findings by Goyal and Vega-Redondo (2007) in the following sense. The

authors’ setting can be considered as a particular case of our model where the size of the community

is extremely small, i.e. mi = 1 ∀i. In this case, the authors show that essential players naturally exist

in equilibrium. Proposition 2 shows that a small community size is necessary for sustaining agents

enjoying large payoffs differentials in equilibrium.

The above proposition does not restrict the size of that differentials. Notice that essential players

can obtain high intermediation payoffs when MCi is large, where MCi is the number of communities in

component Ci. Next, we study the existence of essential players when MCi
is large (in the spirit of Goyal

and Vega-Redondo (2007), we are interested in analyzing the possibility of sustaining bridge-agents in

equilibrium for arbitrarily large populations).

Proposition 3 Suppose MCi is large. Given ch, a PNE network contains at most one essential

player14. Moreover, in a PNE network with an essential player i, the size of all i-groups but one

should be sufficiently small.

Proof. By contradiction, let us assume that there are at least two essential players i and j in a PNE

network. Notice that these two players must be located in a multi-community component (say Ci) and

that there must exist at least one i-group that does not contain j and one j-group that does not contain

i. Let k and l be two agents contained in each of these two groups respectively. We claim that for

sufficiently large MCi , there always exists a profitable deviation. Three cases need to be considered:

First, suppose that the size of these two groups is not proportional to MCi
. In this case, if k and l

14This result directly follows from assuming that ch is constant. In a richer setting that allows for multiple cost values,

multiple bridge agents could be sustained in equilibrium if the cost of creating a link between them is relatively high.
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create a link between them they will circumvent an essential player (i and j, respectively) to reach

the rest of the population which size is proportional to MCi
. Then, for any ch we can always find a

sufficiently large MCi
under which the deviation would be profitable. Second, if the size of these two

groups is proportional to MCi , the same deviation will also be profitable. Finally, suppose that the size

of only one of these two groups is proportional to MCi
(say the i-group that does not contain j). In

this case, if l and i form a link between them then i increases her intermediation payoffs obtained from

the intermediation between the two groups and l circumvents an essential player to reach the i-group

that does not contain j. Both marginal payoffs are proportional to MCi
; therefore the deviation would

be also profitable for a sufficiently large number of communities, contradicting the initial statement.

On the other hand, let us assume (by contradiction with the second statement of the proposition)

that there is an essential player i and two i-groups whose size is proportional toMCi
in a PNE network. If

two members contained in each of these two i-groups create a link between them, they would circumvent

the essential player i in order to reach the other group. Since the size of that group is proportional to

MCi
, for any ch, the marginal payoff will be positive for sufficiently large MCi

, contradicting stability.

This proposition suggests that, in equilibrium, essential agents should bridge extreme groups with

the rest of the society. Specifically, for any pair of i-groups the size of one of them must be sufficiently

small for any given ch. To see this relationship let us analyze the following example:

Example 1 Consider a network consisting of a cycle of communities with only one group Mi that has a

single player i with external links. In that case, agent i is essential in connecting Mi and the rest of the

population. This network is a PNE if the population is sufficiently large and ch > (mi− 1)/6. It is easy

to see that the marginal payoff for deleting an external link depends negatively on M . Therefore, given

ch, the marginal payoff is negative for a sufficiently large M . On the other hand, the most profitable

possibility for creating a new link (to add a link circumventing the essential player i) generates a marginal
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payoff to one of the deviators equal to:

mi − 1
6

− ch

which is negative under the initial conditions stated above. Thus, the network is PNE.

This example shows a particular inequality that must hold between ch and the size of one of the

i-groups (Mi in that case). This inequality could not be generalized but it already illustrates the

intuition of Proposition 3. Thus, all i-groups except one should be small for any essential agent i. In

consequence, in a PNE bridge agents should link relatively small (groups of) communities with the

rest of the population. When geodesic distances are long, this would imply that bridge agents must be

located in peripheral positions of the network. But when geodesic distances are short, bridge agents

can be very centered as shown in the next example.

Example 2 Consider a network with a unique component in which a unique essential player (i) has

two links to each i-group. Moreover, there is only one community in each i-group and no additional

links. For simplicity, assume that all communities have the same size m. We claim that such a network

is a PNE if M is sufficiently large and the linking cost is not sufficiently low to justify an additional

direct connection. Specifically, suppose that m/6 < ch < 1
12 [m(m(M − 2) + 2(m− 1)) + 3mM−1

M−1 ]. Then

the payoffs of the central player are positive and equal to

m2(M − 1)(M − 2)
6

+
mM − 1

2
+

(m− 1)m(M − 1)
3

− 2(M − 1)ch

The central player’s marginal payoff from cutting one link off is

ch − m− 1
6
− (mM −m+ 2)(m− 1)

12

which is negative for M sufficiently high. Likewise, we conclude that the marginal payoff for cutting

two links to a community is also negative. On the other hand, if a player in a peripheral community

deletes one external link, then she obtains a marginal payoff equal to

ch − 1
6
− mM −m− 1

12
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which is negative for sufficiently large M . The creation of an additional link between two members of

peripheral communities generates the following marginal payoff

m

6
− ch

which is negative given the conditions stated in this example. Since this is the most profitable outcome

that can result from the creation of a new link, we conclude that this network is PNE under those

conditions.

The previous example illustrates the fact that bridge-agents can be sustained in PNE networks and

that the latter can enjoy much larger payoffs than others.

Propositions 2 and 3 restrict to the multi-community component Ci. But, notice that for MCi

sufficiently large, Proposition 3 implies that there will be some non-essential agent with external links.

Lemma 1 implies that, in such a case, any PNE network should be connected. In consequence:

Corollary 1 Given ch, a network with isolated communities and a multi-community component Ci can

be sustained as a PNE only if MCi
is sufficiently low.

Finally, we would like to remark an expositional note. In our results we consider ch as fixed and

focus on the analysis of both the size and the number of communities. Analogously, we might have

fixed these two variables and focus on the effects of ch on the possibilities of having bridge agents. In

that case, we can expect that the lower is ch the lower is the number of essential players that can be

sustained in a PNE network because circumventing an essential agent is easier. Notice also that for a

given essential agent i, a lower ch would imply a lower upper bound in the size of all i-groups except

one. In a network with long geodesic distances, this would imply that bridge agents should be located

in peripheral positions.
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4 Conclusion

Empirical evidence indicates (Burt, 2004) that structural holes in social networks (that is, the lack of

connections among agents) generate potential large benefits to those individuals who succeed in bridging

them and, consequently, large payoff differences among agents. The persistence of such payoff differen-

tials when perfectly informed ex-ante identical agents are able to choose their social links strategically

is surprising. Goyal and Vega-Redondo (2007) provide the first attempt to address this puzzle. The

authors present a model of network formation in which agents may exploit positional advantages if

they can block profitable bilateral interactions between players who are not direct neighbors. In that

model the star network arises as a prominent equilibrium structure. In such a network, a single agent

is essential to connect any pair of individuals and this allows her to obtain a larger payoff than others.

This argument formalizes the above-mentioned empirical fact without relying on imperfect information

or agents’ heterogeneity.

Empirical observation indicates that social networks are usually formed by densely linked groups of

agents loosely connected to one another. In this paper we show the conditions under which structural

holes and players who benefit from them can exist in this kind of networks. Our model shares the basic

features of Goyal and Vega-Redondo (2007) but assumes that agents are distributed in densely con-

nected multi-personal communities, reproducing the empirical regularities of social networks. The main

contribution of the paper is to show that to sustain bridge-agents in PNE: (i) the size of communities

cannot be too large and (ii) in most cases, bridge-agents must be located in peripheral positions in the

network. These restrictions do not prevent agents bridging structural holes from enjoying large payoff

differentials. We provided two examples to illustrate this last point.

Further empirical research should aim at testing the importance of the conditions mentioned above

in determining the possibilities of having bridge-agents in social networks.
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A Proofs

First, we introduce two preliminary lemmas. Their proof is omitted here because they are immediate

applications of two analogous lemmas set forth by Goyal and Vega-Redondo (2007). Lemma 2 refers

to the marginal payoff of critical links. These are links that define the unique path between the two

players involved and whose deletion increase the number of components. By Remark 1, critical links

can only connect players from different communities in a PNE network; therefore critical links are not

just the unique path between two players, they are also the unique path between communities.

Lemma 2 Consider any network g. If gij = 1 and the link is critical, then the marginal payoff of the

link gij for both players (i and j) is exactly the same.

Lemma 3 In a network g, any component has at least two non-essential communities.

Proof of Lemma 1.

Assume by contradiction that g is a PNE network with at least two components Ci and Cj and that

i ∈ Ci is a non-essential agent with some external link. Let N r
i (g) = {j ∈ Ci : e(i, j) = r} be the set of

agents whom i accesses via r essential players and ηr
i (g) = |N r

i (g)|. In a PNE network, agent i’s payoff

should hold:

Πi ≥
1
2
η0

i (g) +
1
3
η1

i (g) + ...+
1

R+ 2
ηR

i (g)− ch ≥ 0 (*)

where R is the maximal number of essential players between i and any other agent in Ci.
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Let j ∈ Mj be an agent in a different component Cj and remember that mj = |Mj |. Consider the

deviation consisting of forming a link between i and j. Agent j’s marginal payoff holds:

∆Πj =
1
2

+
1
3
η0

i (g) +
1
4
η1

i (g) + ...+
1

R+ 3
ηR

i (g) +

(mj − 1)[
1
3

+
1
4
η0

i (g) +
1
5
η1

i (g) + ...+
1

R+ 4
ηR

i (g)]− ch

=
1
2

+
mj − 1

3
+ η0

i (g)(
1
3

+
mj − 1

4
) + ...+ ηR

i (g)(
1

R+ 3
+
mj − 1
R+ 4

)− ch

≥ 1
2

+ η0
i (g)(

1
3

+
1
4

) + ...+ ηR
i (g)(

1
R+ 3

+
1

R+ 4
)− ch

≥ 1
2

+ η0
i (g)(

1
3

+
1
4
− 1

2
) + ...+ ηR

i (g)(
1

R+ 3
+

1
R+ 4

− 1
R+ 2

)

where the last inequality follows from condition (*). Since 1
R + 1

R+1−
1

R−1 > 0, ∀R ≥ 3, we can conclude

that ∆Πj ≥ 0. By Lemma 2, player i will also have incentives to deviate. Thus g is not a PNE network.

This contradiction completes the proof.

Proof of Proposition 1.

By contradiction let us assume that g has at least two components Ci and Cj that contain more

than one community. By Lemma 1 all agents with external links must be essential agents in any

PNE. Moreover, by Lemma 3 there are at least two non-essential communities in each component. In

consequence, one of the next two cases must hold:

• Some non-essential community (say Mi) is extreme.

By Lemma 1, all agents with external links must be essential. In consequence, the unique possi-

bility is that Mi has only one external link (say gik). In a PNE, the link gik should be profitable

for both. Then, some player j ∈Mj in Cj would find optimal to create a link to k if mj ≥ mi
15.

And so would player k (by Lemma 2).

• All non-essential communities are non-extreme.
15This is a sufficient condition but not necessary. For example, mj could be lower than mi but if Cj include many

other agents apart from those in Mj , then the creation of gjk would also be profitable.
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Let Mi be a non-essential community in Ci. By Lemma 1, a single agent i ∈ Mi must have

external links. Notice also that by assumption, player i’s number of external links is at least two.

Player i’s payoff can be written as:

Πi =
η0

i (g)
2

+ ...+
ηR

i (g)
R+ 2

+

(mi − 1)
(η0

i (g)− (mi − 1))
3

+ (mi − 1)
η1

i (g)
4

+ ...+ (mi − 1)
ηR

i (g)
R+ 3

− ηi(g)ch

Since g is a PNE network, it follows that:

1
ηi(g)

[
η0

i (g)
2

+ ...+
ηR

i (g)
R+ 2

+ (mi − 1)
(η0

i (g)− (mi − 1))
3

+

(mi − 1)
η1

i (g)
4

+ ...+ (mi − 1)
ηR

i (g)
R+ 3

] ≥ ch (**)

Let j ∈Mj be an agent in Cj . Agent j’s marginal payoff for forming a link between i and j is:

∆Πj =
1
2

+
η0

i (g)
3

+ ...+
ηR

i (g)
R+ 3

+
mj − 1

3
+

(mj − 1)
η0

i (g)
4

+ ...+ (mj − 1)
ηR

i (g)
R+ 4

− ch

>
η0

i (g)
4

+ ...+
ηR

i (g)
2R+ 4

+

(mj − 1)
η0

i (g)
6

+ ...+ (mj − 1)
ηR

i (g)
2R+ 6

− ch

≥ 1
ηi(g)

[
η0

i (g)
2

+ ...+
ηR

i (g)
r + 2

+ (mj − 1)
η0

i (g)
3

+ ...+ (mj − 1)
ηR

i (g)
R+ 3

]− ch

The first inequality is immediate, while we use ηi(g) ≥ 2 for deriving the second inequality. We can

directly compare the last expression with respect to (**) to conclude that ∆Πj ≥ 0 if mj ≥ mi.

Again by applying Lemma 2, both i and j would have incentives to form a link between them if

mj ≥ mi.

Thus, for any essential agent i ∈ Ci with external links, mi > mj should hold in a PNE network

for any agent j ∈ Mj in Cj . Since both components Ci and Cj should include essential agents with
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external links in a PNE (Lemma 1), that inequality cannot hold for all pair of agents. Therefore, a

PNE network cannot include two components with more than one community.

Notice also that the above results also show that the size of the isolated communities should be

sufficiently small. In particular, the size of that isolated communities should be lower than the size of

any non-essential neighborhood.
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