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Abstract

In this paper we generalize the KPSS-type test to allow for two struc-
tural breaks. Seven models have been defined depending on the way that
the structural breaks affect the time series behaviour. The paper derives
the limit distribution of the test both under the null and the alternative
hypotheses and conducts a set of simulation experiments to analyse the
performance in finite samples.
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1 Introduction

Testing for unit roots in time series has become a usual practice in economic
research. Since the seminal paper of Dickey and Fuller (1979) appeared, there
have been multiple developments aimed at getting statistical tools consistent
with seeming data generation process of macroeconomic time series. One of
these developments has emerged after studying the effects that structural breaks
can cause on the integration order analysis. In this regard, Perron (1989, 1994)
shows that misspecification errors in the trend function involve a bias that make
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standard unit root tests application be risky, since they tend to favour the unit
root hypothesis even when the time series is stationary. Early work of Perron
(1989) has been extended in Banerjee, Lumsdaine, and Stock (1992), Perron and
Vogelsang (1992), Zivot and Andrews (1992), Perron (1994, 1997), Clemente,
Montanés, and Reyes (1998), and Montanés and Reyes (1998), among others.
Briefly speaking, these authors generalise the analysis of Perron (1989, 1990)
through the specification of several estimation methods for the selection of the
date of the break.

Although the order of integration of time series is usually tested using unit
root tests, some authors suggest to reverse the hypotheses and, hence, proceed
to test the stationarity null hypothesis against the unit root alternative hypoth-
esis as a way to establish the robustness of the unit root tests conclusions —see
Park (1990), Amano and Van Norden (1992), Maddala and Kim (1998), and
Carrion-i-Silvestre, Sansé, and Artis (2001). Park (1990), Tanaka (1990, 1995),
Kwiatkowski, Phillips, Schmidt, and Shin (1992), Saikkonen and Luukkonen
(1993), Leybourne and McCabe (1994, 1999) and Shin (1994) are some theo-
retical developments where stationarity tests are given. Unfortunately, these
stationarity tests are not independent of structural breaks. Lee, Huang, and
Shin (1997) have shown the inconsistency of the test in Kwiatkowski, Phillips,
Schmidt, and Shin (1992) —hereafter KPSS test— when structural breaks are
not taken into account. Similar results are achieved for the Leybourne and Mc-
Cabe (1994) test. Busetti and Harvey (2001), Lee and Strazicich (2001) and
Kurozumi (2002) generalize the KPSS-type test to accommodate the presence
of one shift in the level and/or the slope of the time series. Busetti and Harvey
(2001) also compute a small set of critical values for the KPSS test with two
structural breaks for non trended variables and propose a simplified test that
allows for up to four structural breaks, but only for two different deterministic
specifications —they allow for level shifts for non trended variables and for both
level and slope shifts for trended variables.

In this paper we extend the KPSS test to the case where there exist two
structural breaks that change the level and/or the slope of the time series. Our
proposal adds to the recent developments in the literature where the order of
integration analysis allows for two structural breaks through the specification of
up to seven different deterministic models —see Lumsdaine and Papell (1997),
Clemente, Montaniés, and Reyes (1998) and Lee and Strazicich (2003), among
others, for the unit root test counterpart.

The paper is organized as follows. Section 2 presents the model and derives
the limit distribution of the test statistic assuming that the structural breaks
are known. Section 3 addresses the estimation of the date of the breaks. Section
4 looks into the finite sample performance of the test. Finally, some concluding
remarks are made. Mathematical proofs are given in the Appendix.



Table 1: Deterministic specifications
Model f (t, Ty, Tbg)
AAn W+ Z?:l 0; DU, +

AA p+Bt+7 60, DU,
BB p+Bt+ 37 v DI,
CC w+Bt+ Z?Zl 0; DU; 4 + Z?:l v DT}y

AB-BA  pu+pBt+01 DU+, DTS,
AC-CA  p+Bt+37,0; DU, +~, DT,
BC-CB p+pt+6s DUy, + 23:1 v DT,

2 The KPSS test with two breaks

Following Kwiatkowski, Phillips, Schmidt, and Shin (1992), we propose a model
of unobserved components to test for stationarity against the unit root process
when there might be two structural breaks affecting the trend function of the
time series. The standard KPSS test is based on:

ye = [ To1,Tr2) + 7+ €3 (1)

Te = Ti—1+ Uy, (2)

where u; ~ 7id (0,02) and {&;} is assumed to satisfy the strong-mixing regularity
conditions of Phillips (1987) and Phillips and Perron (1988). Under the null
hypothesis of stationarity o2 must be zero, otherwise the stochastic process is
I(1). f(t,Tp1,Tp2) in (1) denotes the deterministic specification that is assumed
for the time series. Table 1 presents the seven deterministic specifications that
are considered in the paper. In order to take into account the presence of
the structural breaks, these specifications incorporate dummy variables, which
are defined as DU;; = 1, DT}, = (t — Ty;) if t > Tj; and 0 otherwise, with
Ty = NT, A € (0,1), i = 1,2, denoting the date of the structural breaks.
The pseudo LM test is given by

T
iy =6T"%> 87, (3)
t=1

t
j={AAn, AA, BB, CC, AB-BA, AC-CA, BC-CB}, where S, = % é;, So =0,
j=1

with é; being the OLS estimated residuals of the regression of y; on one of the
deterministic specifications in Table 1. Kwiatkowski, Phillips, Schmidt, and
Shin (1992) estimate the long-run variance from

T l T
=T e +2T > w(s,l) Y éér s (4)
t=1 s=1

t=s+1



where w (s,1) denotes the spectral window —i.e. either the Bartlett or the
Quadratic spectral windows. While the choice of the kernel is, to some ex-
tent, somewhat that depends on the preference of practitioners —Kwiatkowski,
Phillips, Schmidt, and Shin (1992) use the Bartlett kernel, but Hobijn, Franses,
and Ooms (1998) suggest the Quadratic spectral window—, some cautions should
be taken when selecting the spectral bandwidth. Thus, we can find in the liter-
ature some suggestions that can drive to wrong conclusions. For instance, Lee
(1996) uses Andrews (1991) method, while Hobijn, Franses, and Ooms (1998)
suggest to apply the automatic methods in Newey and West (1994) to esti-
mate the bandwidth. Unfortunately, Choi and Ahn (1995, 1999) and Kurozumi
(2002) advice that the use of these data based selection methods provoke the in-
consistency of the test. Notwithstanding, some bounds to control the estimated
bandwidth can be imposed to avoid such inconsistence. Carrion-i-Silvestre and
Sansé (2005a) have recently compared the different procedures to establish a
bound for the bandwidth showing that the proposal in Sul, Phillips, and Choi
(2003) is the best one in terms of size and power. Therefore, in this paper we
use this estimator for the long-run variance. In brief, Sul, Phillips, and Choi
(2003) propose a prewithened Heteroskedasticity and Autocorrelation Consis-
tent (HAC) estimator for the long-run variance. In the first stage an AR model
for the residuals {é;} is estimated:

ét :’ﬁlétfl'i_""i_ﬁpétfp"_wt' (5)

After the estimation of (5) is carried out it is possible to obtain the long-run
variance of the estimated residuals in (5), which is denoted as &fp, through the
application of a HAC estimator —for instance, Bartlett or Quadratic Spectral
window— to control for the presence of heteroskedasticity. In the second stage
the estimated long-run variance is recolored:

~2
2 Oy
0= =—,
0 (1)
where 9 (1) denotes the autoregressive polynomial ¥ (L) = 1 -9, L — ... — 9, LP

estimated in (5) evaluated at L = 1. In order to avoid the inconsistence of
the test statistic, Sul, Phillips, and Choi (2003) suggest using the following
boundary condition rule to obtain the long-run variance estimate:
~2
6% = min {nT&i, %} ,
7 (1)
where £ > 0 is a constant to be determined below. Sul, Phillips, and Choi
(2003) use k = 1. However, in order to improve the power of the test with a
good size other values of k¥ might be suitable. Note that this does not modify
the asymptotic properties of the estimator, because this boundary rule only acts
under the alternative hypothesis and the rate of divergence is not affected. The

application of this rule ensures that the estimated long-run variance is bounded
above by /-@T&?Z}.



The following Theorem presents the limit distribution of the KPSS test with
two structural breaks assuming that the date of the breaks are known. Section
3 deals with the procedure that can be applied in order to estimate the breaking
dates.

Theorem 1 Let {y:} be a stochastic process described by (1) and (2), with
02 = 0 and {e;} satisfying the strong-mizing regularity conditions of Phillips
(1987) and Phillips and Perron (1988). Let Tp; = NT ,i=1,2, 0 < A\ < Ay
< 1. Furthermore, asT — oo , Ty; — o0 so that \; remains constant, i = 1,2.
Then as T — oo:
A1 Aa 1
;= H}j(r,Ar, Ag) dr + H3j(r, A, A)dr+ [ Hj (7, A1, Ag) dr,
0 A1 A2
j = {AAn, AA, BB, CC, AB-BA, AC-CA, BC-CB} where = denotes weak
convergence to the associated probability measure and Hy ; (o),! k= 1,2,3, are
complex functions of Wiener processes and of the break fractions that are shown
in the Appendiz.

The proof of Theorem 1 is outlined in the Appendix. Notice that the limit
distributions distinguish between the three subperiods that have been defined
by the two breaks. Asymptotic critical values for the models AAn, AA, BB,
CC, AB-BA, AC-CA, BC-CB are collected in Tables 2 to 8 for different values
of the break fraction parameters at the 1, 2.5, 5 and 10% signification level.

Note the symmetry that seems to be present in the tabulated critical values
for those models with the same effect for the two structural breaks. If we take a
look on each diagonal of the tables of critical values we can see that there exist a
symmetric behaviour that depends on both the distance between the two break
fractions and the distance that separate these values from the beginning (end)
of the time period. For instance, in the model CC the critical value for the
couple (A1, A2) = (0.1, 0.2) is 0.0972 while for (A1, A2) = (0.8, 0.9) it is 0.0966.

Once the limit distribution of the KPSS test with two structural breaks has
been derived for the different models, now is time to assess the consistency of
the test under the alternative hypothesis of non-stationarity. As in Lee and
Strazicich (2001), the goal is to proof that under the alternative hypothesis
the sum of the square of the partial processes 7' ~2 Zle S%is O, (TQ) and the
estimate of the long-run variance is O, (T'), so that the test statistic is O, (T').
Theorem 2 presents the limit distribution of the KPSS test under the alternative
hypothesis.

Theorem 2 Let {y:} be a stochastic process with DGP defined by (1) and
(2), with 02 > 0 and {e;} satisfying the strong-mizing regularity conditions

u

of Phillips (1987) and Phillips and Perron (1988). Then as T — oo
ﬁj (l) = Op (T) )
j={AAn, AA, BB, CC, AB-BA, AC-CA, BC-CB}.
The proof is outlined in the Appendix.

1A qualque lloc s’haurien d’especificar o indicar on trobar-les.



3 The estimation of the breaking points

Up to now we have assumed that the date of the breaks are known, an unreal-
istic situation in applied research. Besides, this was the criticism that received
the early work of Perron (1989), since the order of integration analysis became
conditioned on this a priori selection. The way to overcome this drawback con-
sists on proceed to the estimation of the break points instead of assuming them
as exogenous. Thus, Hao (1996), Busetti and Harvey (2001) and Lee and Strazi-
cich (2001) apply the minimum functional to the sequence that results from the
computation of the KPSS test for all possible break points. The argument that
minimizes this sequence is taken as the estimate of the breaking point. Instead,
Carrion-i-Silvestre and Sansé (2005b) propose the minimization of the sequence
of sum of squared residuals (SSR) to estimate the date of the break and com-
pare both procedures concluding in favour of the later. The minimization of
the SSR has been also suggested in Kurozumi (2002). Therefore, in this pa-
per we propose the application of the procedure in Bai and Perron (1998) that
computes the global minimization of the SSR and choose as the estimate of the
dates of the breaks the argument that minimizes the sequence of SSR (Tp1,Tp2),
where the SSR is obtained from the regression of y; = f (¢, Tp1, Tp2) + €+, where
f (t,Tp1, Tp2) denotes one of the deterministic components in Table 1. Thus, the
break points are estimated as:

(Tlﬂ? Tbg) = arg min Tb,l,Tb,QSSR (Tbh Tbg) .

Bai (1994, 1997) shows the T-consistency of the estimation of the break fraction
parameter when it is estimated using this criteria for the case of one structural
break. This result is extended in Bai and Perron (1998) for the case of multiple
breaks for both trending and non trending regressors. The same applies in this
case. Notice that some trimming is required when computing estimates of the
break points. Though the amount of trimming is somewhat arbitrary some
practitioners have specified \; € [0.15,0.85], ¢ = 1,2 —see among others Zivot
and Andrews (1992).

Thus and provided that a T-consistent estimation of the breaking fractions
is available, the KPSS test can be computed as usual and compared with the
critical values collected in Tables 2 to 8 in order to test the null hypothesis of
stationarity.

4 A simple Monte Carlo experiment

The performance of the test statistic in finite samples is carried out through a
Monte Carlo experiment where both the empirical size and power are evaluated.
The three different sets for the DGP parameters that are considered allow us
to analyse the magnitude of the breaks influence. Our main interest points to
the model CC since it is the most general formulation considered in this paper.



The DGP is given by

ye = f(t, Ty, Ty2) + &4
€t = pEt—1 -+, (6)

with f (¢, Tp1, Tp2) being the one for model CC, and vy ~ iid N (0,1) . We have
essayed four different vectors of parameters ¢ = (p, 5, 01, 7v1,62,72): (i) ¥1 = (0,
0,0,0,0,0), (ii) ¥2 = (1, 0.2, -5, -0.2, 2, 0.5), (iii) ¥3 = (1, 0.2, 0, 0, -5, -0.2),
and (iv) ¥4 = (1, 0.2, 0, 0, 0, 0), for the break points located at (A1, A2) = (0.2,
0.6). Simulations not reported here indicate that similar results were obtained
for different specifications of the break points —results for (A1, A2) = (0.4, 0.7)
are available upon request. The definition of p = {0.8,0.9,1} in (6) allows us
to analyse both the empirical size and power of the test statistic. The sample
sizes are set at T' = {100, 200, 500}, and n = 2,000 replications are conducted.

The estimation of the long-run variance is obtained using the Quadratic spec-
tral windows with the automatic lag length selection method described in Sul,
Phillips, and Choi (2003) along with the definition of the boundary condition
depends on k. Non reported Monte Carlo experiments led us to fix kK = 0.15
as a compromise between size and power, although, as mentioned above, the
modification of the boundary condition does not affect neither the asymptotic
size nor the asymptotic power of the test statistic, but allows to increase the
power performance of the statistic in finite samples. All the computations are
carried out using a GAUSS code available from the authors upon request. Sim-
ulation results are reported in Table 9, from which we can conclude that, in
general, the empirical size of the statistic is close to the nominal one both for
p = 0.8 and p = 0.9. Note that in these cases the large autoregressive parameter
implies high persistence in the residuals, but the test still shows good empirical
size. In contrast, the use of other boundary rules does not warrant controlled
empirical size. For instance, the rule defined in Kurozumi (2002) for the KPSS
statistic with one structural break shows size distortion problems for p = 0.8
—see Carrion-i-Silvestre and Sansé (2005a) for a comparison on the performance
of different boundary rules for the case of no structural break. This conclusion
is obtained irrespective of vector of parameters 9¥;, i = 1,...,4. Thus, even for
the case of no structural breaks the empirical size maintains at resonable level
—see results for ¥ and 94 in Table 9.

As expected, empirical power depends both on the sample size and on the
magnitude of the structural breaks. As can be seen from Table 9, the power is
higher for 5 and 13 sets of parameters than for the ¥; and ¥, ones. Further-
more, the test offers higher power when there are two structural breaks (d3)
than when there is only one structural break (d¥3). In all, the finite sample
performance of the stationarity tests with two structural breaks has revealed
that the statistics that have been proposed in this paper have good statistical
properties.



5 Conclusions

In this paper we have extended the standard stationarity test statistic of Kwiatkowski,
Phillips, Schmidt, and Shin (1992) to allow for two structural breaks. Our pro-
posal complements that of Lumsdaine and Papell (1997) and Clemente, Mon-
tanés, and Reyes (1998) for the DF unit root test and serves as a statistical
instrument that can be used in confirmatory analysis.

Once the formalization of the different models we deal with, the asymptotic
distribution of the test statistics has been derived both under the null and under
the alternative hypotheses. In this way, the consistency of the test statistics
has been proved. After obtaining the asymptotic distribution under the null
hypothesis we have computed suitable critical values for different combinations
of couples of break fractions. Critical values tabulation has been done assuming
that the structural breaks are known a prior: by the analyst. Moreover, these
critical values can also be applied when we proceed to the estimation of the dates
of the breaks through the minimisation of the SSR. Small simulation experiment
to assess the finite sample size of the test statistics has been conducted, which
shows that the statistics that we propose have desired properties in terms of
empirical size and power.

6 Appendix. Asymptotic distributions and con-
sistency

6.1 Asymptotic distributions

In this appendix we present the way we have obtained the asymptotic distribu-
tions for the model CC, which is the most general one. The proof for the other
models follows the one described here and can be found in Carrion-i-Silvestre
(1999). The estimated residuals that are used to build the test statistic are
obtained from é; = ¢, — z P (Pz’zP)f1 Pz'e, where P is a diagonal scaling
matrix, P = diag(T—/2, T=3/2, 7=1/2, 7=3/2 7=1/2 T-3/2) 2 denotes the
regressors’ matrix and e is the vector of disturbances. In the limit, the cross-
product symmetric matrix of regressors tends to Pz'zP — A, with elements
AL 1] =1, A[1,2] = (1/2), A[1,3] = (1 — A1), A[1,4] = (1 — /\1)2 /2, A[1,5] =
(1— o), A[L,6] = (1—X2)* /2, A2,2] = 1/3, A[2,3] = (1 - A]) /2, A[2,4] =
(2= 38X\ +A9)7 /6, A[2,5] = (1 \2) /2, A[2,6] = (2 — 3\s + A2)® /6, A[3,3] =
(1—M), A3,4] = (1-X)%/2, A[3,5] = (1-X2), A[3,6] = (1-X)?/2,
A4, 4] = (1 - M)% /3, A[4,5] = (1 — 201 + X2) (1 — A2) /2, A[4,6] = (2 — 3\1 + A2) (1 — X2)® /2,
A[5,5] = (1 — Ap), A[5,6] = (1 — A2)? /2 and A[6,6] = (1 — Ay)* /3. Following
Phillips (1987) and Schmidt and Phillips (1992), the term involving the dis-
turbances Pz'e = 0B, where B[1,1] = W (1), B[2,1] = W (1) — fol W (r)dr,
B[3,1] = W (1) = W (M), BM4,1] = (1= X) (W (1) =W (A\)) = [, W (r)dr,
B[5,1] =W (1)=W (A2) and B[6,1] = (1 — A\g) (W (1) — I/V(/\z))—fo1 W (r) dr.
Because of the consideration of two structural breaks in the deterministic com-



ponent we have to distinguish between three different subperiods -in general,
if we assume that there might be m-structural breaks we will be able to dif-
ferentiate between (m + 1) subperiods. Therefore, for ¢ < Ty; the partial sum

of the regressors converges to T~1/2 ZET:Tl] zP=o[r /2 0 0 0 0],
whereas the partial sum processes of the estimated residuals converges to

T8 =o(W@r)~[r 72/2 0 0 0 0]A7'B).
After some cumbersome algebra manipulations we obtain that

V28, = % [—ANPW (1) — 672 (A1) + 3\i7 (24 1) W (A1) + ASW ()]
1
- O'HI,CC (T7A17>\2)~

For Ty < t < Tjo, the partial sum processes converges to
7128, = ﬁ [Bhar (24 7) (W (A1) = W (Aa)) + 431 (W (A1) — W (A2))
+612 (W (A2) — W (A1) + A5 (dr (W (Ag) — W (A1) +
Az (AW (A1) = W (A2) = 3W (1))
A (W (A1) =W (1) + A3 (=W (\2) + W (7))
A Br2+r)(W () =W (A2)) —2X2 (34 2r) (W (A1) — W (1))
A3 (W (A1) — 4W (A2) + 3W (r))]
= O'HQ)CC (7“, )\17 )\2> .

Finally, for t > Tj2 the partial sum processes converge to
(142X =3r)(r—=1)(W (1) — W (X))
(A —1)?
6 (Ao — 1) (r —1) ((AQ — V)W (1) + [ W (s)ds + (1= Ap) W (AQ))
(A2 —1)°

7128, = U[W(T‘)—W(l)—

_|_

Notice that the numerator of the KPSS test can be expressed as T2 Y1, 52 =
— T _ 2 — T _ 2 _ T _ 2
T (T7Y28)7 = T 02 (T7Y28) + T 0,2, 1 (T7128:)7 +

71! Z?:Tbﬁl (T‘l/QSt)2 , which is shown to converge to

A2

A1
/ (H1,cc(7"7>\1,>\2))2d7’+/ (Haz,c0 (7,1, A9))” dr

T
T? g S? = o
P 0 M

1
+/ (Hs,cc (r, A1, A2))” dT]-
A

2

Following Phillips (1987) and Phillips and Perron (1988), Kwiatkowski, Phillips,
Schmidt, and Shin (1992) use (4) as a consistent estimator for the error term



variance so that the test statistic has as a limit distribution the following ex-
pression

)\1 >\2
/ (Hico (n A )2 dr + / (Ha.co (1, M, Aa))? dr
0 A

1

Ncc =

1
+/ (Hs co (r, Al,AZ))er}
A

2

Therefore, Theorem 1 has been proved. B

6.2 Consistency

As before, we focus on the Model CC since it is the most general specification
that have been considered in the paper. Similar developments can be carried
out for the other models.

The proof of the consistency of the tests is based on the divergence of the
test statistic under the alternative. Let us first concentrate in the 72 Zthl S?
factor of the KPSS with two structural breaks under the alternative of unit root.
Note that under the alternative r; is an I(1) process so that terms involving this
variable will dominate the asymptotic distribution of the numerator. Estimated
residuals é; =y, — G =14 — 2¢ (z’z)f1 2'rter— 2 (z’z)f1 Z'e, define the partial

(671 (bT7]
sum processes given by T—3/28, = T=3/2 3" p;—T=3/2 3" 2, P (Pz’zP)_1 PzZ'r+
i=1 i=1
[bT] b1
T3/25 e, —T732 % 2P (Pz2P)"" Pze.
i=1 i=1

i=
The third and fourth moments in the right hand are o, (1) so we only con-
centrate on the first and second terms to compute the asymptotic distribution

(bT]
of the numerator. Tt is straightforward to see that T-3/2 3 r; = w fé’ W (s) ds,
i=1

since t = [bT], b € [0,1], with w? = limp_,oc E (T'52), Sp = ZjT:l uj, and
[bT] is the integer part of bT. Regarding the second summand, it is necessary to
distinguish between the three subperiods defined by the two breaks. Therefore,

forO0<b< )\

7]
Tﬁl/ZZZiP:>OJ{b % 0 0 O 0:|7
i=1
for M1 <b< \g
1)
2
T—l/ZZziP:Mu[b ob-x) 0 0}’
i=1
and for o <b< 1
T)
Py 2
TS spselo B opoay O oy 0],
i=1



The previous proof has established that (Pz’zP) — A, so that we have to
concentrate on the limit of the part involving r;. It is easy to see that T~!Pz's =
C, where C'[1,1] = w fol W (s)ds,C[2,1] =w fol sW(s)ds, C[3,1] =w f;l W (s)ds,
Cla1=w/fy (s=A)W(s)ds,C[5,1] =w [, W (s)ds, C[6,1] = w [y (s — o) W (s)ds.
Then, for 0 < b < A1, the partial sum processes converge to

b
7328, = wl/ W(s)ds—[b 2 00 0 O}A_lC
0

= wkicc,

for Ay < b < A they converge to

b
7328, = wl/ W(s)ds—{b % (b—\1) G=2)? O}A—lc
0

= wky oo,

and, finally, for Ao < b < 1

b
I O R P

= wK37cc.

T
Therefore, T4 t; 57 = w? [ 0>\1 K3 cedb + f;\f K3 oodb+ f>\12 K;iccdb}, S0

that the numerator of the tests is O,(7?) under the alternative. Regarding the
denominator, the bound established for the long-run variance in Sul, Phillips,
and Choi (2003) ensures that the estimated long-run variance is bounded above
T&fp, which implies that the denominator of the statistic is O, (T'). Using all
these elements we can see that the individual KPSS test statistic is of order
O, (T') under the alternative hypothesis and diverges, so that the test is consis-
tent. Then, KPSS test with two structural breaks diverge under the alternative
and, then, its consistence has been proved. B
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Table 2: Asymptotic critical values for the test 144,

Sig. )\1\)\2
level 0.1
0.2
0.3
0.4
1% 0.5
0.6
0.7
0.8
0.1
0.2
0.3
0.4
25% M\ 0.5
0.6
0.7
0.8
0.1
0.2
0.3
0.4
5% A\ 0.5
0.6
0.7
0.8
0.1
0.2
0.3
0.4
10% M\ 0.5
0.6
0.7
0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4758

0.3659
0.3682

0.2802
0.2832
0.2874

0.2299

0.2109

0.2077
0.233

0.2275
0.1835
0.1588
0.1733
0.2271

0.2883
0.2075
0.1620
0.1648
0.2108
0.2919

0.3664
0.2897
0.2178
0.1811
0.2027
0.2846
0.3666

0.4758
0.3612
0.2937
0.2292
0.2239
0.2862
0.3692
0.4853

0.3752

0.2957
0.2862

0.2248
0.2210
0.2277

0.1878
0.1725
0.1700
0.1918

0.1876
0.1531
0.1343
0.1471
0.1864

0.2309
0.1682
0.1338
0.1371
0.1723
0.2283

0.2920
0.2258
0.1720
0.1510
0.1678
0.2252
0.2914

0.3749
0.2957
0.2297
0.1878
0.1848
0.2238
0.2896
0.3786

0.2992

0.2344
0.2339

0.1839
0.1802
0.1846

0.1560
0.1423
0.1401
0.1585

0.1581
0.1289
0.1153
0.1266
0.1564

0.1883
0.1390
0.1165
0.1165
0.1443
0.1834

0.2339
0.1821
0.1421
0.1275
0.1388
0.1830
0.2328

0.3001
0.2366
0.1859
0.1571
0.1547
0.1847
0.2332
0.3009

0.2262

0.1789
0.1775

0.1441
0.1402
0.1432

0.1258
0.1148
0.1128
0.1276

0.1286
0.1053
0.0959
0.1049
0.1267

0.1455
0.1116
0.0963
0.0965
0.1151
0.1440

0.1773
0.1394
0.1136
0.1043
0.1120
0.1409
0.1774

0.2260
0.1791
0.1441
0.1279
0.1264
0.1438
0.1785
0.2289

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the

Wiener processes.
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Table 3: Asymptotic critical values for the test n44
Sig. M\ A2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
level 0.1 0.1456 0.1169 0.1247 0.1601 0.1616 0.127 0.1157 0.1444

0.2 0.1192 0.1002 0.1219 0.1400 0.1175 0.1028 0.1214
0.3 0.1252 0.1187 0.1253 0.1248 0.1147 0.1268
0.4 0.1604 0.1405 0.1272 0.1399 0.1574
1% 0.5 0.1679 0.1191 0.1159 0.1590
0.6 0.1223 0.1020 0.1260
0.7 0.1205 0.1180
0.8 0.1421
0.1 0.1173 0.0973 0.1051 0.1293 0.1294 0.1070 0.0981 0.1179
0.2 0.0979 0.0869 0.1012 0.1134 0.0983 0.0869 0.0998
0.3 0.1042 0.0989 0.1048 0.1042 0.0966 0.1059
0.4 0.1297 0.1158 0.1058 0.1137 0.1261
2.5% 0.5 0.1326  0.0981 0.0969 0.1285
0.6 0.1028 0.0861 0.1057
0.7 0.0997 0.0993
0.8 0.1183
0.1 0.0988 0.0834 0.0899 0.1073 0.1080 0.0910 0.0825 0.0992
0.2 0.0843 0.0750 0.0860 0.0948 0.0849 0.0749 0.0845
0.3 0.0895 0.0848 0.0898 0.0886 0.0831 0.0898
0.4 0.1069 0.0958 0.0896 0.0934 0.1051
5% 0.5 0.1087 0.0833 0.0836 0.1061
0.6 0.0894 0.0746 0.0900
0.7 0.0856 0.0843
0.8 0.0999
0.1 0.0797 0.0699 0.0748 0.0858 0.0855 0.0750 0.0693 0.0801
0.2 0.0701 0.0641 0.0710 0.0771 0.0702 0.0643 0.0696
0.3 0.0739 0.0706 0.0740 0.0736 0.0691 0.0741
0.4 0.086 0.0771 0.0742 0.0747 0.0850
10% 0.5 0.0859 0.0699 0.0698 0.0867
0.6 0.0741 0.0633 0.0743
0.7 0.0714 0.0699
0.8 0.0815

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the
Wiener processes.
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Table 4: Asymptotic critical values for the test ngp
Sig. A\ g 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
level 0.1 0.1524  0.1298 0.1098 0.104 0.1003 0.1175 0.1393 0.1565

0.2 0.1205 0.1021 0.0892 0.0879 0.0963 0.1134 0.1357
0.3 0.0966 0.0820 0.0780 0.0827 0.0974 0.1153
0.4 0.0797 0.0751 0.0766 0.0888 0.1040
1% 0.5 0.0803 0.0829 0.0910 0.1032
0.6 0.0968 0.0993 0.1089
0.7 0.1200 0.1282
0.8 0.1518
0.1 0.1257 0.1076 0.0915 0.0849 0.0856 0.0966 0.1126 0.1294
0.2 0.0986 0.0843 0.0752 0.0739 0.0798 0.0928 0.1127
0.3 0.0807 0.0685 0.0656 0.0695 0.0802 0.0959
0.4 0.0681 0.0637 0.0652 0.0740 0.0865
2.5% 0.5 0.0671 0.0686 0.0754 0.0852
0.6 0.0803 0.0831 0.0909
0.7 0.0981 0.1055
0.8 0.1226
0.1 0.106  0.0897 0.0766 0.0723 0.0738 0.0803 0.0937 0.1068
0.2 0.0822 0.0715 0.0650 0.0634 0.0681 0.0785 0.0929
0.3 0.0679 0.0601 0.0573 0.0599 0.0683 0.0802
0.4 0.0591 0.0556 0.0565 0.0633 0.0737
5% 0.5 0.0590 0.0590 0.0646 0.0731
0.6 0.0684 0.0709 0.0772
0.7 0.0818 0.0886
0.8 0.1021
0.1 0.0848 0.0729 0.063 0.0603 0.0613 0.0664 0.0755 0.0864
0.2 0.0669 0.0593 0.0540 0.0529 0.0562 0.0644 0.0754
0.3 0.0561 0.0504 0.0484 0.0502 0.0568 0.0659
0.4 0.0500 0.0473 0.0483 0.0528 0.0609
10% 0.5 0.0502 0.0500 0.0539 0.0606
0.6 0.057 0.0584 0.0634
0.7 0.0674 0.0722
0.8 0.0831

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the
Wiener processes.
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Table 5: Asymptotic critical values for the test 7o
Sig. M\ A2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
level 0.1 0.1439 0.1116 0.0852 0.0691 0.0704 0.0856 0.1098 0.1430

0.2 0.1100 0.0835 0.0644 0.0556 0.0634 0.0849 0.1113
0.3 0.0855 0.0652 0.0506 0.0503 0.0637 0.0845
0.4 0.0699 0.0560 0.0501 0.055 0.0695
1% 0.5 0.0704 0.0629 0.0637 0.0707
0.6 0.0874 0.0840 0.0858
0.7 0.1122 0.1124
0.8 0.1425
0.1 0.1166  0.0917 0.0713 0.0596 0.0596 0.0713 0.0906 0.1157
0.2 0.0900 0.0695 0.0545 0.0482 0.0541 0.0696 0.0901
0.3 0.0705 0.0550 0.0438 0.0442 0.0545 0.0716
0.4 0.0596 0.0483 0.0438 0.0479 0.0598
2.5% 0.5 0.0603 0.0537 0.0538 0.0594
0.6 0.0727  0.0691 0.0723
0.7 0.0927  0.0920
0.8 0.1151
0.1 0.0972 0.0772 0.0605 0.0518 0.052 0.0606 0.0765 0.0965
0.2 0.0763 0.0591 0.0470 0.0424 0.0466 0.0586 0.0757
0.3 0.0601 0.0474 0.0390 0.0389 0.0467 0.0605
0.4 0.0518 0.0425 0.0389 0.0423 0.0518
5% 0.5 0.0521 0.0466 0.0470 0.0523
0.6 0.0615 0.0586 0.0608
0.7 0.0768 0.0766
0.8 0.0966
0.1 0.0788 0.0626 0.0508 0.0441 0.0444 0.0504 0.0625 0.0775
0.2 0.0621  0.0487 0.0399 0.0364 0.0397 0.0485 0.0619
0.3 0.0501 0.0398 0.0339 0.0340 0.0397 0.0500
0.4 0.0442 0.0367 0.0340 0.0365 0.0442
10% 0.5 0.0444 0.0397 0.0399 0.0443
0.6 0.0507 0.0486 0.0503
0.7 0.0620 0.0625
0.8 0.0780

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the
Wiener processes.
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Table 6: Asymptotic critical values for the test n4p_pa

Sig. )\1\)\2
level 0.1
0.2
0.3
0.4
1% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
2.5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
10% 0.5
0.6
0.7
0.8
0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1438
0.1223
0.1372
0.1699
0.1649
0.1259
0.1262
0.1529

0.1545

0.1139
0.1056
0.1338
0.1491
0.1190
0.1044
0.1279

0.1304
0.1351

0.0921
0.0989
0.1315
0.1142
0.0916
0.1089

0.1099
0.1148
0.1129

0.0820
0.1075
0.1115
0.0889
0.101

0.0985
0.0955
0.1132
0.0921

0.0920
0.1141
0.0960
0.0985

0.1001
0.0866
0.1124
0.1090
0.0821

0.1137
0.1145
0.1083

0.1072
0.0929
0.1128
0.1286
0.0993
0.0926

0.1355
0.1282

0.1297
0.1047
0.1175
0.1485
0.135
0.1044
0.1125

0.1553

0.1507
0.1232
0.1249
0.1650
0.1712
0.1348
0.1223
0.1433

0.1166
0.1039
0.1132
0.1369
0.1356
0.1068
0.1037
0.1252

0.1282

0.0946
0.0890
0.1097
0.1199
0.0981
0.0871
0.1045

0.1071
0.1113

0.0781
0.0833
0.1064
0.0945
0.0783
0.0911

0.0904
0.0939
0.0928

0.0710
0.0894
0.0935
0.0753
0.0841

0.0821
0.0809
0.0939
0.0775

0.0786
0.0931
0.0817
0.0828

0.0836
0.0742
0.0933
0.0892
0.0712

0.0941
0.0955
0.0893

0.0900
0.0786
0.0933
0.1049
0.0840
0.0785

0.1119
0.1059

0.1061
0.0883
0.0983
0.1217
0.1116
0.0888
0.0950

0.1295

0.1228
0.1028
0.1058
0.1342
0.1367
0.1124
0.1011
0.1167

0.0973
0.0881
0.0961
0.1126
0.1113
0.0924
0.0880
0.1043

0.1070

0.0798
0.0773
0.0924
0.0993
0.0838
0.0752
0.0872

0.0897
0.0942

0.0670
0.0718
0.0874
0.0798
0.0681
0.0776

0.0774
0.0803
0.0794

0.0620
0.0752
0.0781
0.0653
0.0711

0.0701

0.0702

0.0790
0.067

0.0673
0.0792
0.0707
0.0708

0.0706
0.0649
0.0786
0.0747
0.0621

0.0796
0.0819
0.0750

0.0765
0.0681
0.0788
0.0878
0.0724
0.0674

0.0934
0.0896

0.0886
0.0760
0.0841
0.1002
0.0918
0.0762
0.0800

0.1069

0.1032
0.0868
0.0914
0.1107
0.1139
0.0955
0.0858
0.0980

0.0799
0.0726
0.0790
0.0889
0.0876
0.0766
0.0733
0.0840

0.0873

0.0659
0.0647
0.0733
0.0795
0.0688
0.0634
0.0711

0.0729
0.0769

0.0562
0.0600
0.0697
0.0648
0.0573
0.0637

0.0636
0.0666
0.0652

0.0532
0.0615
0.0646
0.0555
0.0590

0.0583
0.0590
0.0656
0.0559

0.0567
0.0650
0.0596
0.0592

0.0589
0.0554
0.0642
0.0619
0.0532

0.0652
0.0675
0.0629

0.0638
0.0575
0.0653
0.0702
0.0606
0.0569

0.0770
0.0731

0.0721
0.0635
0.0696
0.0794
0.074
0.064
0.0664

0.0858

0.0832
0.0724
0.0760
0.0881
0.0893
0.0786
0.0713
0.0801

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the

Wiener processes.
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Table 7: Asymptotic critical values for the test 140_ca

Sig A\ A2
level 0.1
0.2
0.3
0.4
1% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
2.5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
10% 0.5
0.6
0.7
0.8
0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1421
0.1213
0.1233
0.1634
0.1638
0.1225
0.1183
0.1433

0.1401

0.1137
0.0926
0.1092
0.1342
0.1087
0.0923
0.1090

0.1106
0.1144

0.0860
0.0752
0.1001
0.0972
0.0757
0.0866

0.0870
0.0895
0.0889

0.0699
0.0704
0.0880
0.0688
0.0694

0.0723
0.0747
0.0763
0.0718

0.0716
0.0769
0.0754
0.0698

0.0711
0.0696
0.0885
0.0693
0.0698

0.0870
0.0883
0.0875

0.0871
0.0739
0.1004
0.0965
0.0753
0.0862

0.1110
0.1142

0.1087
0.0918
0.1093
0.1305
0.1111
0.0944
0.112

0.1436

0.1419
0.1177
0.1256
0.1666
0.1616
0.1258
0.1172
0.1409

0.1162
0.0996
0.1028
0.1281
0.1287
0.1037
0.0984
0.1152

0.1165

0.0928
0.0778
0.0898
0.1070
0.0902
0.0783
0.0903

0.0912
0.0924

0.072
0.0650
0.0812
0.0799
0.0645
0.0715

0.0719
0.0749
0.0739

0.0599
0.0602
0.0722
0.0599
0.0598

0.0612
0.0644
0.0648
0.0606

0.0607
0.0653
0.0642
0.0604

0.0609
0.0606
0.0732
0.0606
0.0602

0.0719
0.0738
0.0731

0.0729
0.0643
0.0827
0.0802
0.0651
0.0728

0.0911
0.0937

0.0910
0.0770
0.0917
0.1051
0.0909
0.0788
0.0906

0.1161

0.1154
0.0994
0.1049
0.1311
0.1280
0.1040
0.0975
0.1155

0.0969
0.0845
0.0879
0.1075
0.1061
0.0882
0.0837
0.0966

0.0977

0.077
0.0669
0.0765
0.0875
0.0762
0.0674
0.0767

0.0774
0.0779

0.0621
0.0568
0.0683
0.0681
0.0567
0.061

0.0619
0.0644
0.0625

0.0527
0.0528
0.0622
0.0529
0.0523

0.0534

0.0560

0.0566
0.053

0.0532
0.0567
0.0557
0.0533

0.0529
0.0526
0.0618
0.0529
0.0529

0.0618
0.0634
0.0626

0.0622
0.0562
0.0685
0.0676
0.0571
0.0619

0.0770
0.0786

0.0770
0.0671
0.0784
0.0869
0.0768
0.0678
0.0766

0.0976

0.0971
0.0840
0.0891
0.1064
0.1062
0.0889
0.0832
0.0973

0.0788
0.0696
0.0727
0.0842
0.0840
0.0731
0.0693
0.0784

0.0789

0.0632
0.0561
0.0636
0.0698
0.0626
0.0567
0.0633

0.0629
0.0637

0.0517
0.0480
0.0558
0.0559
0.0486
0.0514

0.0517
0.0539
0.0518

0.0453
0.0455
0.0513
0.0455
0.0449

0.0459
0.0478
0.0481
0.0452

0.0457
0.0481
0.0478
0.0454

0.0453
0.0456
0.0514
0.0454
0.0451

0.0518
0.0534
0.0520

0.0514
0.0481
0.0556
0.0553
0.0487
0.0516

0.0638
0.0642

0.0627
0.0563
0.0639
0.0697
0.0628
0.0565
0.0628

0.0796

0.0796
0.0696
0.0733
0.0849
0.0843
0.0728
0.0684
0.0791

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the

Wiener processes.
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Table 8: Asymptotic critical values for the test ngo_cp

Sig. )\1\)\2
level 0.1
0.2
0.3
0.4
1% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
2.5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
5% 0.5
0.6
0.7
0.8
0.9
0.1
0.2
0.3
0.4
10% 0.5
0.6
0.7
0.8
0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1483
0.1238
0.1091
0.0979
0.0950
0.1075
0.1282
0.1501

0.1420

0.1147
0.0979
0.0840
0.0778
0.0827
0.0983
0.1167

0.1136
0.1119

0.0925
0.0760
0.0669
0.0656
0.0770
0.0925

0.0888
0.0849
0.0861

0.0742
0.0644
0.0590
0.0639
0.0747

0.0721
0.0662
0.0677
0.0723

0.0725
0.0664
0.0676
0.0719

0.0739
0.0630
0.0593
0.0642
0.0737

0.0873
0.0855
0.0845

0.0905
0.0761
0.0668
0.0649
0.0734
0.0928

0.1088
0.1128

0.1192
0.0982
0.0858
0.0778
0.0818
0.1002
0.1191

0.1379

0.1516
0.1266
0.1083
0.0995
0.0982
0.1099
0.1297
0.1480

0.1212
0.1025
0.0891
0.0816
0.0801
0.0897
0.1045
0.1219

0.1148

0.0957
0.082
0.0700
0.0661
0.0689
0.0808
0.0956

0.0916
0.0919

0.0765
0.0641
0.0570
0.0558
0.0638
0.0764

0.0732
0.0708
0.0728

0.0630
0.0556
0.0506
0.0549
0.0629

0.0621
0.0575
0.0577
0.0626

0.0619
0.0569
0.0573
0.0620

0.0630
0.0541
0.0513
0.0549
0.0643

0.0720
0.0701
0.0711

0.0761
0.0634
0.0566
0.0554
0.0619
0.0765

0.0912
0.0916

0.0978
0.0802
0.0706
0.0659
0.0690
0.0829
0.0984

0.1137

0.1230
0.1047
0.0895
0.0819
0.0811
0.0911
0.1045
0.1212

0.1018
0.0861
0.0754
0.0690
0.0686
0.0754
0.0871
0.1016

0.0959

0.0811
0.0689
0.0597
0.0566
0.0597
0.0681
0.0801

0.0767
0.0774

0.0657
0.0545
0.0492
0.0487
0.0548
0.0651

0.0618
0.0608
0.0622

0.0547
0.0484
0.0452
0.0482
0.0545

0.0541
0.0500
0.0499
0.0544

0.0544
0.0501
0.0500
0.0549

0.0553
0.0471
0.0453
0.0479
0.0554

0.0619
0.0595
0.0609

0.0657
0.0543
0.0491
0.0479
0.0535
0.0647

0.0755
0.0765

0.0811
0.0678
0.0598
0.0561
0.0599
0.0689
0.0815

0.0960

0.1022
0.0874
0.0755
0.0690
0.0699
0.0764
0.0872
0.1019

0.0829
0.0708
0.0621
0.0575
0.0574
0.0619
0.0710
0.0825

0.0777

0.0661
0.0564
0.0495
0.0473
0.0497
0.0555
0.0657

0.0633
0.0626

0.0542
0.0459
0.0415
0.0414
0.0458
0.0539

0.0517
0.0502
0.0521

0.0471
0.0415
0.0392
0.0413
0.0466

0.0463
0.0429
0.0427
0.0463

0.0463
0.0424
0.0428
0.0465

0.0470
0.0407
0.039
0.0412
0.047

0.0516
0.0495
0.0511

0.0540
0.0455
0.0416
0.0411
0.0453
0.0537

0.0620
0.0619

0.0662
0.0558
0.0494
0.0471
0.0494
0.0564
0.0669

0.0780

0.0825
0.0706
0.0622
0.0577
0.0576
0.0627
0.0705
0.0826

The critical values were obtained using 20,000 replications and 2,000 steps to approximate the

Wiener processes.
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Table 9: Empirical size and power of the test statistic

197;: (M7ﬁ7917’71792772),i: 1,...74

¥, = (0,0,0,0,0,0)

¥y = (1,0.2,-5,-0.2,2,0.5)

T\p 08 09 1 08 09 1
100 0.031 0.042  0.035 0.024  0.080 0.167
200 0.027 0.026  0.070 0.041 0.137 0.496
500 0.040 0.022  0.401 0.054  0.065 0.905
95 = (1,0.2,0,0, -5, —0.2) 9, = (1,0.2,0,0,0,0)
T\p 08 09 1 08 09 1
100 0.043 0.057  0.098 0.037 0.041 0.049
200 0.039 0.062  0.273 0.029 0.031 0.075
500 0.038 0.044  0.713 0.050  0.029 0.401

Simulation experiment has specified the relative position of the structural breaks at
(A1,A2) = (0.2,0.6). The long-run variance has been estimated using the Quadratic
Spectral kernel with the bandwidth estimated as in Sul, Phillips and Choi (2003).

n = 2,000 replications are carried out.
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