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1 Introduction

Assessing the forecasting performance of econometric models is an important ingredient in evaluating
such models. In multivariate models containing non-stationary variables, cointegration may be thought
to play a key role in assessing forecasting ability, especially over long horizons, because cointegration
captures the long-run comovement of the variables. Several studies have investigated the forecasting
properties of cointegrated models. Engle and Yoo (1987) make a small Monte Carlo study where they
compare mean-squared forecast errors from a VAR in levels, which imposes no cointegration, to forecasts
from a correctly specified error-correction model (ECM), which imposes cointegration, and they find that
longer-run forecasts from the ECM are more accurate. This result supports the above intuition that
imposing cointegration gives better long-horizon forecasts for variables that are tied together in the long
run. However, subsequent research has somewhat questioned and subsequently modified this — at the first
glance appealing — conclusion.

According to Christoffersen and Diebold (1998), the doubts on the usefulness of cointegrating restric-
tions on the long-run forecasts are related to the following conjecture. The improved predictive power
of cointegrating systems comes from the fact that deviations from the cointegrating relations tend to be
eliminated. Thus, these deviations contain useful information on the likely future evolution of the cointe-
grating system which can be exploited to produce superior forecasts when compared to those made from
models that omit cointegrating restrictions. However, since the long-run forecast of the cointegrating term
is always zero, this useful information is only likely to be effective when the focus lies on producing the
short-run forecasts. Hence, at least from this point of view, usefulness of imposing cointegrating relations
for producing long-run superior forecasts can be questioned.

Clements and Hendry (1995) compare mean-squared error forecasts from a correctly specified ECM
to forecasts from both an unrestricted VAR in levels and a misspecified VAR in first-differences (DVAR)
which omits cointegrating restrictions present among the variables. They find that the forecasting supe-
riority of the model that correctly imposes these cointegrating restrictions hinges crucially on whether
the forecasts are for the levels of the variables, their first-differences, or the cointegrating relationship
between the variables. They show that this difference in rankings for alternative yet isomorphic represen-
tations of the variables is due to the mean-squared forecast error (MSFE) criterion not being invariant
to nonsingular, scale-preserving linear transformations of the model.! In particular, they show that the
forecasts from the ECM model are not superior to those made from the DVAR model at all but the
shortest forecast horizons when the first-differences of I(1) variables were forecasted.

Christoffersen and Diebold (1998) compare mean-squared error forecasts of the levels of I(1) variables

I Clements and Hendry (1993) suggest an alternative measure that is invariant to scale-preserving linear transformations

of the data: the generalized forecast error second moment (GFESM) measure.
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from a true cointegrated VAR to forecasts from correctly specified univariate representations, and they
similarly find that imposing cointegration does not improve long-horizon forecast accuracy. Thus, it
appears that the simple univariate forecasts are just as accurate as the multivariate forecasts when
judged using the loss function based on the MSFE. They argue that this apparent paradox is due to the
fact that the standard MSFE criterion fails to value the long-run forecasts’ hanging together correctly.
Long-horizon forecasts from the cointegrated VAR, always satisfy the cointegrating restrictions exactly,
whereas the long-horizon forecasts from the univariate models do so only on average, but this distinction is
ignored in the MSFE criterion. Christoffersen and Diebold suggest an alternative criterion that explicitly
accounts for this feature. The criterion is based on the triangular representation of cointegrated systems
(see Campbell and Shiller, 1987, and Phillips, 1991). The virtue of this criterion is that it assesses forecast
accuracy in the conventional ”small MSFE” sense, but at the same time it makes full use of the information
in the cointegrating relationships amongst the variables. Using this new forecast criterion, they indeed
find that at long horizons the forecasts from the cointegrated VAR are superior to the univariate forecasts.

The purpose of the present paper is twofold. First of all, we extend the analysis of Christoffersen and
Diebold to the case where the variables under study not only obey cointegrating relationships, but also
obey certain multicointegrating restrictions. Multicointegration was originally defined by Granger and Lee
(1989, 1991) and refers to the case where the underlying I(1) variables are cointegrated in the usual sense
and where, in addition, the cumulated cointegration errors cointegrate with the original I(1) variables.
Thus, essentially there are two levels of cointegration amongst the variables. Multicointegration is a very
convenient way of modeling the interactions between stock and flow variables. Granger and Lee considers
the case where the two I(1) variables: production, v, and sales, x;, cointegrate, such that inventory
investments, z;, are stationary, z: = y; — Bx+ ~ I(0), but where the cumulation of inventory investment,
Iy = %% z;, i.e. the level of inventories (which is then an I(1) stock variable), in turn cointegrates with
either y; or x4, or both of them. Another example, analyzed by Lee (1992) and Engsted and Haldrup
(1999), is where y; is new housing units started, x; is new housing units completed, z; is uncompleted
starts, and hence I; is housing units under construction. Leachman (1996), and Leachman and Francis
(2000) provide examples of multicointegrating systems with government revenues and expenditures, and
a country’s export and import, respectively. Here the stock variable is defined as the government debt
(surplus) and the country’s external debt (surplus), such that each variable is the cumulated series of past
government and trade deficits, respectively. Yet another example is provided by Siliverstovs (2001) who
analyze consumption and income, and where cumulated savings (i.e. the cumulation of the cointegrating
relationship between income and consumption) constitutes wealth, which cointegrates with consumption
and income. In general, multicointegration captures the notion of integral control in dynamic systems,

see, for example, Hendry and von Ungern Sternberg (1981) inter alia.
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Testing for multicointegration, and estimation of models with multicointegrating restrictions, are most
naturally conducted within an I(2) cointegration framework, see Engsted, Gonzalo and Haldrup (1997),
Haldrup (1999), Engsted and Johansen (1999), and Engsted and Haldrup (1999). In the present paper
we investigate how the presence of multicointegration affects forecasting comparisons. In particular, we
set up a model that contains both cointegrating and multicointegrating restrictions, and then we examine
how forecasts from this multicointegrated system compares to univariate forecasts. The comparison is
done in terms of (trace) mean-squared forecast errors, but we follow Christoffersen and Diebold (1998)
in using both a standard loss function and a loss function based on the triangular representation of the
cointegrating system.

Secondly, we extend the analysis of Christoffersen and Diebold (1998) to the case when forecasting is
undertaken in so called polynomially cointegrating systems, where the original I(2) variables cointegrate
with their first differences?. Hence, the forecasting of I(2) variables constitutes the primary interest
in the polynomially cointegrating systems. Examples of polynomially contegrating systems have been
given in Rahbek, Kongsted, and Jorgensen (1999), and Banerjee, Cockerell, and Russell (2001), inter
alia. Rahbek et. al. (1999) find a polynomially cointegrating relation in a UK money demand data set,
which involves both levels and first differences of the original I(2) variables represented by the logarithmic
transformation of nominal money and nominal prices levels. Banerjee et. al. (2001) analyse the system
of I(2) variables which consists of the nominal price level and unit labour and import costs, expressed
in logarithms. They find the polynomially cointegrating relation between the markup — defined as a
particular linear combination between the price level and costs — on the one hand, and the inflation
rate, on the other hand. As in the section on forecasting in multicointegrating systems, we compare
the forecasting performance of the model that imposes the polynomially cointegrating relations with
the forecasts made from the correctly specified univariate models for the I(2) variables. We use the
loss function based on the MSFE as well as the loss function based on the triangular representation of
the polynomially cointegrating variables. The latter loss function takes into account the fact that the
system long-run forecasts maintain the polynomially cointegrating relations exactly as opposed to the
their univariate competitors, which satisfy the polynomially cointegrating relations only on average. The
former loss function fails to acknowledge such a distinction between the system and univariate forecasts.

Our most important results can be summarized as follows. First, we find that the general result of
Christoffersen and Diebold derived for the cointegrating models carries over to multicointegrated as well

as polynomially cointegrated models. Based on the traditional MSFE criterion, long-horizon forecasts

20bserve that despite the fact that the inference and analysis of multicointegrated as well as polynomially cointegrated
systems are technically the same, we choose to keep this distinction in terminology. We refer to the multicointegrating system
when dealing with original I(1) variables and its respective cumulants. On the opposite, the polynomially cointegrated system

is referred to when dealing with original I(2) variables and its first difference transformation.
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from the multi- and polynomially cointegrated systems are found not to be superior to simple univariate
forecasts. However, based on the triangular MSFE criterion the system forecasts are clearly superior to
the univariate forecasts. Second, we find that if focus is on forecasting the original I(1) variables of the
system, nothing is lost by ignoring the multicointegrating property of the system when evaluating its
forecasting performance: although the forecasts are constructed from the correctly specified multicointe-
grated model, when evaluating these forecasts, one can just use Christoffersen and Diebold’s triangular
MSFE measure that includes the first layer of cointegration but excludes the second layer of cointegra-
tion represented by the multicointegrating relation. The explanation is that the long-run forecasts of
the multicointegrating I(1) variables maintain the cointegrating but not the multicointegrating relations.
Hence, it seems appropriate to evaluate the long-run forecasting performance of the multicointegrating
system using the loss function of Christoffersen and Diebold, which in particular values maintainance of
the cointegrating relations in the long-run. Third, if focus is on forecasting the I(2) variables of the system
then forecasts should be based on the polynomially cointegrating system, and in evaluating the forecasts
one should use an extended triangular MSFE criterion, which explicitly acknowledges the maintainance
of the polynomially cointegrating restrictions amongst the long-run system forecasts.

Observe that due to the fact that our primary interest is on the particular dynamic characteristics of
multi- and polynomial cointegration with respect to forecasting, we abstract from estimation issues and
hence assume known parameters.

The rest of the paper is organized as follows. In Section 2 we set up the multi— and polynomially
cointegrating systems used in the subsequent analysis. Also, we derive the corresponding univariate
representations of the system variables. Sections 3 and 4 discuss the long-run forecasting in the multi—
and polynomially cointegrating systems, respectively. Section 5 illustrates our findings using a numerical

example and the final section concludes.

2 Multi- and polynomially cointegrating sytems.

In this section we define multicointegrating and polynomially cointegrating models and derive the cor-
responding univariate representations of the system variables. To ease the exhibition we employ the

simplest models with relevant multi— and polynomially cointegrating restrictions.
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2.1 Multicointegrating system.

First, we address a model incorporating multicointegrating restrictions. Consider the two I(1) variables,

x; and y¢, that obey a cointegrating relation
Yo — Azy ~ 1(0), (1)

such that the cumulated cointegration error

(y; — Axj) ~ I (1)

t
=1

2

is an I(1) variable by construction®. We refer to the system as multicointegrating when there exists a

stationary linear combination of the cumulated cointegrating error and the original variables, e.g.

(y; — Azj) — oy ~ I(0). (2)

t
=1

J

As discussed in Granger and Lee (1989, 1991), the multicointegrating restrictions are likely to occur
in stock-flow models, where both cointegrating relations have an appealing interpretation. The first
cointegrating relation (1) is formed between the original flow variables, for example: production and
sales, income and expenditures, export and import, etc. The second cointegrating relation (2) represents
the relation between the cumulated past descrepancies between the flow variables, for instance: the stock
of inventories, the stock of wealth, the stock of external debt (surplus), and all or some flow variables
present in the system. It implies that the equilibrium path of the system is maintained not only through
the flow variables alone, but there are additional forces tying together the stock and flow series and in so
doing providing a second layer of equilibrium.

It is convenient to represent the system of the multicointegrating variables in the triangular form

A.Q?t = €1t (3)
t t

Zyj = )\ij—&—aa:t—i—ezt,

=1 j=1

where the cumulated I(1) series are now I(2), by construction. The disturbances are uncorrelated at all
leads and lags, i.e. E (e14—jes—;) =0,V j#ifor j =0,£1,4£2,... and i = 0,£1,+£2,... . We denote the
I(2) variables by capital letters, i.e. Y; = Z;’-Zl y; and X; = Z;’-Zl x;.* This allows us to write the system

3Note that no deterministic components are assumed in the series and hence, by construction, no trend, for instance, are

generated in the cumulated series.
4However, it is worthwhile keeping in mind the distinction bewteen I(2) variables in the multi- and polynomially cointe-

grating systems. In the former case, they are generated as such, whereas in the latter case the original series are 1(2).
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above as

A.CEt = €1 (4)

Y:; = AX¢+ aw+ ey

Below we provide two equivalent representations of the system in (4). The Vector Error-Correction

model (VECM) can be represented as follows:

A.CEt 0 0 €1t
= [Ye—1— Az 1] + Vi1 —AXy 1 —axe ] +
Ay, -1 -1 A+ a) e +ex
As seen, the VECM explicitly incorporates both cointegration levels, see equations (1) and (2), that
are present in the multicointegrating system (4). Alternatively, the multicointegrated system (4 ) can be

given the moving-average representation:

Az, 1 0 et
= C (L) €y = 2 . (5)

Ay, A+(1-L)o] (1-1IL) e
Granger and Lee (1991) argue that the necessary and sufficient condition for the time series x; and y:
to be multicointegrated is that the determinant of C (L) should have a root (1 — L)*. This condition is

clearly satisfied for our simple system.

2.2 Polynomially cointegrating system.

In contrast to the multicointegrating model where two equilibrium layers are of equal interest, there is
one cointegrating relation that is of primary interest in the polynomially cointegrating systems. Namely,

the one that is formed by the levels of the original I(2) variables and its first differences
1/;5 = )\Xt + ozAXt + e9;.

The most popular example of such a polynomially cointegrating relation involves levels of nominal mon-
etary and/or price variables (expressed in logarithms) and inflation (defined as the first difference of the
logarithmic transformation of the nominal prices), see Rahbek et.al. (1999), for example.

Similarly to the multicointegrating model, we can write the polynomially cointegrating model in the

triangular form as follows

AQXt = €1t (6)

Y;

Il

)\Xt + OéAXt + €9t,

where it is assumed that the disturbances are orthogonal at all lags and leads. Observe that in this simple

system the common I(2) trend is represented by X, and the respective polynomially cointegrating relation

is given by Y; — AX; — aAX; = eqy.
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The polynomially cointegrating system (6) can be given the moving-average representation:

AQXt 1 0 €1t
2 =C(L)e = 2 ’ ™)
A?Y, A+(1—-L)o] (1-1L) eat

Observe that the representations (5) and (7) are equivalent, however the focus on I(1) and I(2) variables

differs.

2.3 Univariate representations.

In this section we derive the implied univariate representations for the z; and y; as well as for X; and
Y; series. For the original variable x; and its cumulative counterpart X; the univariate representations

remain the same as given in the system (4)

Ty = Tpo1t e

X: = Xioi +AXi 1+ e

In deriving the implied univariate representation for y; and Y; we follow Christoffersen and Diebold (1998)

by matching the autocovariances of the process z;. From the MA-representation of A2Y; = Ay, we have

A%, = Ayi=+(1—-L)alen+(1— L) ey
Yo = Y1t 2
Y, = Y1 +AY |+ 2z,

where, as shown in the appendix, the process z; corresponds to the MA(2) process
zp = Uy + O1up—1 + Ooug—o, u ~ 1D (OaUZ) . (8)

The coefficient 8, represents a root of the following fourth order polynomial

03+ (2— B) 03+ (A2 —2B+2)03+ (2— B)b+1=0, o)
where A=[-a(A+a)qg—4], B= {(A+a)2+a2}q+6, andq:%;

2

and the coefficient ; and the variance term o2 can be found as follows:

2
91:LA and 02—2

0+ 65) “ Ty (10)

Observe that the values of the MA coefficients 6, and 0, are chosen such that they satisfy the invertibility
conditions for the MA(2) process z;.
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3 Long-run forecasting in multicointegrating systems.

In this section we closely follow the approach of Christoffersen and Diebold (1998) in comparing the
long-run forecasting performance of the model that correctly imposes multicointegration — and at the
same time cointegration — restrictions and the univariate model that omits those restrictions completely.
Hence, our analysis extends the results of Christoffersen and Diebold (1998) derived for cointegrated I(1)
systems to multicointegrating systems where focus is on forecasting I(1) variables.

In order to motivate the subsequent analysis of long-run forecasting in the multicointegrating systems,
it is worthwhile reviewing related results of Christoffersen and Diebold (1998) for the long-run forecasts
in standard I(1) cointegrating systems. Christoffersen and Diebold (1998) show that when comparing
the forecasting performance of the models that impose cointegration and correctly specified univariate
models in terms of MSFE, there are no gains of imposing cointegration at all but the shortest forecast
horizons. The problem is that the MSFE criterion fails to acknowledge the important distinction between
the long-run system forecasts and the univariate forecasts. That is, the intrinsic feature of the long-run
system forecasts is that they preserve the cointegrating relations exactly, whereas the long-run forecasts
from the univariate models satisfy the cointegrating relations on average only. As a result, the variance of
a cointegrating combination of the system forecast errors will always be smaller than that of the univariate
forecast errors.

Therefore, if one can define a loss function which recognizes this distinction between the system-
and univariate forecasts, then it becomes possible to discriminate between the forecasts made from these
models. Christoffersen and Diebold (1998) show that such a loss function can be based on the triangular
representation of the cointegrating variables, see Campbell and Shiller (1987), and Phillips (1991). In its

simplest form a standard I(1) cointegrated system reads

1 - Z1t Vo¢

0 1-L Z9¢ V1t

where it is assumed that the disturbance terms are uncorrelated at all leads and lags. The corresponding
loss function, introduced in Christoffersen and Diebold (1998), looks as follows:
/

1 - v 1 - v
trace MSFE,,.; — E 2tk 2ekh : (11)

0 1—-L Vit+-h 0 1—-L Vit+-h

such that the forecast accuracy of a given model is judged upon the corresponding forecast errors vi¢4p,

°In the subsequent anlysis the issue of estimation is being abstracted from. Estimation of unknown parameters is
naturally of essential importance in forecasting. However, in order to address the forecast structure of multi- as well as

polynomially cointegrating systems in particular, we assume that the parameters are known in the considered models.
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and vgyyp. The trace MSFE,,; also reads

/ 9 /

v % 1 =X 1 =X
trace MSFEy,; =E || 7" | K| 2 ||, where K =
Vlt+h Vitth 0 1-L 0 1-L

and it is instructive to compare this with the traditional MSFE used in other studies:

r /

v U
trace MSFE = E 2Hth 2th

Vit+h Vit+h

As seen, the traditional MSFE can be regarded as the special case of the trace MSFE;,.; with K = I.
The trace MSFE;,; criterion values the small forecasts errors as does the traditional MSFE criterion,
but at the same time it also values maintainance of the cointegrating restrictions amongst the generated
forecasts. With other things being equal, the latter fact proved to be cruical in distinguishing between
the system- and univariate forecasts.

In the present section we extend the results of Christoffersen and Diebold (1998) to the multicointe-
grating model forecasts. As shown below, the basic structure of their argument carries over to the case of
our interest. Firstly, the usual MSFE criterion fails to distinguish between the forecasts generated from
the multicointegrating models and the corresponding univariate models at the long forecast horizons.
Secondly, the multicointegrating system forecasts obey cointegrating but not multicointegrating relations
in the long run, whereas the corresponding univariate forecasts maintain the cointegrating relations on
average only. Thirdly, although the variance of the forecast errors of levels of I(1) variables grows of order
O (h), the variance of the cointegrating combination of these forecast errors is finite. This is relevant
both for system- and univariate forecasts, however, in the latter case the variance of the cointegrating
combination is greater than in the former case.

The message is that, although forecasts are made from the multicointegrating model, evaluation of
the forecasts can be carried out by means of the loss function (11), which is based on the triangular

representation of the cointegrating system. The rest of this section illustrates this important conclusion.

3.1 Forecasting I(1) variables from the multicointegrating system.

The MA-representation of the multicointegrating variables (5) allows us to write the evolution of the

multicointegrating system in terms of time ¢ values x; and future innovations ey, and egsyp:

h
Tirh = ¢+ E €1t +i
i—1
h
Yirh = AT+ A E eltti + e1eqp + Negryp
i—1
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Correspondingly, the h-steps ahead forecasts for I(1) variables are given by
E’f'\t-i-h = It
Yrn = Amy (12)
for all forecast horizons but A = 1. In the latter case we have
57\754—1 = Tt
Z//\t—&—l == AIt — €9 = A.Tt - D/;g - )\Xt - aact} . (13)

In particular, observe the long-run forecasts from our multicointegrating system maintain the cointegrating

relation exactly:

Utrh = \tpn (14)
Continuing, the forecast errors read
h
Soprn = Y ewri Vh>0
i=1

Xeppyr + ey Feapr = A+ a)erpr +exupr for h=1

g, t+h —
Y, h
A E i—1 €1+ + aepyrp + AthJrh for h > 1

Furthermore, we can note that the forecast errors and the original system as in (5) follow the same

stochastic process, i.e.

Agutrn | 1 0 eltth (15)
AZyiin A+a(l—L) (1—1L) €2t4h
The forecast error variances are thus given by
Var (Egiin) = hoi~O(h), for h>0 (16)
R (A+a)20%+(rg for h=1
Var (€y,1+n) (17)

A202h + [(A+a)2 N2 02 4202~ O(h) forh>1

Notice that the variance of the system forecast error for y; s and z;yp is growing of order O (h). The

variance of the cointegrating combination of the forecast errors is given by

n R a0 +03 forh=1
Var (Ey,t+h - )\555,1‘,+h) = (18)

202 + 202 for h > 1
and hence is finite for all forecast horizons. Observe that in this simple model the variance of the
cointegrating combination of the forecast errors is the same for all forecast horizons except for h = 1.

The reason for the latter finding can be seen from equations (12) and (13), which reflects the fact that

the multicointegrating term is in the information set for A = 1 and it has expectation zero for A > 1.
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3.2 Forecasts from implied univariate representations for I(1) variables.

Next, we turn to the forecasting of the I(1) variables based on the correctly specified implied univariate

representations. Future values of x4, are given by

R
Tiph = T+ E €144
i=1

and for the variable y;ip

Yi + Zep1 = Yo+ U1+ Orug + O2us g h=1
Yern = h h
Yo+ D i Zei = Yo T U1 + 01w + 0w+ uggg + Orugpy +0oup + a2y h>1

The corresponding h—steps ahead forecasts for I(1) variables can now be derived as follows.

forecast for the variable z; is the same as the system forecast
Typn = Tppn = 24
whereas the forecast g4, is given by

- Y+ O1ug + O2up—q for h =1
Yt+h =
Y + Orug + Ooup_q + Oouy = yp + (01 + 02) ug + Oguy—q, for h >1
The forecast error and the corresponding forecast error variance for x;j are given by

h

g:c,tJrh = g:c,tJrh = Z C1t+i
i=1
Var (gm,t—‘,-h) = Var (/g:v,t+h) = ha% ~ 0 (h) .

The corresponding forecast error €, +4n = Ys+r — Yz4+n for the variable y; reads

Ut41

Eytth = -
Upt1 + U + O1Uspq + 2?23 zeyi = (1461 +62) 2?212 Ui + (1 +601) Uggpn—1 + Usgn

with the forecast variance
o2 for h=1
VarEyeen) = [(1 L0462 (h—2)+(1+6)+ 1] o2 =
— 202 (h—2) + [(1+91)2+1} 02 ~O(h) forh>1.

Next we derive the variance of the cointegrating combination of the forecast errors:

Var Gyein — Xeairn) = Var Eyupn) + NVar (Eu4n) — 22c00(Zy 1n,Ea e rn),

SB

The
(19)
for h =1
for h > 1
(20)



13

using expressions (19) and (20) and the following expression for the covariance term
CoV(Ey, t+h, Ext+h) = )\ha% + 04(7%.

The variance of the cointegrating combination of the forecast errors reads

02 — A%02 — 2)\a0? for h=1

(21)
—2X202 —2Xa02+ |(1+60,)* 41|02 <o for h>1

Var (Eyian — Nex,e4n) =

This implies that the variance of the cointegrating combination of forecasts from the implied univariate

representations is finite.

3.3 Comparison of the forecast accuracy for I(1) variables.

First we use the trace MSFE criterion to compare the forecast accuracy of the multivariate and univariate
forecast representations. Using equations (16) and (17), and (19) and (20) we can calculate the behaviour

of the conventional measure of the forecast accuracy (trace MSFE) as the forecast horizon increases:

2
trace(var(E¢yn)) hot + z? (h—1)0F - )\20% +(14+61)°+1|c2

= 2 2 —1 (22)
trace(var (1)) ho? + 32 (h—1) 03+ (A + a)2 03 + 203

As seen, as h — oo this trace ratio approaches 1 since the coefficients to the leading terms both in
nominator and denominator are identical. That is, on the basis of the traditional forecast evaluation
criterion (trace MSFE) it is impossible to distinguish between the model with imposed multicointegration
restrictions and the model that ignores these restrictions completely. The well-recognized drawback of the
trace MSFE criterion is that it fails to value the exact maintainance of cointegrating relations by the long-
run forecasts. Hence, the solution is to employ the loss function that recognizes this fact. Recall that we
have shown above that the long-run forecasts from the multicointegrating system obey the cointegrating
relation exactly. Therefore it seems natural to adopt the loss function based on the triangular system for
the cointegrating variables for our purposes. Using the loss function (11) as defined in Christoffersen and

Diebold (1998), we have for the system forecasts

/

trace MSFE,,; = E Eytth = Aeo,ttn Eyt+h — Aeayitn
tri
(1= L)&retn (1—L)eyn

That is

— a20%+(rg+0% for h=1
trace MSFE,; =
a?0? +203 + 02 for h>1

For the forecasts from the univariate models we have
4

Ey,t4h = Afxtth Ey,t4h = Afattn
(1= L)&zt4n (1= L)&zt4n

trace M/S\EEM =F
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and thus

UZ — /\2(7% — 2/\a0% + (r% for h =1

trace M@fEtM = 5 5
{(1+91) +1} o2 —2)\°0% —2)\ao? +0? for h > 1

Comparing the ratios we have

— 2
trace MSFE?;-l B [(1 +61)" + 1} o 2/\20% —2X\ao? + 0%
—— h>1 202 1202 + o2 >1 (23)
trace MSFE,,, 1 2 1
—— h=1
trace MSFE,,; 02 — X202 — 2)\a0? + o2 o1 (24)
—— h=1 2 2 2 2 .
trace MSFE,, aso{ + 03 + 07

It is not straightforward to show analyticaly that the above inequalities apply. However, using numerical
simulation it can be shown that the trace ratios (23) and (24) will always be greater than unity.®

In summary, a number of results of Christoffersen and Diebold (1998) derived for the cointegrating
systems straightforwardly carries out to the model that obeys multicointegrating restrictions. First, long-
run forecasts generated from the multicointegrating system preserve the cointegrating relations exactly,
see (14). Second, the system forecast errors follow the same stochastic process as the original variables,
as depicted in (15). Third, the variance of the cointegrating combination of the system forecast errors
is finite (see (18)) even though the variance of the system forecast errors of a separate variable grows
of order O (h), as seen in expression (17). Fourth, the variance of the cointegrating combination of the
univariate forecast errors is finite too even so the variance of the univariate forecast errors grows of order
O (h), see (21), (19), and (20) . Fifth, imposing the multicointegrating restrictions does not lead to the
improved forecast performance over the univariate models when compared in terms of the traditional
mean squared forecast error criterion, as shown in (22). Finally, adoption of the new loss function based
on the triangular representation of the standard I(1) cointegrating system leads to the superior ranking

of the system forecasts over their univariate competitors, see expression (23).

4 Long-run forecasting in polynomially cointegrating systems.

Next, we examine the forecasting performance of the model that imposes the polynomially cointegrating
restrictions and the model that totally ignores these when forecasting the original I(2) variables. Similarly
to the last section we investigate the long-run behavior of the loss function based on the traditional trace
MSFE criterion when comparing the forecasting performance of the model that imposes the polynomi-

ally cointegrating restrictions with that of the univariate model. We will show that also in this case,

6The problem is that the parameters 6; and o2 are functions of both the parameters of the multicointegrated model
u
A «, O'%, O'%) as well as the parameter 02, which is a solution to the fourth-order polynomial (9) derived from the MA(2)

process characterizing the univariate representations, see equations given in (10).
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imposing polynomially cointegrating restrictions does not improve over the long-run forecasting perfor-
mance of the simple correctly specified univariate models. This well accords with the established results
of Christoffersen and Diebold (1998) for the cointegrating systems as well as in the section above for the
multicointegrating systems.

In order to combat this fact, we suggest a new loss function based on the triangular representation of
the polynomially cointegrating variables given in (6). Opposite to the conventional trace MSFE criterion,
the new loss function explicitly recognizes the important distinction between the system- and univariate
forecasts. The system forecasts obey the polynomially cointegrating relations exactly in the limit, whereas

this is not true in the case with the forecasts from the univariate representations.

4.1 Forecasts of I(2) variables from polynomially cointegrating system.

Using the MA-representation (7) presented in Section 2.2 we can write the future values of the I(2)

variables
h q
Xiyn = Xy +hAX, + Z Zelt+i
g=1 =1
h
AXigyn = AXy + Z €1¢+i
i=1
h q h
Yien = MXp+hAXy) + aAX: + A Z Z e1¢4i +« Z €1¢4s + €2t p
q=1i=1 i=1
with the corresponding forecasts
Xen = Xi+hAX, (25)
AXp = AX, (26)
Yien = MXi+hAX) + aAX,. (27)
The forecast errors read
h q h
Extth = Z Z e1t4i = Z (h+1—1) ey
q=1 i=1 i=1
h
/E\AX,H-h = Z €lt4i
i=1
h
Evitn = Z A(h+1—1)+aerrri + eaeqn
i=1

and follow the same stochastic process as the original system, that is

AQEX,t-ﬁ-h - 1 0 €1t+h
A%Eyiin Ata(l—L) (1-L) €atih
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The corresponding forecast error variances for the levels of I(2) variables are of the order O (h®) as seen

below:

h q
~ h(h+1)(2h+1
Var Ex+n) = Var ( E E €1t+i> = ( )6( )a% ~ 0 (h3)

g=11i=1
h
Var (gAX,t—‘,-h) = Z Var (elt_;,_i) = hO’%
=1
h(h+1)(2h+1 h(h+1
Var (Evieqn) = (h+1)(2h+ )/\20% + QQAgU% + halo? 4+ 03 ~ O (hg)

6

The variance of the polynomially cointegrating combination of the forecast errors reads

VCLT (/E\YytJrh — )\/E\X,tJrh - agAX,t+h) = (I%. (28)

This is finite, and for our simple model it is constant for all forecast horizons h > 0 as there is no
short-run dynamics. The finding of the finite variance of the polynomially cointegrating combination of
the forecast errors is similar to that of Christoffersen and Diebold (1998), and Engle and Yoo (1987) for
I(1) systems. This is due to the fact that the forecast errors follow the same stochastic process as the
forecasted time series. As a consequence, the forecasts are integrated of the same order and share the
polynomially cointegrating properties of the system dynamics as well.

In the model the forecasts satisfy exactly the polynomially cointegrating relation at all horizons, not

just in the limit. This can be shown using the expressions (25),(26) and (27) :

Yign — AXypn — aAXpin = A(Xy + RAX,) + aAXy — A (X; + hAX,) —aAX, =0, for h >0

4.2 Forecasts from the implied univariate representations for I(2) variables.

Next we derive the forecast expressions from the implied univariate representations. The future values of

the process X; are the same as based on the triangular system (4)

h q
Xiyn = Xy +hAX + Z Z€1t+i
g=11i=1
h
AXpyn = AX,+ Zelt-i-i
i=1
and for the process Y;;; we have
h—2 ¢
Yirn =Y + hAY: + h (w1 + O1ug + Oous—1) + (B — 1) (upto + O1usp1 + Oouy) + Z Zzt+i+2
g=1 i=1
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The corresponding forecasts for I(2) variables are calculated as follows. For X} it is the same as from

the polynomially cointegrating model
Xt+h = Xt+h = X; + hAX,
AXpin = AXpon =AX,
The univariate forecast for Yz, reads

}/t + A}/f + Glut + 92”1‘,71 for h=1
Y: + hAY; + h (01 + 02) ug + hbous—q — Oauy for h > 1

Yitn =

Notice that in this case the long-run forecasts from the implied univariate representations do not maintain
the polynomially cointegrating relations in the long-run exactly but do so on average as opposed to their
system counterparts that maintain the polynomially cointegrating relations exactly in the long-run. To
see this, we have

Yieh — AXepnh —aAXepn, = Y+ hAY; + h(01 + 02) ug + haus_1 — Ooug — AXy — AWAX, — aAX,

= D/; — )\Xt — OéAXt] + h [A}/t — )\AXt] + h (01 + 02) Ut + h@gut_l — ngt.

The corresponding forecast errors are given by

h q h
Exaan = Exaqn =Y enri=y (h+1—i)ery
g=1 i=1 i=1
h
gAX,tJrh = gAX,tJrh = Z €1t44
i=1
with the variances
- . h(h+1)(2h+1
Var (Ex +n) = Var Extn) = ( )6( )a% ~ 0 (hs) (29)
Var Gaxin) = VarEaxiern) =hod ~O0(h). (30)
The forecast errors for Y;,p read
gY,tJrl = Utp1
h—2
EYi4h = Z {1401 +02)(h—i+1)+ (1 +61) + 1 ugps + (1 +61) + 1) uppn—1 + vetn
i=1

with the corresponding forecast error variances

Var (Byui1) = o2
Var Grawn) = (140 + 6, L2022 +61) R-2+1 (31)
H2((1+61) +1) (140, +62) (h—2)(/;—2+1)ai_

(146 +1)* (h—1)02 + 02 ~ 0 (h?).
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Next, we calculate the variance of the polynomially cointegrating combination of the forecast errors
from the univariate representation. The straightforward but tedious algebra relegated to the appendix

yields the following relation
Var (gY,t-l—h - AgX’t+h — agAX’t_A,_h) = [VCLT (gY,t-l—h) —Var (gY,t-l—h)} -+ O’%. (32)

Moreover, as shown in the appendix the leading term for the h® eventually cancels out such that
the variance of the polynomially cointegrating combination of the forecast errors from the univariate
representation is growing of order O (hz) . That is, it grows at a lower order than the variance of the
forecast errors for the levels of I(2) variables.

Thus, the fact, that the system long-run forecasts preserve the polynomially cointegrating relations
exactly whereas the univariate long-run forecasts do so only on average, allows us to construct a new
loss function in the spirit of Christoffersen and Diebold (1998), which takes into account this important

distinction between the system- and univariate forecasts.

4.3 Comparison of forecast accuracy for 1(2) variables.

First, we show that the ratio of the usual trace MSFE for univariate and system forecast errors tend to
unity as the forecast horizon increases. Using expressions (29) , (30), and (31) we can derive the following

result

trace(Var@En)) _ Var Exen) + Var Eyan) _ O (%) g (33)
trace(Var(€in)) Var (Exsen) + Var (Evaqn) O (h3)

since the coefficients to the leading terms are identical. Observe, that this result is related to the expression
(32), where these equivalent coefficients to the leading terms resulted in cancellation of those leading
terms, and thus reducing the growth order of the variance of the polynomially cointegrating combination
of the univariate forecast errors from O (hs) to O (h2) .

In contrast, the ratio of trace MSFE for the triangular representation of the polynomially cointegrating
system does not tend to unity but diverges to infinity as the forecast horizon increases. For the system

forecasts we have

/

— /5\Y,t+h - )\gX,t-&-h - a/E\AX,H-h /E\Y,t-i-h - /\gX,t-&-h - CY/E\AX,H-h
trace MSFE;,;, = F =

(1 - L)Q/E\X,t—‘rh (1 - L)QEX’L‘_;'_}L

2
= E@vuen — Nexth — 0Baxn) +E ((1 - L)QEX,tJrh) =o5+07=0(1)
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and for the univariate forecasts we have that

’

—— €Y t4h — NEX t+h — QEAX t+h EVitth — NEX,t1h — QEAX t+h
trace MSFE,;,;, = F =

(1 — L)QEX,tJrh (1 - L)QgX,H»h
2
= EGvirn— Nexin— aBaxein)’ +E ((1 - L)ng,tm) =0 () +0(1)
Hence, the ratio of trace MSF E;-; and trace MSF Epi 18

trace l\/f_s\ﬁEtri 0 (hQ) oo as h —s 0o (34)

trace M/SFEM 0 (1)

This means that we would prefer the model with polynomially cointegrating restrictions using this cri-
terion. In fact, there are high (increasing) gains to be achieved in using the new loss function over the
traditional one.

Using equation (32) we have the following result

trace MSFEy,; _ Var By i4n) — Var Ey.ein)] + 03+ 02 - Var (Ey.ten) — Var (Ev,yn)]

— > 1.
trace MSFE,,; o3+ 0% o5+ o7

Intuitively, this inequality holds as the forecasts that utilize all the information in the system (system
forecasts) will produce a smaller forecast error variance than the ones that are based on the partial

information (univariate forecasts).

5 Example.

We illustrate the findings of the previous sections using the model (4) with the following values of the
parameters A = 2, = 1,0? = 03 = 1. Such parameter combination leads to the following values of MA(2)
process of A%Y; = Ay, : 6; = —0.5155, 03 = 0.0795, and 02 = 12.578. Figures 1 and 2 below are plotted
using these true coefficient parameters. Figure 1 displays the ratios (22), (24) and (23) . Similarly, Figure
2 corresponds to the results given in (33) and (34). As seen, the analytical findings are nicely verified in

the graphs.

6 Conclusions.

In the present paper we have investigated the issue of long-run forecasting in the systems with multi— and
polynomially cointegrating restrictions. We have showed that the results of Christoffersen and Diebold
(1998) derived for the standard I(1) cointegrating systems generally hold also for the present systems of

focus. That is, on the basis of the loss function based on the traditional trace MSFE criterion, imposing
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|\|—— ratio TMSFEtri x Forecast horizon —— ratio TMSFE x Forecast horizon
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Figure 1: Trace MSFE ratio
tegrating I(1) variables.
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and Trace MSFE,.; ratio of univariate versus system forecasts of multicoin-

Figure 2: Trace MSFE ratio and Trace MSFE,,; ratio of univariate versus system forecasts of polynomially
cointegrating I(2) variables.
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the relevant restrictions does not lead to the improved long-run forecast performance when compared to
the forecasting from the simple univariate models.

However, the clear distinction between the system- and univariate forecasts can be achieved if one
employs the loss function based on the triangular representation of the cointegrating and polynomially
cointegrating models. In this case, the measurable gains come from the fact that this particular loss
function explicitly acknowledges the important distinction between the system- and univariate forecasts.
The intrinsic feature of the system forecasts is that they maintain the (polynomially-) cointegrating
restrictions in the limit exactly, whereas this is not so in case of univariate long-run forecasts. Hence,
the paper highlights the importance of carefully selecting loss functions when evaluating forecasts from
cointegrating systems.

In this paper we used a simple multi- and polynomially cointegrating models in order to establish the
results. Naturally, it is of interest to derive the corresponding results for the general models that obey
multi- and polynomially cointegrating restrictions. Also, the consequences of introducing deterministic

components is of importance as are estimation issues. These extensions will follow in future work.
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7 Appendix.

7.1 Derivation of the implied univariate representation for Ay, and A?Y].

2z = MA+(1—L)oJey + (1 — L)% ey
zg = Aew + ey — ey + ey — €1 + ex—2.
2z = U+ Orup—q + O2up_o

The autocovariance structure for z; reads

(0) = [(A+a)+a] o+ 603
(1) = —a(A+a)oi —403
7.(2) = 3
() = 0, |7[=3

This is a MA(2) process with the non-zero first and second autocorrelations. The first autocorrelation

coefficient is

b (1) = —a(A+a)o? — 403 _ —a(A+a)g—4
: [()\ +a)+ 042} % + 603 {()\ +a)®+ aQ} q+6
0.2 = % - 1

[()\—&—a)Q—&—aQ] 0% + 603 [()\—&—a)Q—l—aQ]q—&—G,

where

(=)

Il

Q |Q
orol—to

is the signal-to-noise ratio.

From this we can try to infer values for the parameters 61 and 6. By denoting
A=[-a(A+a)g—4] B= [()\—&—a)z—&-aQ q+6

and after some algebra we have that

02

(1+92)A

0, =
and 65 is one of the root of the fourth-order polynomial

03+ (2—B) 03+ (A*—2B+2)03+ (2—B) 62+ 1=0.
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Observe that the coefficient values 6; and 6, should satisfy the invertibility conditions for the MA(2)

process z;. The variance o2 is found from the following expression

[(A+a)2+a2} O’%+6U% U%
o, = or o =-—=

v (1+67 +063)

Furthermore, the following interesting relation holds

(1461 +62)° A202

(L+61+63) [()\—&—a)Q—&-aQ} 03+ 603

which further leads to

A202 = (146 + 62)° o2,

7.2 Variance of the polynomially cointegrating combination of univariate

forecast errors.

Here, we calculate the variance of the polynomially cointegrating combination of the forecast errors from

the univariate representation:

Var (Eyitn — Nex,i+h — 0EAX t+h) =

=Var (gY,H-h - XEVX,H-h) + o*Var (gAX,t+h) —2aCov (gY,t+h - /\gX,t-i-h;gAX,t-i-h) =

=Var (Eytn) + NVar (Extn) — 2ACov (Ey 14n, Ex pen) + 2Var Eax tin) —

—2aCov (Ey i4neax i+n) T 2aACov (Ex 144, EAX t+h) -
Thus, in order to calculate the variance of the polynomially cointegrating combination of the forecast
errors we need to derive the following expressions:

(h=2)(h—2+1)(2(h—2)+1) ,

Var Gyurn) = (1+61+6)° . os
h—2)(h—2+1
+2((1+91)+1)(1+01+02)( )(2 i )aﬁ—
+(1+6)+1)*(h—1)02 +0?
h g
_ h(h+1)(2h+1)
Var (Ex+n) = Var (;;elt“) = <h2 +(h—1)7°+ .+ 1) 02 = 5 o?
VCL’I" (gAX,t—‘,-h) = hO’%

h(h+1)(2h+1 h(h+1
UEDCTED IR

- - h(h+1
Cov (Evt4h, EAX t4+h) = /\%(rf + aho%

Cov (Ev,tsn, Exern) = A

i hh+1)
€lt+i | = Tﬁl
=1

Cov (Ex t4n,eax,ern) = Cov <Z Z€1t+i7

g=1 i=1 2
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These expressions lead to the following result:

Var (Ey1n — XNex ioh — OEAX t+h) =
= Var By,pn) — N2EEEUEHD 2 90 \2) 52 o2ho? =

=Var Evuqn) — [Var Evesn) — 03] = [Var (Eyvisn) —Var Eyeyn) + 03

and some further simplification leads to

Var (Evish — ANex t4h — QEAX t4h) =

= - N2h (h+1)0% + (L +61) + 1) (1 + 61 + 62) h (h + 1) 02

+4X2ho2 — 4((1+61) + 1) (1 + 61 + 02) ho® + ((1+ 61) + 1)* ho?

“A202 £ 2((1+61) +1) (1 + 61 +62) 02 — (14 61) + 1)* 02 + 02 — arh(h + 1)02 — a2ho?.

As seen the variance of the multicointegrating combination of the forecasts errors from the univariate

models is of growth order O (h2) . The last expression also reads as follows

Var (gY,t-i-h - XEVX,H-h - agAX,u—h) =

= A2 (h+1) 024+ (1 +61) +1) (1 + 61 + 62)
(A +6,+602) — (1+6))+1)] 02+ 02 — alh
= -N2h(h+1)o3+((14+61)+1) (1460, +62)h(h+1)02+
+ (61 + 203] ho? + [1 — 5] 02 + 02 — aXh(h + 1)0% — a2ho?

(h4+1)02 +[2(1+ 6, +602) — (1 +61) + 1) ho?—

h
(h+1)0? — a?ho?
Yh
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