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Abstract

We design a multiple project funding contract that provides optimal incentives to

recipients, in a setting where externalities exist among the multiple projects and where

donors and recipients may differ in their valuation of the projects.

To do so, we study optimal incentive payments in a dynamic principal-agent frame-

work with focus on two-project contracts. The principal cannot observe the agent’s

investment, but only completed projects. We consider principals who cannot commit

to contract termination before completion of the projects; we assume that the contract

does not end until both projects are accomplished.

We derive the optimal contract for each possible combination of principal-agent-

project characteristics to find that projects should be undertaken simultaneously when

value externalities among them are large, i.e. when completing both projects gives the

recipient significantly more utility than the sum of the projects’ independent values.

The principal’s utility maximizing strategy, when technical externalities among projects

are important, is a sequential contract that starts with the project that generates the

externality.

We find that differences in project valuation between agents and recipients may,

in some cases, lead to inefficient contracts, when in other situations the ability of the

principal to choose the timing of the project competition may be a safety clause for

him.
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1 Introduction

What should multiple project foreign aid contracts look like? How should incentives be

provided to managers when multiple projects must be completed and managers are specific

to these projects? Principals in both settings share a commitment problem: due to their

Samaritan’s dilemma1 and specificities in the relationship, whatever the outcome of invest-

ment in each period, they cannot commit to abandoning the contract. Moreover, agents in

these settings share a special characteristic: they value the projects to be completed.

The questions we attempt to answer are as follows. First, what is the optimal timing to

complete the projects? Second, what is the optimal transfer scheme between the principal

and agent in the framework of multiple related projects? And third, what is the impact of

the principal’s and agent’s preferences over the projects, in equilibrium, on the efficiency of

the contract provided?

We study, in a dynamic multitask principal-agent framework, the optimal incen-

tive payments and timing of two projects, and how both technical characteristics of the

projects and the preferences of principals and agents affect the optimal contract. The nov-

elties of this model are: (1) the length of our contract is indeterminate, since due to the

principal’s commitment problem, our contract does not allow for any cancellation clause

before both projects are accomplished; (2) the agent’s effort-investment decision is not sep-

arable from his consumption decision (he decides how to use the received funds between

investment and consumption), and it involves several tasks, since two projects are candi-

dates to receive investment; and (3) the outcome of the investment, the completed projects,

is valued by both principal and agent. The agent’s valuation of the projects2, together with

the particular dynamics of each timing structure, allow for high-powered incentives in each

task.

Both foreign aid donors and shareholders face a moral hazard problem: the use of funds

by the recipient country/manager is not observable by the donor/shareholder. In extant

foreign aid literature, conditionality of aid is the most commonly proposed solution to the

misallocation of resources problem3. However, conditionality introduces a commitment

1Term introduced by Buchanan (1975): The principal can not credibly commit to stop the relationship
with the agent until the projects are accomplished, since it is common knowledge that he cares about the
agent.

2Miquel-Florensa (2007) presents a one multistage project model where the agent receives nonpecuniary
benefits from the tasks.

3Drazen (1999), Svenson (2000, 2003), and Azam and Laffont (2003), among others, present models that
"condition" aid flows on a given performance, a degree of political and economic change, or on a defined
consumption level for the poorest people in the recipient country, respectively.
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problem: "even if the conditions are not met, the donors want to alleviate the lot of the

poor, and so they give the aid anyway; the recipients will anticipate this behavior 4". For

example, Dreher (2002)5 states that the World Bank has almost never cancelled a program,

even if non-compliance is evident. As a further example, when firms expand to new markets,

local knowledge may require managers to be utilized specifically for the relationship, and

the threat of firing the manager would imply the end of business in that area, beyond the

projects involved in the contract.

We present a contract that accounts for the principal’s commitment problem by not

allowing for cancellation of the contract before the projects are completed. This requires

that the contract proposed has an indeterminate length. We assume that the principal

can commit to a sequence of transfers for each possible history of successes and failures of

the projects, but not to cut the flow of funds before all projects are accomplished. This

assumption is supported by the usual commitments to disbursements on Aid Contracts:

deviations from commitments to actual payments, even if not negligible, are consistently

small.

Given that multiple actions must be undertaken, it is necessary to establish the appro-

priate timing for the completion of each project: either simultaneous or sequential, in any

possible order. This intervention timing is a key element in the contract design. On the one

hand, the projects may influence one another, and the timing of each project determines

these influences. On the other hand, donor and principal priorities may not be aligned. This

misalignment of preferences may have both positive and negative effects on the efficacy of

the contract provided, depending on how welfare is defined.

In the foreign aid example, pressures for global vertical financing and strong donor pref-

erence towards certain projects create a scenario in which, though aid is required, the aid

package offered by the donor may not be optimal from the perspective of the recipient coun-

try. Both the Rome Declaration on Aid Harmonization (2003) and the Paris Declaration on

Aid Effectiveness (2005) note that in order to enhance effectiveness, it is necessary to ensure

that development assistance is delivered in accordance with recipient country priorities.

In the corporate finance example, shareholders’ optimal timing may not coincide with

managers’. For example, we may expect managers to prefer projects with higher probability

of success given their shorter time horizon over more complicated ones preferred by share-

4Easterly (2001). The Donor/Principal has a preference for the projects to be completed, so Aid/transfers
are provided until the desired outcome is attained. No incentives for expenditure maximization are consid-
ered, all transfers are considered costs for the principal.

5Killick (1998), Dreher (2002) and The World Bank (2005) present reviews of the literature and examples
of time inconsistency involving conditional aid contracts.
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holders. In this case, the ability to choose the structure of the contract allows shareholders

to impose their utility maximizing timing in an incentive-compatible way for managers.

To account for the multiple related actions that the contract requires for implementa-

tion, we consider a "multitask" contract that involves two projects, which require separate

investments. In the literature, Holmstrom and Milgrom (1991) propose a static multitask

model where the agent performs multiple tasks simultaneously6. By contrast, in our dy-

namic setting, the principal can choose the timing of the tasks as either simultaneous or

sequential. When investment in a project is successful, it produces an observable outcome,

which is the completed project. Also in contrast with the existing literature, the implemen-

tation of the tasks has a direct effect on the principal’s and agent’s utilities since completed

projects are valued by both, providing to both constant utility flows upon completion.

The agent, from the transfer received, decides if to invest in one, both or neither of

the projects. This realistic assumption involves two additional technical constraints on the

problem. On the one hand, the principal’s transfer choice is bounded below by the invest-

ment he wants to induce on the agent. And on the other hand, we have non-separability of

the consumption-effort decision of the agent7.

We propose a results-oriented approach: the optimal contract is given by a sequence of

transfers after each feasible history of successes and failures in the accomplishment of the

projects that are covered by the contract.

When making the investment decision, the agent compares the utility of consumption

from the transfer received with the cost of investment and the promised utilities, after each

possible realization of the investment. To provide the agent incentives to invest, we allow for

two types of "bonuses." The first arises when he signs the contract (the participation bonus):

it is given by the difference between the utility the contract provides to the agent and his

reservation value (the agent’s utility if he does not sign the contract). This participation

bonus is derived from the agent’s valuation of the projects: even if the transfer is the

minimum feasible one, and the agent invests it, the agent gets an expected lifetime utility

greater than he would had he not signed the contract, since there is a positive probability

that the projects will be completed in the future. The agent may also receive a subsequent

project bonus when one of the projects is completed. The project bonus is the difference

between the promised utility to the agent and the minimum lifetime utility the agent can

receive on his own when only one of the projects has been completed.

6 In the multitask static models, Sinclair-Desgagne (1999) obtains also in a static framework higher in-
centives by linking audits on the task to outcomes.

7This non-separability requires to assume that the agent has no access to credit markets.
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To derive the optimal contract, the principal compares costs and benefits for each fea-

sible timing structure (simultaneous or sequential completion). We find that the cheapest

contract, for either simultaneous or sequential investment, is a stationary contract that

provides the agent with the same transfer for all attempts until one of the projects is suc-

cessful. If a project rewards the agent with a project bonus, the agent receives a decreasing

sequence of promised utilities (and transfers) for successive attempts, until the remain-

ing project is completed successfully. This decreasing sequence converges to the cheapest

stationary contract.

For the agent, investment entails giving up a certain amount of consumption today

against a positive probability that the project(s) will be completed successfully tomorrow,

since from the transfer received, he decides whether to invest in one or both projects, or to

consume all of the received funds. More risk averse agents require better rewards, in the

form of project bonuses, in order to undertake the risk of investing in the projects in the

first place. Time discounting also plays a role in determining the amount of the optimal

project bonus: the more the agent discounts the future, the more likely he is to require

project bonuses to compensate him for the delay between investment and outcome.

In considering the sequential contract, we are interested in the optimal project sequenc-

ing. When the two projects are symmetric in their costs and probabilities of success, it is

optimal to begin the sequence with the project that the agent values the most. However,

when there is a positive technical externality among projects (i.e. one project’s completion

increases the probability of success, or decreases the cost of the remaining project), it may

be optimal to begin with the less valued project, depending on parameter values.

On the other hand, when we examine the simultaneous contract, we find that project

bonuses are typically awarded for the project that the agent values the least. This rule

could be reversed for projects with different investment costs or different probabilities of

success, if these differences are significant enough.

Comparing the two timing structures, we find that the simultaneous contract is cheaper

than the sequential one whenever the latter would provide a transfer large enough to cover

investment in both projects. In fact, when the simultaneous investment cost is smaller than

the sum of the investment costs in each of the single projects, and when the valuation of

the last project in the sequence has little effect on the joint valuation of the projects, the

principal can always design an alternative simultaneous contract that is cheaper and that

includes project bonuses. Even if the sequential contract is the cheapest alternative when

investment is observable, we show that the simultaneous contract is likely to become the
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cheapest alternative when moral hazard enters the equation.

Comparing the costs and benefits of the two timing alternatives, we find that simultane-

ous is the optimal timing for the principal when valuation interactions among projects are

large, i.e., when completing both projects gives the agent significantly more utility than the

sum of the projects’ independent values. The principal’s utility maximizing strategy, when

technical externalities are important, is a sequential contract that begins with the project

that generates that technical externality.

The structure of the paper is as follows. We begin with a description of the structure

of the model, which includes the projects’ characteristics as well as principal and agent

preferences, and we present the steps in the choice between optimal contracts. In Section

3, we present the cost minimization problem, and compare the cost minimizing contract for

both timing structures. We continue in Section 4 with a comparison of the expected benefits

of each timing alternative. Finally, in Section 5, we compare sequential and simultaneous

costs and benefits to derive qualitative results on the optimal contract choice for different

projects and agents. In Section 6, we present conclusions.

2 Structure of the model

We present a dynamic moral hazard model with an indeterminate time horizon: no

cancellation clauses are allowed until both projects are completed. The principal faces a

Samaritan’s Dilemma: he cannot commit to stop the flow of funds to the agent until both

projects are accomplished. A risk neutral "altruistic" principal signs a contract with a risk

averse agent who makes an unobservable investment decision.

We name the projects A and B. Let Ht = {∅, A,B,AB} be the set of possible combi-
nations of projects completed at period t, where ∅ denotes neither of the projects being
completed, and let Ht = H0 × H1 × H2 × .. ×Ht be the (t + 1) product set of H. Every

element ht ∈ Ht describes the history of successes and failures in the accomplishment of

the projects up to period t. Let T 6∞ be the (indeterminate) end period of the contract.

The timing of events is as follows: after a given history ht, the principal transfers to

the agent τ t(ht). Once he receives the transfer, the agent makes an unobservable (discrete)

investment choice It(ht). Each possible combination of projects completed, i = ∅, A,B,AB,
is realized with probability πi(It | ht). In the next period, the outcome of the investment is
realized and is observed by the principal and the agent. In case there is still one (or both)

projects to be completed, the principal transfers τ t+1(ht+1) to the agent, and the contract

continues until both projects are completed.
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Principal 
transfers 
money to 
the Agent 

Agent decides 
whether to invest 
or not in each of 

the projects

Both projects are 
successful

Only project A is 
successful 

Only project B is 
successful 

Neither project 
succeeds

Agent gets his valuation of the 
projects. Contract is over. 

Contract continues until remaining 
project is completed. Agent gets 
promised utility when either A and B are 
completed respectively.

Contract continues…

What the principal observes

Figure 1: Timing of Events

A contract in this framework is given by a sequence of transfers for every possible his-

tory of successes and failures in the accomplishment of the projects covered by the contract.

The principal offers a sequence of transfers
©
τ t(h

t)
ªT
t=0

conditional on the history ht of

projects completed, given that this is the only information available to the principal.

We assume the principal cannot commit to abandon the contract before both projects

have been completed, but he can commit to a sequence of payments after each possible

history of success and failure in the accomplishment of the projects. In the case of managers

and shareholders, we can interpret the commitment to a sequence of transfers as a reputation

device. We present in the appendix the cheapest contract when the donor cannot commit

to a sequence of transfers, and show how the main results of the optimal contract are not

affected by the commitment to disbursements assumption.

2.1 Project characteristics

All technical characteristics of the projects are common information for principal and agent.

We consider two projects, project A and project B, with positive value for the agent8 WA

and WB respectively when only one of them is completed, and value for the agent WAB

when both are completed. The physical characteristics of the projects are such that they

can be completed either sequentially or simultaneously.

8The assumption that valuations of the projects are common knowledge avoids the adverse selection
problem studied in entrepreneur financing models, like Bergeman and Hege (2005)
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We define value interaction as the difference (WAB −WA −WB) , the extra utility

that completing both projects provides over the sum of their independent values. To be

completed, each combination of projects, x = A,B,AB, requires an investment of cost Ψx

that is successful with probability πx, that depends on the history of success and failure of

the projects.

We account for two types of externalities among projects: in probability of success

and in cost of investment. We denote ΨAB as the cost of investing in the two projects

simultaneously. We allow for ΨAB ≷ ΨA +ΨB. We allow probabilities of success and cost

of investment to depend on the projects already completed and on the projects in which

the agent is investing simultaneously.

2.2 Principal’s and agent’s preferences

Next we introduce the principal’s and the agent’s preferences and their recursive formula-

tion. The contract’s time horizon is indeterminate: the contract is over once both projects

have been completed. Let T 6∞ be the expected end period of the contract. We assume

principal and agent have the same discount factor β.

The principal can only observe, period after period, whether the projects have been

successfully completed or not. He uses the history of successes and failures in the accom-

plishment of the projects to condition the sequence of transfers offered to the agent. The

principal chooses the contract
©
τ t(h

t)
ªT
t=0
, a sequence of transfers for each possible history

of success and failure of the projects, that maximizes his utility.

Let Zi(Wi) be the utility that completed project i provides to the principal. It is an

increasing function of the agent’s valuation of project i 9. The lifetime utility of the principal

is given by:

U0(h
0) = −E[

TX
t=0

βtτ t(h
t)]+

+E[
TX
t=0

βt+1
∙
πA(It | ht)

ZA(WA)

(1− β)
+ πB(It | ht)

ZB(WB)

(1− β)
+ πAB(It | ht)ZAB(WAB)

¸
]

9 In the development setting, we need to clarify that we consider a "purely altruistic" principal, in the
sense that no warm-glow giving/impure altruism (Andreoni 1990) is considered.
The Rome Declaration on Aid Harmonization (2003) points out the need to ensure that development

assistance is delivered in accordance with recipient country priorities. Flexibility on the Zi(Wi) function for
each of the projects allows us to show how strong donor preferences towards certain projects may lead to
inefficiencies in the contracts provided.
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where the first term is the expected cost and the second them is the expected utility from

the completed projects.

The cost of a transfer scheme (that starts after history h0, where none of the projects

has been completed) is defined by the expected discounted sum of the transfers, and is given

by

Cφ(h
0) = E

"
TX
t=0

βtτ t(h
t)

#
= τ0(h

0) + βπA(I0 | h0)E
"

TX
t=1

βtτ t(h
t) | A completed

#

+πB(I0 | h0)E
"

TX
t=1

βtτ t(h
t) | B completed

#

+(1− πA(I0 | h0)− πB(I0 | h0)− πAB(I0 | h0))E
"

TX
t=1

βtτ t(h
t) | none completed

#

Cφ(h
0) = τ0(h

0) + βπA(I0 | h0)CA(h
1
A) + βπB(I0 | h0)CB(h

1
B)

+β(1− πA(I0 | h0)− πB(I0 | h0)− πAB(I0 | h0))C∅(h1∅)

where Ci(h
t
i) represents the present discounted cost for the principal of the sequence of

transfers that starts after history ht when project i has already been completed (for i =

A,B,or neither project completed).

Given the contract he is offered, the agent makes the unobservable (discrete) decision

whether or not to invest in each of the projects. Each period, the agent consumes the part

of the transfer he does not invest, what makes consumption and investment decisions non-

separable. We assume the agent has no additional funding to invest in the project apart

from the donor’s transfers. Savings from the received funds are not allowed10. The utility

function of the agent is an increasing, concave and differentiable function of consumption,

with u(0) = 0. The agent’s reservation utility, the value of the alternative opportunities if

he does not sign the contract, is zero.

In our notation, we have that in every period, the agent chooses the investment he wants

to perform, It ∈ {0,ΨA,ΨB,ΨAB}, where Ψx denotes cost of investment for x = A,B,AB.

The agent decides whether not to invest, invest in project A, in project B, or in both projects

simultaneously. Given investment It(ht), the probability of i = {∅, A,B,AB} being realized
10Allowing the agent to save from the transfers would impose an additional constraint on the feasible

contracts. Agent would compare expected returns from investment with expected returns from savings,
since both alternatives have the same marginal cost for the agent in his non-separable utility function.
Werning (2000 and 2002) and Chiappori at al.(1994) focus on the access to credit markets in repeated moral
hazard models when effort decision is separable from investment decision.
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is given by πi(It | ht). Probability of success depends on the projects completed and on the
agent’s investment choice. The agent gets a flow utility wx every period once project x has

been completed, wx =Wx(1− β).

The agent chooses
©
It(h

t)
ªT
t=0
, the projects in which to invest, given

©
τ t(h

t)
ªT
t=0
, the

sequence of transfers he is offered by the principal. Let Ψ(It | ht) be the cost for the agent
of his investment choice, and let V (ht) denote the agent’s lifetime utility after history ht.

The agent’s present value of the contract after initial history h0 (where none of the projects

has still been completed) is given by

Vφ(h
0) = E

"
TX
t=0

βtu(τ(ht)−Ψ(It | ht))
#

+
TX
t=0

£
βt+1πA(It | ht)wA + βt+1πB(It | ht)wB + βTπAB(It | ht)WAB

¤
Let us define

P1x =
TX
t=1

£
βt+1wx + βt+1πy(It | htx)wy + βTπXY (It | htx)WXY

¤
as the expected present value of utility flows from the completed projects when project X

is already completed, and let Vx(h1x) denote present value for the agent of the continuation

of the contract once project X has been completed. The agent’s preferences can be written

recursively as

Vφ(h
0) = u(τ(h0)−Ψ(I0 | h0))

+βπA(I0 | h0)
"
wA +E

"
TX
t=1

βtu(τ(h1A)−Ψ(I1 | h1A)) + P1A

##

+βπB(I0 | h0)
"
wB +E

"
TX
t=1

βtu(τ(h1B)−Ψ(I1 | h1B)) + P1B

##
+β(1− πA(I0 | h0)− πB(I0 | h0)− πAB(I0 | h0))

∗E
"

TX
t=1

βtu(τ(h1∅)−Ψ(I1 | h1∅)) + P1∅

#
+ βπAB(I0 | h0)WAB

Vφ(h
0) = u(τ(h0)−Ψ(I0 | h0)) + βπA(I0 | h0)VA(h1A) + βπB(I0 | h0)VB(h1B)

+β(1− πA(I0 | h0)− πB(I0 | h0)− πAB(I0 | h0))V∅(h1∅) + βπAB(I0 | h0)WAB
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2.3 Optimal contract

A contract in this model is given by the sequence of transfers
©
τ t(h

t)
ªT
t=0
, which specifies

transfers after each possible history of success and failure of the projects until both projects

are completed.

The contract offered needs to be incentive compatible (agent performs the desired invest-

ment) and the recursive formulation should be consistent (the promise keeping constraint

should be satisfied). The investment that the contract wants to implement has to be feasi-

ble, the transfers should be at least as big as the cost of the investment the contract aims

to implement, i.e. τ(ht) > Ψ(It | ht). And the principal should also account for the agent’s
participation constraint: the agent will walk out of the contract if it does not provide him

at least the utility he had before signing the contract.

The optimal contract (that starts at initial history h0) can be characterized recursively

by (τ0(h0), VA(h1A), VB(h
1
B), V∅(h

1
φ)), which are the transfer and promised utilities in case

project A, B or neither of the projects are completed, respectively. When both projects are

completed, the agent gets WAB, his valuation of both projects completed, and the contract

is over.

The contract may involve two types of "bonuses" for the agent. When he signs the

contract, the agent gets a Participation Bonus which is calculated by the difference

between the utility the contract provides him when he signs and his reservation value. This

participation bonus is driven by the agent’s valuation of the projects: even if the transfer

is the minimum feasible one and the agent invests it, the agent gets an expected lifetime

utility greater than what he would obtain if he had not signed the contract, due to the

positive probability that the projects are completed in the future.

The agent may also get a subsequent Project Bonus when only one of the projects has

been successful. The project bonus is the difference between promised utility to the agent

and the minimum lifetime utility the agent can receive when only one of the projects has

been completed.

The principal’s utility has two parts: the negative effect of the present discounted

value of the transfers and the positive effect of the completed projects. To choose the timing

of the contract he wants to implement, the principal compares the cost and benefits of the

two feasible timing alternatives: simultaneous or sequential completion of the projects. We

derive in Section 3 the cheapest contract for each timing structure, and in Section 4 we

study the expected benefits of each timing structure. Once costs and benefits are defined,

we compare the principal’s utility for two timing structures (in Section 5) and we describe



12

how this comparison varies with agent’s and project’s characteristics.

3 Cost minimizing contract

We solve for the cheapest contract for each timing alternative by using the recursive for-

mulation introduced by Spear and Srivastava (1987). Our setup differs from the standard

dynamic moral hazard models11 on several points. First, the length of our contract is inde-

terminate, since due to the principal’s commitment problem, our contract does not allow for

any cancellation clause before both projects are accomplished. Second, the agent’s effort-

investment decision is not separable from his consumption decision (he decides how to use

the received funds between investment and consumption), and it involves several tasks, since

two projects are candidates to receive investment. Third, the outcome of the investment,

the completed projects, is valued by both principal and agent.

The proposed contract is a dynamic multitask contract, which involves two projects that

require separate investments. In the literature, Holmstrom and Milgrom (1991) propose a

static multitask model where the agent performs multiple tasks simultaneously. Sinclair-

Desgagne (1999) obtains also in a static framework higher incentives by linking audits on

the task to outcomes. By contrast, in our dynamic setting, the principal can choose the

timing of the tasks as either simultaneous or sequential. When investment in a project is

successful, it produces an observable outcome, which is the completed project. Moreover,

the implementation of the tasks has a direct effect on the principal’s and agent’s utilities

since completed projects are valued by both.

Our contribution to the contract theory literature comes from the introduction of a

multitask structure in an indeterminate length contract where the principal can choose

initially the timing to implement the tasks depending on their characteristics. Our contract

does not allow for any termination clause before the completion of the projects. The agent’s

valuation of the projects, together with the special dynamics of each timing structure, allow

for high-powered incentives in each task.

After any feasible history of success and failure of the two projects, the contract can

be summarized (recursively) by the following elements: transfer, and promised utilities for

each possible realization of completion or incompletion of the projects. The principal needs

to give incentives to the agent to give up some consumption today and invest that money

to have tomorrow, with some probability, a completed project. The principal has two tools

11Among other applications in the literature, Hopenhayn and Nicolini (1997) and Pavoni (2006) adapt
the recursive dynamic moral hazard to Unemployment Compensation Schemes.
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to provide incentives to the agent: the transfer, which determines consumption the agent

can have today even if he invests, and the promises, the well-being promised to the agent

when outcome of the investment is observed. We study, in a world where the principal can

commit to a sequence of transfers for each possible history of success and failure of the

projects, how the principal uses these instruments in each timing structure, and how his

use of each of them depends on the projects’ and agents’ characteristics.

To obtain the cheapest contract for each timing alternative, we proceed backwards. We

start with the cost of the contract when only one of the projects has been completed (section

3.1), and we use this information to compute the cost of the simultaneous (section 3.2) and

sequential (section 3.3) contract costs. Once we have the costs of each timing structure, we

compare them (section 3.4) to obtain the cheapest contract for each project’s and agent’s

characteristics.

3.1 One project optimal contract

We start with the cost minimization problem when only one of the projects has been com-

pleted. The objective of the principal is to provide incentives to the agent to complete the

remaining project at the cheapest cost, since the contract continues until the remaining

project is completed.

Define C∗x(V ) as the expected discounted cost for the principal associated with the

cheapest feasible incentive compatible contract that provides the agent a lifetime utility of

V when project X has already been completed (and project Y still needs to be completed).

The elements of the recursive contract in this situation are (τ , V 0): the transfer and promised

utility in case investment on the remaining project is not successful. The principal’s cost

minimization problem has the form:

C∗x(V ) = min
τ,V 0

£
τ + β(1− πy)C

∗
x(V

0)
¤

s.t. V = u(τ −Ψy) + wx + β
£
πyWXY + (1− πy)V

0¤ (1a)

u(τ) + βV 0 + wx 6 u(τ −Ψy) + β
£
πyWXY + (1− πy)V

0¤+wx (1b)

V 0 >Wx (1c)

τ > Ψy (1d)

whereWx denotes the agent’s lifetime utility from completed project X, and wx denotes the

instantaneous flow project X completed provides to the agent. WXY denotes the agent’s



14

lifetime utility when both projects are completed. Equation (1a) is the promise keeping

constraint, (1b) the incentive compatibility constraint, (1c) the Participation constraint

and (1d) the feasibility constraint (the agent should be transferred at least the cost of

investment).

The function C∗x is the fixed point of the T operator defined by

TCx(V ) = min
τ,V 0

£
τ + β(1− πy)Cx(V

0)
¤

s.t. (1a) , (1b) , (1c) and (1d)

T is an operator on the space of continuous, increasing and convex functions. T is a

contraction on a complete metric space since Blackwell (1965) sufficient conditions for a

contraction are satisfied. It has a unique fixed point C∗. The cost function C∗ is increasing,

convex and differentiable. The proof is provided in the Appendix B .

Let us start with the cheapest stationary contract. This contract provides the same

transfer for all attempts until investment in the remaining project is successful. Derivation

is shown at the Appendix A.1. At the cheapest stationary contract, the promise keeping

constraint binds. Suppose it does not bind. Then we can propose an alternative contract

with smaller transfer that still satisfies the incentive compatibility constraint (1b), that gives

the agent at least the required lifetime utility so that (1a) is satisfied, and that is cheaper,

what leads to a contradiction.

Let τ̃ be the smaller transfer that satisfies the promise keeping and incentive compat-

ibility constraints at the stationary contract when project X has already been completed.

We define V X as the utility that the cheapest stationary contract provides to the agent,

V X =
u(τ̃ −Ψy) +wx + βπyWXY

1− β(1− πy)
> Wx (2)

We solve now for the principal’s (non-stationary) cost minimization problem, when

different transfers are allowed for different attempts until the remaining project is completed.

Let μ, λ and γ be the Lagrange multipliers for promise keeping (1a), incentive compatibility

(1b) and feasibility constraints (1c) and (1d) respectively. The First Order Conditions are:

1− μu0(τ −Ψy) + λ
¡
u0(τ)− u0(τ −Ψy)

¢
− η = 0

β(1− πy)

∙
dC∗x(V

0)

dV 0
− μ

¸
+ λπy − γ = 0 (3)
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And the Envelope Condition

dC∗x(V )

dV
= μ (4)

and since C∗x is an increasing function, μ > 0.

Intuitively, the sequence of promised utilities (and correspondent transfers) for the suc-

cessive attempts until the remaining project is completed should be a non-increasing func-

tion. Suppose not: then it would be optimal for the agent not to invest and collect the

increasing promised utilities (and correspondent transfers) that the contract provides him,

but that would contradict incentive compatibility of the contract.

Given the non-increasing sequence of promised utilities, the participation constraint

V 0 > Wx can not bind since, in case of failure, the decreasing set of promised utilities

would converge to V =Wx that cannot be provided in an incentive compatible and promise

keeping contract. We need to check the feasible levels of utility that can be provided in an

incentive compatible and promise keeping contract.

Lemma 1 (Feasible utilities) The set of lifetime utilities the principal provides at the
cheapest incentive compatible and promise keeping contract is the interval [V X ,WAB), where
V
¯ x is the lifetime utility provided to the agent at the cheapest stationary contract.

Proof. Suppose V > WAB. The utility the contract provides to the agent is greater

than the agent’s valuation of the completed projects; the incentive compatibility constraint

cannot be satisfied in this situation.

Suppose V < V X . If V
0 < V at the optimal contract, we would reach V 0 = Wx = V ,

since sequence of promised utilities proposed is decreasing for the successive attempts. But

this level cannot be provided by an incentive compatible and promise keeping contract. If

V 0 = V > Wx we would have a stationary contract at V < V X , but this would not be the

cost minimizing alternative since V X is the cheapest level of utility that can be provided in

a promise keeping and incentive compatible stationary contract.

Once the set of utilities the principal is willing to provide is determined, we can rewrite

the participation constraint (1c) as

V 0 > V X > Wx

and let γ be the multiplier for this constraint. In the Appendix A.1 we show that the cost

function is non-increasing in the agent’s valuation of the completed projects, increasing in

the investment cost and decreasing in the probability of success.
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Proposition 1 (Optimal contract) The optimal sequence of transfers (and promised util-
ities) is decreasing for the successive failed attempts, and converges to τ̃ (and V X), the cost
minimizing stationary contract.

Proof. From (3) and (4)we get that V 0 6 V, the sequence of promised utilities (and

transfers) is non-increasing for the successive attempts until remaining project is completed.

Suppose the sequence of promised utilities converges to V̄ > V X (since V̄ < V X would

not be chosen as shown in Lemma 1). We can propose an alternative contract that provides

V̂ such that V̄ > V̂ > V X that is cheaper than the contract that converges to V̄ , so we

reach a contradiction.

Let (τ , V 0) be the optimal contract that provides utility V to the agent. In case of failure,

the utility to be provided to the agent is V 0 6 V. Let (τ̂ , V̂ 0) be the contract provided in

case of failure. We know that V̂ 0 6 V 0 6 V , and we want to show that τ > τ̂ . Suppose not.

Given convexity of the cost function, we know that the marginal cost of promise in case

of failure is increasing with the utility to be provided. For smaller utilities to be provided,

promise in case of failure is relatively cheaper, so the optimal contract provides a decreasing

sequence of transfers for the successive attempts that converges to the cheapest stationary

contract transfer τ̃ .

3.2 Sequential contract

We present the principal’s cost minimization problem when he wants to give the agent incen-

tives to invest in both projects sequentially: first project X is completed and subsequently

project Y is completed. We start with symmetric projects, and without loss of generality

we present the principal’s problem when project B is completed first. In Section 3.2.1 we

study the optimal order of the sequence of projects with respect to the agent’s valuation of

the projects and the externalities among them.

Define C∗B_A(V ) as the expected discounted cost for the principal of the cheapest se-

quential contract that starts with project B and delivers the agent a level of lifetime utility

V . A contract in this situation is characterized by the triplet (τ , V
0
B, V

0): transfer, promised

utility when project B is completed, and promised utility when investment is not successful.

The principal’s cost minimization problem has the form:
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C∗B_A(V ) = min
τ,V

0
B ,V

0

h
τ + β

h
πBC

∗
B(V

0
B) + (1− πB)C

∗
B_A(V

0)
ii

s.t. V = u(τ −ΨB) + β
h
πBV

0
B + (1− πB)V

0
i

(5a)

u(τ) + βV 0 6 u(τ −ΨB) + β
h
πBV

0
B + (1− πB)V

0
i

(5b)

V
0
B > V B (5c)

V 0 > 0 (5d)

τ > ΨB (5e)

where the function C∗B_A is the fixed point of the T operator on the complete metric space

of increasing, convex and differentiable functions defined by

TCB_A(V ) = min
τ,V

0
B ,V

0

h
τ + β

h
πBC

∗
B(V

0
B) + (1− πB)CB_A(V

0)
ii

s.t. (5a) , (5b) , (5d) , (5c) and (5e)

We prove in the Appendix A.1 that C∗B_A is an increasing, convex and differentiable func-

tion.

The principal minimizes the cost of the contract subject to the promise keeping (5a),

the incentive compatibility (5b) and the participation constraints, that in this case involve

promise when B is completed (5c)12 and when neither project is completed (5d). Moreover,

there is a feasibility constraint (5e) since the transfer has to be at least as big as required

investment. The cost function C∗B and the level of utility V B represent the cost function

and the minimum utility to be provided when project B is already completed, as previously

derived. Whether (5c) constraint binds or not determines if the project receives a project

bonus, if utility provided when completed is greater than the minimum the principal should

provide.

We need to take into account an additional "incentive compatibility" constraint for

consistency of the sequential formulation: it has to be in the agent’s best interest to invest

first in the project the contract prescribes rather than to deviate and invest in the alternative

project. When projects are technically symmetric, i.e. they have the same cost of investment

12When project B has been completed, participation constraint of the agent is given by V
0
B > WB . But from

the optimal contract when project B has been completed we know that V
0
B > V B is needed for consistency

with the principal’s optimal choice once B is completed.
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and probabilities of success, for the sequential contract that starts with project B, this

constraint is given by

V 0B > V A (6)

since otherwise the agent would prefer to invest in A rather than B, given symmetry in costs

of investment and probabilities of success. This constraint results from the assumption that

the contract does not end until both projects are completed, and because of that we need

to assume that, in case of deviation, the contract continues with the remaining project at

the cheapest feasible contract, that is the stationary one.

Let μ, λ, γ1, γ2, η be the Lagrange multipliers for the (5a) , (5b) , (5d) , (5c) and (5e) con-

straints respectively. The First Order Conditions of the principal’s problem are:

1− μu0(τ −ΨB) + λ
¡
u0(τ)− u0(τ −ΨB)

¢
− η = 0

βπB

"
dC∗B(V

0
B)

dV
0
B

− μ− λ

#
+ γ2 = 0

β(1− πB)

"
dC∗B_A(V

0)

dV 0
− μ

#
+ λβπB + γ1 = 0

And the Envelope Condition
dC∗B_A(V )

dV
= μ

From the First Order Conditions and the convexity of the cost function we get

(1− πB)

"
dC∗B_A(V

0)

dV 0
−

dC∗B_A(V )

dV

#
= −λβπB − γ1

V 0 6 V (7)

The sequence of promised utilities is non-increasing for successive attempts until the first

project in the sequence is completed.

Let us present the stationary sequential contract, the contract that provides same

transfer (and same promised utility) for all attempts until the first project in the sequence

is completed. The principal’s objective is to choose the transfer and promised utility in

case of success of the first project in the sequence that minimizes his cost. The principal’s

stationary cost minimization problem is given by
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C(V ) = min
τ,V

0
B

h
τ + βπBC

∗
B(V

0
B)
i

[1− β(1− πB)]

s.t. u(τ)(1− β(1− πB))− u(τ −ΨB)(1− β) 6 βπB(1− β)V 0B (8a)

V 0B > V B (8b)

τ > ΨB (8c)

where (8a) gives the set of pairs (τ , V
0
B) that satisfy the incentive compatibility and (bind-

ing) promise keeping constraints, (8b) gives the constraint on promise when project B is

completed, and (8c) is the investment feasibility constraint.

Let λ be the Lagrange multiplier for (21a), γB be the Lagrange multiplier for (8b) and

γΨ be the Lagrange multiplier for (8c). The First Order Condition of the stationary problem

with respect to τ is

1 + λ
£
[1− β(1− πB)]u

0(τ)− (1− β)u0(τ −ΨB)
¤
− γΨ = 0 (9)

Suppose (8a) does not bind, λ = 0. For (9) to be satisfied, we need γΨ > 0, which implies

τ = ΨB. Since the promise keeping constraint binds, the utility provided to the agent is

V =
βπBV

0
B

(1− β(1− πB))

that when plugged into the incentive compatibility constraint gives

u(ΨB) 6 βπ
£
V 0B − V

¤
=

βπB(1− β)V 0B
(1− β(1− πB))

u(ΨB)

(1− β)

(1− β(1− πB))

βπB
< V 0B

and either V 0B = V B or the incentive compatibility constraint binds at the optimal contract.

Suppose not, then we can propose an alternative contract (ΨB, V
0
B − ε) with ε < V 0B − V B

that is cheaper than the original contract with project bonus, which is a contradiction.

Let (τ∗, V
0∗
B ) be the cheapest stationary contract. It delivers the agent a lifetime utility

V seq =
u(τ∗ −ΨB) + βπBV

0∗
B

1− β(1− πB)
(10)

In the cost minimization problem, the feasibility constraint can not bind, since there is no

incentive compatible and promise keeping contract that can provide V = 0. We need to

define the set of feasible promised utilities that the principal may offer in the sequential

cost minimization problem.
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Lemma 2 (Feasible utilities) The set of feasible utilities that may be provided in an in-
centive compatible and promise keeping sequential contract is in the interval of V � [V seq,WAB) ,
where V seq denotes the utility provided at the cheapest sequential stationary contract.

Proof. If V > WAB the agent gets more utility than what he would have gotten if both

projects were completed, what contradicts the incentive compatibility constraint.

If V < V seq, by (7) we would have V 0 6 V < V seq , and the sequence of provided

utilities would converge to the stationary contract V̄ , 0 6 V̄ < V seq. If V̄ = 0, there is

no feasible incentive compatible and promise keeping contract that can provide this utility.

And if V̄ > 0, since V seq is the cheapest incentive compatible and promise keeping utility

that can be provided in a stationary contract, we reach a contradiction.

Once we have the set of feasible utilities, we can derive the optimal contract that allows

for different transfers for successive attempts until a project is completed. The

principal chooses a level of utility to provide to the agent that minimizes the cost of the

contract subject to (5a) , (5b) , (5c), (5e) and the new feasibility constraint given by the set

of feasible utilities.

Proposition 2 (Cheapest sequential contract) The cheapest sequential contract is a
stationary contract at V = V seq until the first project is completed. If the second project in
the sequence gets a project bonus, the agent then receives a decreasing sequence of transfers
that converges to the stationary contract when this project is completed.

Proof. The sequential cost function is increasing. Suppose we look for the optimal

contract that provides an initial level of lifetime utility to the agent V > V seq. Condition

(7) tells us that it is optimal to provide V 0 6 V , and so the optimal contract converges to a

stationary contract at V = V seq. But the principal can propose from the beginning of the

relationship a stationary contract at V = V seq > 0 that is feasible and cheaper.

When a project receives a project bonus, the sequence of transfers is decreasing and

converges to the cheapest stationary contract when the first project has been completed.

Proof is provided in Proposition 1.

The optimally of the stationary contract is intuitive. The cheapest stationary contract

is the cheapest contract that gives incentives to the agent to invest. Investment is a discrete

choice and probability of success does not vary with amount invested (as long as it is

at least the required level). Then, it is optimal for the principal to keep providing the

cheapest stationary contract that gives the agent incentives to undertake the required given

investment for all attempts up to the first project in the sequence is completed.

At the cheapest sequential contract, the agent gets a Participation Bonus when he

signs the contract: he is provided a utility V seq that is greater than his reservation utility.
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Even if the agent’s transfer equals investment cost, the expected value of the completed

projects provides him positive expected utility. This result, as opposed to the standard

moral hazard models where agent’s utility is driven down to the reservation level, is given

by the fact that completed projects are valued by the agent.

3.2.1 Optimal sequence of projects

Once we have the optimal contract for symmetric projects, we look at the optimal sequential

order of projects for non-symmetric projects.

We need to ensure that the agent prefers to invest in the project the principal wants

him to complete first instead of investing in the alternative project. As done in (6) for

technically symmetric projects, when the sequential contract starts with project X, the

contract should be such that

V 0X > V Y

since otherwise the agent would rather invest in Y than in X, given symmetry in costs of

investment and probabilities of success. Since the effect of technical externalities among the

projects appears once one of the projects has been completed, this constraint still holds for

the first project in the sequence, since the externality effect would be reflected on V Y .

We start by comparing projects that only differ in their valuation by the agent, and we

find that it is optimal to start with the more valued project. We continue with projects for

which there exist externalities: once one is completed, the remaining project is more likely

to succeed or requires smaller investment than before. We find that when the less valued

project is the one that generates the externalities, it is cheaper to start with this project

when the externalities are large enough.

Lemma 3 (Cheapest timing for different valuations) When projects only differ in their
valuation by the agent, the cheapest sequential contract starts with the more valued project.

Proof. Since projects only differ in their valuation by the agent, let π = πA = πB.

Without loss of generality suppose WA < WB. Consider the sequential contract starting

with project A, (τ , V
0
A). For this contract to be incentive compatible we need (6) to be

satisfied. From the cost of this contract and the properties of the cost function when only

one project remains to be completed we find

C∗(V ) =
τ + βπC∗A(V

0
A)

[1− β(1− π)]
>

τ + βπC∗A(V B)

[1− β(1− π)]
>

τ + βπC∗B(V B)

[1− β(1− π)]
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that shows that the cost of the stationary contract that starts with B is smaller than the

cost of the original timing, what contradicts optimally of the sequence that starts with the

less valued project.

Lemma 4 (Cheapest timing with externalities) When one of the projects positively
affects the probability of success of the other project, i.e. πx = πy = π when neither of
the projects is completed but πx > π once project Y has been completed, it is optimal to
start with the less valued project that produces the positive externality when the externality
is large enough.

Proof. Without loss of generality assume WA < WB and assume that it is project A

that produces the externality. Consider the sequential contract that starts with project B,

the more valued project. For this contract to be incentive compatible we need

V 0B > V A

to be satisfied. The cost of this contract is

C∗(V ) =
τ + βπC∗B(V

0
B)

[1− β(1− π)]
> τ + βπC∗B(V A)

[1− β(1− π)]

which follows from V 0B > V A and C∗B being an increasing function. The cost function is

decreasing in the valuation of the completed project and also decreasing in the probability

of success. Given the characteristics of projects A and B, when the externality is large

enough,

C∗B(V
0
B) > C∗A(V

0
B)

We could propose an alternative contract with the reverse order of projects that would be

cheaper, what contradicts optimally of the original ordering.

3.2.2 Comparative statics: agents and projects characteristics

Our objective is to see how the cost minimizing contract adapts to different agent and

project characteristics.

The agent is forced to undertake a risk with the investment. The Project bonus is the

extra utility the contract provides to the agent once a project is completed. It is, together

with the transfers, an instrument the principal has to give the agent incentives to invest and

to compensate him for the risk he is undertaking. We want to know how the agent’s risk

aversion and time preferences affect the Project Bonuses provided in the cost minimizing

contract. We obtain that agents with more concave utility functions and the ones that

discount the future the most are the candidates to obtain project bonuses.
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Proposition 3 (Risk aversion and project bonus) At the cheapest stationary contract,
a project bonus upon completion of the first project may be provided to agents with Arrow-
Pratt absolute risk aversion

r(τ) >
βπB

(1− β)ΨB
(11)

Proof is provided at Appendix C. The intuition is as follows: agents with more concave

utility functions are more likely to obtain project bonuses, since they need greater compen-

sation for the risk of the investment they are induced to take. From (11) we find that for

greater costs of investment more agents are likely to receive positive bonus. For projects

with greater probability of success, the result is the opposite. These comparative statics

are intuitive: greater cost of investment implies higher cost to take a risk, and agents need

to be compensated for this fact. Greater probability of success for same investment makes

the project less risky so there are fewer agents that need to be compensated.

With respect to time preferences, we find that greater discounting increases the set of

candidate agents to receive project bonuses. The more the agents discount the future, the

less they value today the project that may be completed next period, and the principal

needs to provide extra compensation to induce the agents to invest.

Claim 1 (Sequential transfers change with projects externalities) When one of the
projects positively affects the probability of success of the other project, (i.e. πx = πy = π
when neither of the projects is completed but πx|y > π once project y has been completed),
transfers are non-increasing and promises of success are non-decreasing with the size of the
externality.

Proof. We want to show that transfers are non-increasing in the technical externalities.

Suppose not. Let (τ , V 0B) be the cheapest contract in the absence of externalities. This

contract is feasible when first project in the sequence generates a technical externality on

the second project of the sequence (incentive compatibility and promise keeping constraints

do not change). But since the promised utility in case of success becomes cheaper in the

presence of externalities, we can propose an alternative incentive compatible and promise

keeping contract with smaller transfer and greater promised utility that provides the agent

same lifetime utility and is cheaper, what contradicts increasing transfers with externalities.

Claim 2 (Sequential transfers with respect to investment costs) When the cost of
investment decreases, the transfer and promised utility in case of success decrease.

Proof. Suppose transfers and promised utilities were greater for smaller investment

costs. Let (τ , V 0B) be the cheapest (and by Proposition 2 stationary) contract for investment
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cost Ψ that provides the agent a utility V seq. For Ψ̂ < Ψ, (τ , V 0B) is a feasible stationary

contract that provides V > V seq and satisfies incentive compatibility and promise keeping

constraints, since

u(τ)− u(τ − Ψ̂) +
h
u(τ − Ψ̂)− u(τ −Ψ)

i
− βπ

£
V 0B − V seq

¤
=

=
h
u(τ)− u(τ − Ψ̂)

i
− βπ

£
V 0B − V

¤
+ (1− βπ)

h
u(τ − Ψ̂)− u(τ −Ψ)

i
(Ψ− Ψ̂)

what implies h
u(τ)− u(τ − Ψ̂)

i
< βπ

£
V 0B − V

¤
We can propose an alternative contract (τ̃ , V 0B) with τ̃ = τ − ετ ,

ετ = −
u0(τ − Ψ̂)

h
Ψ− Ψ̂

i
u00(τ)

> 0

that is cheaper than a contract that provides greater transfers for smaller probabilities of

success, what leads to a contradiction.

Claim 3 (Sequential transfers with respect to value interactions) As the value in-
teraction among projects increases, the optimal contract provides non-increasing transfers.

Proof is provided at Appendix C. Intuitively, as value interaction increases, increases the

value of the completion of the projects for the agent, so less incentives through transfers need

to be provided. Moreover, promise when one of the projects has already been completed

becomes relatively cheaper, making promises relatively cheaper with respect to transfers as

an instrument to provide incentives to the agent.

3.3 Simultaneous contract

The alternative to sequential investment in the projects is to induce the agents to invest in

both projects simultaneously. We present here the cost minimization problem for the simul-

taneous timing alternative. We start with technically symmetric projects equally valued by

the agent (to simplify notation we denote π = πA = πB), and we relax this assumption to

see how the contract adapts to different technical characteristics of the projects and agent’s

preferences.

Let C∗ab(V ) be the expected discounted cost for the principal of the cheapest contract

where investment is induced on projects A and B simultaneously that provides lifetime

utility V to the agent. The cheapest contract that induces the agent to invest in both

projects simultaneously is the solution to the following minimization problem:
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C∗ab(V ) = min
τ,V 0A,V

0
B ,V

0

h
τ + β

h
π(1− π)

h
C∗A(V

0
A) + C∗B(V

0
B)
i
+ (1− π)2C∗ab(V

0)
ii

s.t.V = u(τ −ΨAB) + β
h
π2WAB + (1− π)2V 0 + π(1− π)V

0
A + π(1− π)V

0
B

i
(12a)

u(τ) + βV 0 6 V (12b)

u(τ −ΨA) + β
h
πV

0
A + (1− π)V 0

i
6 V (12c)

u(τ −ΨB) + β
h
πV

0
B + (1− π)V 0

i
6 V (12d)

V 0 > 0 (12e)

V
0
A > V A (12f)

V
0
B > V B (12g)

τ > ΨAB (12h)

where λ0, λA and λB are the Lagrange multipliers for the incentive compatibility constraints

(12b), (12c) and (12d), and μ is the multiplier for the promise keeping constraint (12a).

Constraints (12g) and (12f) are the participation constraints when one of the projects has

been completed. C∗j and V j represent the cost function and the minimum utility to be

provided when project j is already completed, for j = A,B. The function C∗ab(V ) is the

fixed point of the T operator on the metric space of increasing, convex and differentiable

functions defined by

TCab(V ) = min
τ,V 0

A,V
0
B ,V

0

h
τ + β

h
π(1− π)

h
C∗A(V

0
A) + C∗B(V

0
B)
i
+ (1− π)2Cab(V

0)
ii

subject to (12a) , (12b) , (12c) , (12d) , (12e) , (12g) , (12f) and (12h)

C∗ab is an increasing, differentiable and convex function. The proof is provided in the

Appendix B.

To derive the optimal simultaneous contract we follow a reasoning parallel to the sequen-

tial contract. Let V sim be the utility provided at the cheapest stationary simultaneous

contract.

When we allow transfers to vary for the successive attempts until one (or both)
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projects are completed, the First Order Conditions of the principal’s problem are

1− μu0(τ −ΨAB) = η − λA(u
0(τ −ΨA)− u0(τ −ΨAB))− λB(u

0(τ −ΨB)−

−u0(τ −ΨAB))− λ0(u
0(τ)− u0(τ −ΨAB))

(1− π)2β

∙
dC∗ab(V

0)

dV 0
− μ

¸
= −λ0π(2− π)− π(1− π)β(λA + λ0) (14)

π(1− π)β

"
dC∗B(V

0
B)

dV 0B
− μ

#
= π(1− π)β(λA + λ0)− βλBβπ

2 + γ1

π(1− π)β

"
dC∗A(V

0
A)

dV 0A
− μ

#
= π(1− π)β(λB + λ0)− βλAβπ

2 + γ2

(1− π)

"
dC∗B(V

0
B)

dV 0B
− dC∗A(V

0
A)

dV 0A

#
= (λA − λB) +

(γ1 − γ2)

π
(15)

and the Envelope Condition

dC∗ab(V )

dV
= μ > 0

that with (14) gives

V 0 6 V (16)

The cheapest simultaneous contract provides a non-increasing sequence of promised utilities

for successive attempts until one or both projects are completed.

We find that the agent’s participation constraint can not bind, V = 0 cannot be pro-

vided by an incentive compatible and promise keeping contract. We define in the following

Lemma the boundaries of the set of utilities that the principal may provide in an incentive

compatible and promise keeping simultaneous contract.

Lemma 5 (Feasible utilities) The set of feasible utilities that may be provided in the
incentive compatible and promise keeping contract is in the interval of V �

£
V sim,WAB

¢
,

where V sim is the lifetime utility provided at the cheapest simultaneous contract.

Proof. For V > WAB the agent is provided more utility than what he would get if both

projects were completed, what contradicts incentive compatibility constraint.

For V < V sim, we have V 0 6 V < V sim by (16), and sequence of provided utilities

converges to V̄ , V sim > V = V̄ > 0. If V̄ = 0, there is no incentive compatible and

promise keeping contract that can provide this utility. If V̄ > 0, there exists an alternative

stationary contract, V sim, that is cheaper. We reach a contradiction.



27

Proposition 4 (Cheapest simultaneous contract) The cheapest simultaneous contract
is a stationary contract that provides V sim up to one of the projects is completed. The agent
receives a constant transfer for all attempts until one (or both) projects are completed.

When only one of the projects is completed, if that project gets a project bonus, the agent
receives a decreasing sequence of transfers that converges to a stationary contract.

Proof. The cost function is an increasing function. The minimum level of utility that

may be provided in an incentive compatible and promise keeping contract coincides with

the cheapest one, and it is given by V sim, the cheapest simultaneous stationary contract.

In the stationary contract, the same transfers are provided for all attempts until one (or

both) projects are completed.

When a project receives a project bonus, the sequence of transfers is decreasing and

converges to the stationary contract when this given project has been completed. Proof is

provided in Proposition 1.

From the project characteristics we know that the probability of success depends only

on a discrete investment choice. Intuitively, the cheapest contract is the one that gives the

agent the cheapest combination of incentives that induces him to invest in both projects.

And this minimum coincides with the cheapest stationary contract.

The agent gets a Participation Bonus when he signs the contract, that is given by

V sim. Like in the simultaneous case, since the agent values the completed projects, even if

he gets the minimum transfer feasible to invest, he gets a positive utility from the expected

value of the projects in which he is simultaneously investing.

3.3.1 Comparative statics: Agents and Projects characteristics

We proceed now to study how project characteristics and agents’ preferences affect Project

Bonuses in the cheapest simultaneous contract, i.e. when do we have promised utilities

over the minimum feasible level when only one of the projects is successful. As agent’s

characteristics, the agent’s risk aversion and time preferences play a key role. As project

characteristics, we look at the agent’s valuation of the projects, investment costs and prob-

abilities of success for both projects.

Proposition 5 (Project bonus and agent’s preferences) At the cheapest simultane-
ous contract for technically symmetric projects, a project bonus is provided to agents with
Arrow-Pratt absolute risk aversion

r(τ) >
βπ(1− π)

[1− β(1− π)] (ΨAB −Ψ)
(17)
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Proof is provided in Appendix D. The more risk averse agents are the more likely to

receive a project bonus, since they are the agents that need greater compensation for the

risk they undertake with investment. The set of candidate agents to receive project bonuses

decreases as the time discount increases. When agents discount less the future, smaller

bonuses need to be provided to make them undertake the risk of investing with delayed

returns.

We now look at how the optimal contract changes when the projects involved are not

technically symmetric and the agent values them differently. We start with the case where

projects only differ in their value for the agent, and we find that project bonuses go to the

less valued project. We continue with how different projects’ technical characteristics may

give project bonuses to the more valued project when it has greater investment cost or a

smaller probability of success.

Proposition 6 (Project bonus for different project valuations) In the simultaneous
cheapest contract with technically symmetric projects, either no project bonus is promised,
or if there is a project bonus it is greater for the less valued project.

Proof is provided in Appendix D. The aim of project bonuses is to compensate the

agent for the effort he makes in the investment. For technically symmetric projects, the less

valued project may require a greater extra compensation to induce the agent to invest in it.

Proposition 7 (Asymmetric investment costs) At the cheapest simultaneous contract,
when the two projects have different investment costs, we can have project bonuses for the
more valued project when this project is the one with greater investment cost.

Proof is provided in Appendix D. The intuition is as follows: project bonuses are given

to compensate the agent for the investment he undertakes. The agent compares costs and

benefits of the investment in each of the projects. When a project has a greater investment

cost, even if it is the more valued project, he may need an extra bonus to compensate for

the extra effort it requires.

Proposition 8 (Asymmetric probabilities of success) At the cheapest simultaneous
contract, when the projects have different probabilities of success, we can have that the
more valued project gets project bonus if this project is the one with smaller probability of
success.

Proof is provided in Appendix D. Despite of valuation differences, projects that are less

likely to succeed are less appealing for the agent, and the principal may need to compensate

for this fact.
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3.4 Cost comparison of the sequential and simultaneous contracts

We compare the cost for the principal of the two alternative timing structures: simultaneous

versus sequential completion of the projects. We do this comparison under two possible

information scenarios: observable and non-observable agent’s investment.

Together with cost, an important variable to consider is length of the contract. Ex-

pected length of the simultaneous contract is smaller than expected length of the sequen-

tial contract. Expected length for each timing alternative is given by

Expected Length(simultaneous) =
π2 − π + 2

π

Expected Length (sequential) =
3− 2π
π(2− π)

and the difference is

EL(sim)−EL(seq) = −π3 + π2 + 6π + 1 > 0 for all π� [0, 1]

3.4.1 First best: Observable investment

Let us start comparing the cost of the two timing alternatives when investment is observable

and so transfers equal investment cost are the cheapest feasible alternative. In our model,

even with incomplete information, transfers equal to investment cost may be chosen since

for some sets of parameters they may be incentive compatible. Let CFI
seq and CFI

sim be the

expected costs of the full information contract for the sequential and simultaneous timing

respectively. The difference in cost for the two alternatives is given by

£
CFI
seq −CFI

sim

¤
=

1

1− β(1− πB)
(ΨB +

βπBΨA

1− β(1− πA|B)
)

− 1

[1− β(1− πB)(1− πA)]
(ΨAB +

βπA(1− πB)ΨB

1− β(1− πB|A)
+

βπB(1− πA)ΨA

1− β(1− πA|B)
)

We find that when projects are totally symmetric and independent, the cheapest alternative

is the sequential timing. When πi|j > πi for any project i (probability of success of project

i increases when project j is already completed), sequential contract that starts with the

project that generates the externality is the cheapest timing. When ΨAB < 2Ψ, we have

that whenever
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2Ψ−ΨAB > Ψ
£
(1− β)(1 + β(1− π)2) + (1− π)2βπ

¤
[1− β(1− π)]

where

£
(1− β)(1 + β(1− π)2) + (1− π)2βπ

¤
[1− β(1− π)]

< 1

simultaneous contract is cheaper than the sequential one. Whenever cost to invest in both

projects simultaneously is significantly smaller than the sum of costs to invest on both

projects by themselves, a simultaneous contract is the cheapest contract under complete

information.

3.4.2 Second best: Unobservable investment

When investment is not observable, it is necessary to provide the agent the appropriate

incentives to invest. We find that the simultaneous contract is cheaper than the sequential

one whenever the sequential contract provides a transfer big enough to cover investment in

both projects. When the incentives (in form of transfer over the investment cost) are such

that with sequential transfers simultaneous investment is feasible, the principal can always

design an alternative simultaneous contract including Project Bonuses that is cheaper. As

we showed in the sequential contract comparative statics, sequential contract transfers are

likely to fall in this category when technical externalities among projects are not important

(Claim 1), when valuation of the last project in the sequence has little effect on the joint

valuation of the projects (Claim 3), and when ΨAB is significantly smaller than the sum of

investment costs in each of the projects independently (Claim 2). For totally independent

projects, we are likely to fall in this category when costs of investment are relatively high

with respect to the agent’s valuation of the projects.

The intuition is as follows: when investment is not observable, the principal needs to

provide the agent incentives to undertake the risk associated to investment. If the transfer

that needs to be provided is large enough, the principal can provide an alternative simul-

taneous contract where the agent "diversifies" the risk of the investment he is undertaking

that is cheaper.

Proposition 9 For technically symmetric projects (i.e.πA = πB,ΨA = ΨB), when trans-
fers of the cheapest sequential contract are such that simultaneous investment is feasible,
i.e. τ seq > ΨAB, simultaneous contract is cheaper.

Proof is provided in Appendix E. The intuition is as follows: when cost of investment

is big enough, for any sequential contract we can construct an alternative simultaneous
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contract with the same sequence of transfers that is cheaper (given that expected length of

the contract decreases), what contradicts the sequential being the cheapest feasible contract.

We show in Appendix A that the fact that when investment is not observable simulta-

neous contract is the cheapest alternative under some circumstances does not depend on

the commitment to a sequence of transfers assumption. At the stationary contract that

does not allow for project bonuses, we also find that moral hazard makes simultaneous

investment the cheapest alternative under some circumstances.

4 Principal’s Expected Benefits

The principal compares expected cost and expected benefits of each timing alternative to

choose the strategy that maximizes his utility. We derive and compare here the principal’s

expected benefits for the two alternative timing structures to complete both projects.

It is realistic to imagine that principals may prefer some projects over the rest. In a

Foreign Aid setting, political, religious, and moral factors of the donor society may affect

the donor’s valuation of the different projects. In that case, the result of the expected

benefit comparison of the two timing alternatives may not coincide with the timing that

maximizes the recipient’s expected well-being from the completed projects. This bias in

donor’s preferences may generate inefficiencies in the contract: there may exist a cheaper

alternative that increases the agent’s expected wellbeing that is not chosen due to the

principal’s biased preferences.

In a corporate finance setting, some projects may maximize the value of the firm but may

not be the ones preferred by the managers. In that case, the possibility of the shareholders

to impose their preferred timing acts as a protection mechanism against the manager’s

prioritizing their preferences over the value of the firm.

The function Z(W ) measures how projects (and agent’s valuation of the projects) enter

the principal’s utility function. We allow this function to vary among projects to reflect the

principal’s preferences over the projects. We assume that the principal’s valuation of the

projects completed by the agent has the form

Zi(Wi) = αiWi for i = A,B

and

ZABpi(WAB) = αjWj +max(αA, αB) [WAB −WA −WB]

denotes principal’s extra-utility when project j is completed whenever i had already been

accomplished.
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The expected benefit for the principal of the sequential contract that starts with project

A is given by

E(Z(W ))Seq =
∞X
t=0

βt+1(1− π)t[

"
π + (1− π)

∞X
t=0

βt+1(1− π)t

#
ZA(WA)

+
∞X
t=0

βt+1(1− π)tπZABpA(WAB)] =

=
βπ

1− β(1− π)

∙
ZA(WA) + β

(πZABpA(WAB) + (1− π)ZA(WA))

1− β(1− π)

¸
=

=
βπ

1− β(1− π)

∙
ZA(WA) +

βπZABpA(WAB)

1− β(1− π)

¸
and we see that to start with the more valued project maximizes the expected benefits

of the sequential contract. This ordering coincides with the cost minimizing sequence for

technically symmetric projects.

When investment in both projects is simultaneous, the expected benefit for the principal

is given by

E(Z(W ))Sim =
∞X
t=0

βt+1(1− π)2t
£
π2Z(WAB) + π(1− π) (ZA(WA) + ZB(WB))

¤

+
∞X
t=0

βt+1(1− π)2t+1π

⎡⎢⎢⎣
∞P
t=0

βt+1(1− π)tπ(ZABpA(WAB) + ZABpB(WAB))+

+
∞P
t=0

βt+1(1− π)t(1− π)ZA(WA) + ZB(WB)

⎤⎥⎥⎦

E(Z(W ))Sim =
βπ

1− β(1− π)2
[πZ(WAB)

+(1− π)

"
ZA(WA) + ZB(WB)+

+
βπZAB|A(WAB)+βπZAB|A(WAB)+(1−π)β(ZA(WA)+ZB(WB))

1−β(1−π)

#
] =

E(Z(W ))Sim =
βπ2Z(WAB)

1− β(1− π)2

+
βπ(1− π)

1− β(1− π)2

µ
ZA(WA) + ZB(WB) + βπZAB|A(WAB) + βπZAB|B(WAB)

1− β(1− π)

¶
To account for externalities in probabilities of success, let us simplify notation and define

πi/j as the probability of success of project i when project j is already completed. The

expected benefits of each timing structure become:
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E(Z(W ))Seq =
βπA

1− β(1− πA)

∙
ZA(WA) +

βπB/AZABpA(WAB)

1− β(1− πB/A)

¸

E(Z(W ))Sim =
β

1− β(1− πA)(1− πB)
[πAZA(WA) + πBZB(WB)

+
βπAπB|AZAB|A(WAB)

1− β(1− πB|A)
+

βπBπA|BZAB|B(WAB)

1− β(1− πA|B)
+ πAπBZ(WAB)]

The simultaneous contract provides greater expected benefit to the agent when WAB is sig-

nificantly greater than WA+WB, i.e., when the projects have important value interactions.

When the utility the projects provide increases significantly with their joint completion, a

contract where both projects receive simultaneous investment maximizes expected benefits.

When there are important externalities in the probabilities of success of the projects, se-

quential contract is more likely to provide greater expected benefits than the simultaneous

timing. When preferences of the principal are biased towards a project (i.e. αA 6= αB) with

respect to the agent’s, the sequential contract that starts with the principal’s preferred

project is the timing alternative that maximizes principal’s expected benefits.

5 Optimal contract

Once we determine the costs and benefits of each timing alternative, we can compare the

two to choose the principal’s utility maximizing contract.

From the cost of the contract, we find that the simultaneous contract is cheaper than

the sequential one when the latter provides a transfer greater than the simultaneous invest-

ment cost. From the cheapest sequential contract, we find that transfers are more likely to

be greater than the simultaneous investment cost when there are no technical externalities

among the projects, and when there is small interaction among project valuations. When

investment costs are such that simultaneous cost is significantly smaller than the sum of

independent investment costs in each of the projects, it is likely that the sequential transfer

is greater than the simultaneous investment cost.

From the expected benefits for the principal, we see that a simultaneous contract

provides greater expected benefits when there are important value interactions among the

projects. When there are technical externalities among the projects, sequential timing is

more likely to be the expected benefits maximizing alternative.

We study the optimal timing for different combinations of technical externalities and

valuation interactions among the projects. We find that, for large technical externalities,
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the optimal contract is a sequential one that starts with the project that produces the

technical externality. When value interaction among the projects is critical, a simultaneous

contract is the optimal strategy so long as the interactions are sufficiently high.

For independent projects, i.e. projects with negligible value interactions and technical

externalities, the optimal contract depends on the relation between investment costs and

probabilities of success, as well as the agent’s valuation of the projects. When projects

are relatively devalued by the agent, or require high or very risky investments, the optimal

timing is simultaneous.

When both technical externalities and value interactions are important, optimal timing

depends on the relative value of each force. When value interaction is important enough,

simultaneous is the optimal timing. And when technical externalities are more important,

the optimal timing is sequential.

6 Conclusions

We present the optimal contract for use when a principal provides funds to an agent to

build two projects. In a multitask dynamic model wherein the principal cannot commit to

cut the flow of funds to the agent prior to both projects’ completion, and whereby both

principal and agent value the projects, we derive optimal incentive payments. The agent

makes a (discrete) decision as to whether to invest in one, both or neither of the projects.

The contract has an indeterminate length; it does not end until both projects are completed.

It is our purpose to use this model as a “cookbook” of sorts: we show how the optimal

contract adapts to different agent and project characteristics. We derive the optimal tim-

ing and sequence of transfers for different projects that accounts for donor and recipient

preferences

All agents receive a participation bonus when they sign the contract. This bonus exists

because the agent values the completed projects. The agent’s project valuations are also

involved in inducing the agent to invest in multiple tasks in a dynamic setting: the agent

values the projects by himself, and the contract can compensate for differences in valuations

and technical characteristics of the projects to provide high-powered incentives to the agent

to invest in both projects. We find that, for some projects and recipients, the valuation of

the projects by the agent allows for an incentive compatible contract where transfers equal

investment costs.

Candidate agents to receive project bonuses are those agents with more concave utility

functions; the more risk averse. The principal must provide incentives to the agent for him
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to invest from the transfer received. For the agent, to invest is to take a risk: forgoing

consumption today so that tomorrow there will be a positive probability that the project is

completed. Agents with higher discount factors are more likely to receive project bonuses:

the more the agent discounts the future, the higher the incentives must be to make him

invest. Aid recipients and managers in more unstable environments require even better

rewards to undertake investment. The projects less valued by the agent, and those projects

with high investment costs and/or small probabilities of success, are more likely to receive

project bonuses.

We find that the inability to observe the investment on the part of the principal makes

simultaneous timing the optimal alternative in some circumstances, when sequential timing

would be chosen under observable investment.

Comparing costs and benefits for the two timing alternatives has important implications

in the design of multiple project contracts. We find that when technical externalities among

the projects are important, the optimal timing is sequential. And when there are important

value interactions among the projects, simultaneous timing is the principal’s utility maxi-

mizing alternative. When projects are unrelated, we find that the optimal contract depends

on the investment costs and valuation considerations of the agent: the optimal contract is

simultaneous for more costly and less valued projects, and sequential for less costly and

more valued projects.

In the foreign aid example, when the principal has special preferences for any of the

projects, the contract may be inefficient: there may exist an alternative cheaper contract

that provides the agent greater expected value than the alternative that maximizes the

principal’s utility. Foreign aid literature studies the negative effects on the efficiency of aid

from donor-driven development. From a theoretical point of view, this is a puzzling situa-

tion: even if the agent is committed to the project and transfers equal to investment funds

are incentive compatible, the principal’s preferences may lead to inefficiency. How to pro-

vide appropriate incentives to the principal, perhaps by extending the proposed framework

to account for a richer set of participants in the aid network (governments, multilateral

organizations, NGO’s, etc.) remains open for future research.

In the corporate finance example, we see that the principal’s ability to set the tim-

ing provides him with additional assurance against the agent’s discretionary use of funds:

shareholders may set their utility maximizing timing in the contract to avoid the manager

maximizing his own utility in the timing decision.

Further, in the corporate finance example, the ability of the shareholders to decide the
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timing of projects works as a protection mechanism: they ensure that the manager follows

the timing that maximizes their benefit instead of the manager’s preferred timing.
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A Appendix: Stationary contract

A.1 One project already completed

At the stationary contract when project X has already been completed, for incentive com-

patibility and promise keeping constraints to be satisfied transfer needs to satisfy

u(τ)(1− β(1− π))− u(τ −Ψy)(1− β) 6 βπy (WXY (1− β)− wx) (18)

Let τ̂ be the smallest feasible transfer when project X has already been completed. The

cheapest stationary contract when project X is already completed provides the agent a

utility

Sx =
u(τ̃ −Ψy) + wx + βπyWXY

1− β(1− πy)
> Wx

Let g(τ) = u(τ)(1 − β(1 − π)) − u(τ − Ψy)(1 − β). For g0(τ) > 0, transfer τ̃ = Ψy is the

cheapest feasible transfer, since for all τ > Ψy we can propose an alternative contract with

smaller transfer that satisfies (18) and is cheaper. For g0(τ) < 0, either τ̃ = Ψy is feasible

or (18) binds.

The cost of the cheapest stationary contract when X is completed is given by

Cx =
τ̂

[1− β(1− πy)]

Claim 4 Cost function is non-increasing with the valuation of the project already completed

Proof. Case 1: γ = 0 , V 0 > V X . From First Order Conditions and convexity of the

cost function we have that

β(1− πy)

∙
dC∗x(V

0)

dV 0
− dC∗x(V )

dV

¸
+ λ = 0

Wx < V X 6 V 0 6 V (19)

dC∗x(V )

dWx
= −dC

∗
x(V

0)

dV 0
(1− β)− λβ(1− β)

(1− πy)
< 0

The cost function is decreasing with the valuation of the completed project. The

optimal contract provides a non-increasing sequence of promised utilities for the successive

unsuccessful attempts until the remaining project is completed.

Case 2: γ > 0 In that case, V 0 = V X 6 V. We have an stationary contract from the

second trial at V = V X = V 0. In this situation,

dC∗x(V X)

dWx
6 0 (20)
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Suppose not, suppose transfers at the stationary contract were increasing with the valuation

of the completed project. Let τ(wx) be the cheapest stationary transfer for valuation of

the project already completed wx. For ŵx > wx, τ(wx) does satisfy incentive compatibility

constraint for the agent, but we can propose a contract with smaller transfer such that

u(τ(wx)− ε)− u(τ(wx)− ε−Ψy) = βπy
£
V 0B − V

¤
where

V =
u(τ(wx)− ε−Ψy) + ŵx + βπyWXY

1− β(1− π)
= V X

that satisfies promise keeping and incentive compatibility constraint for ŵx and is cheaper,

what contradicts transfers increasing with the valuation of the project already completed.

Claim 5 The cost function is increasing in the investment cost and decreasing in the prob-
ability of success.

Proof. To get the effect of changes in investment costs on the cost function, we check

how it affects the constraints of the problem. From the promise keeping constraint, we see

that greater transfers and promises are required when the cost of investment increases, in

order to provide same level of utility.

From the envelope we get that

dC∗x(V )

dΨy
= (λ+ μ)u(τ −Ψy) > 0

so the cost function is increasing in investment cost.

How the probability of success affects the cost function is given by the Envelope condition

dC∗x(V )

dπy
= −βC∗x(V 0)− [μβ + λ] (WAB − V 0) < 0

Claim 6 Transfers are non-increasing with the probability of success of the project still to
be completed.

Proof. Let π̂ > π. When probability of success increases, from (18) smaller transfers

are feasible. For τ to be incentive compatible we need

u(τ)− (WXY (1− β)− wx) < 0
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and change in utility provided to the agent is given by£
u0(τ)(1− β(1− π))− u0(τ −Ψy)(1− β)

¤
∆τ

= [β (WXY (1− β)− wx)− βu(τ)]∆π

and either g0(τ) > 0 and ∆τ = 0, so transfer is constant at the investment cost and

Sx(π̂) > Sx(π). Or g
0(τ) < 0, Sx(π̂) versus Sx(π) depends on the agent’s utility function.

Claim 7 Transfers are non-increasing with the project’s value interactions (WAB)

Proof. Suppose not, suppose τ̂(WAB) < τ̂(ŴAB) for WAB < ŴAB. There exist an

alternative contract with τ(ŴAB) 6 τ̂(WAB) that is feasible and cheaper when value of both

projects completed is ŴAB, what contradicts increasing transfers with the value interaction

among the projects.

With respect to the promised utility when a project is already completed, either g0(τ) > 0

and ∆τ = 0, so transfer is constant at the investment cost and Sx(ŴAB) > Sx(WAB). Or

g0(τ) < 0, Sx(ŴAB) versus Sx(WAB) depends on the agent’s utility function.

A.2 Stationary sequential contract

At the stationary sequential contract, the principal chooses the transfer that minimizes

CA_B = min
τ

[τ + βπBC
∗
B(SB)]

[1− β(1− πB)]

s.t. u(τ)(1− β(1− πB))− u(τ −ΨB)(1− β) 6 βπB(1− β)SB (21a)

τ > Ψy (21b)

that provides the agent a utility

Sseq =
u(τ∗ −ΨB) + βπBSB

1− β(1− πB)

and transfer τ∗ is either τ∗ = Ψy or (21a) binds.

With a parallel reasoning to the preceding section, we find that cheapest sequential

transfer, τ∗, is non-increasing with the probability of success and non-decreasing with in-

vestment cost ΨB. Cheapest simultaneous transfer is non-increasing with SB.
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A.3 Stationary simultaneous contract

At the stationary simultaneous contract, the principal chooses the transfer that minimizes

Cab = min
τ

[τ + βπ(1− π) [C∗B(SB) + C∗A(SA)]]

[1− β(1− π)2]

s.t. u(τ)(1− β(1− π)2)− u(τ −ΨAB)(1− β) 6

6 βπ(1− β) [πWAB + (1− π) [SA + SB]] (22a)

u(τ −Ψi)(1− β(1− π)2)− u(τ −ΨAB)(1− β) 6

βπ [π(1− β(1− π)π] (WAB − Sj) + (1− π)[1− β(1− π)2]Si for i,j=A,B (22b)

τ > ΨAB (22c)

and utility this contract provides to the agent is

Ssim =
u(τ̃ −ΨAB) + βπ(1− π)(SA + SB)

1− β(1− π)2

Transfer τ̃ is either τ̃ = ΨAB or (22a) binds.

A.4 Cost comparison

A.4.1 Feasible transfers

To compare the set of incentive compatible transfers for each timing alternative, we compare

gseq(τ) = u(τ)(1− β(1− π))− u(τ −Ψy)(1− β)

and

gsim(τ) = u(τ)(1− β(1− π)2)− u(τ −ΨAB)(1− β)

We find that, for a given transfer,

g0seq(τ)− g0sim(τ) =
£
u0(τ −ΨAB)− u0(τ −Ψy)

¤
(1− β) + u0(τ)βπ2 > 0

what implies that whenever g0sim(τ) > 0, g0seq(τ) > 0, transfers equal to investment costs

are feasible in both timings. Whenever g0seq(τ) < 0, we have that g
0
sim(τ) < 0 and is feasible

to have sequential transfer greater than the simultaneous.

Whenever (22b) binds and τ∗ > ΨAB, we find that τ̃ < τ∗ since at τ̃ sequential contract

is not feasible (the agent prefers to invest on both projects than in the first project in the

sequence).

We need to consider, for τ∗ > ΨAB, four cases for the transfer comparison with respect

to (22a):
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1. (22a) does not bind and g0sim(τ) > 0. Transfers equal to investment costs are feasible

in both timings, so sequential contract is the cheapest alternative.

2. (22a) does bind and g0sim(τ) > 0. Transfers equal to investment costs are feasible in

both timings, so sequential contract is the cheapest alternative

3. (22a) does bind and g0sim(τ) < 0. Let

T seq(τ) = u(τ)(1− β(1− πB))− u(τ −ΨB)(1− β)

−βπB(1− β)SB 6 0

Tsim(τ) = u(τ)(1− β(1− π)2)− u(τ −ΨAB)(1− β)

−βπ(1− β) [πWAB + (1− π) [SA + SB]] 6 0

When Tsim(τ̃) = 0 and so (22a) binds, we have that

T seq(τ̃) = u(τ)βπ(1− π)−
£
u0(τ −ΨB)(ΨAB −ΨB)

¤
(1− β)

−βπ(1− β) [π(SB −WAB)− (1− π)SA]

for small (ΨAB−ΨB) we have that T seq(τ̃) > 0. If g0seq(τ) < 0, we have that τ̃ < τ∗. If

g0seq(τ) > 0, we would have that transfer in the sequential case would equal investment

cost, and so contracts would not be comparable.

4. (22a) does not bind, and g0sim(τ) < 0 and (21a) does bind with a transfer τ
∗ > ΨAB.

Then by the symmetric argument we have that Tsim(τ∗) < 0, and since g0sim(τ) < 0

we have that τ̃ < τ∗.

Whenever neither (22a) nor (21a) bind, transfers are equal to investment cost in both

cases and we are not in the set of contracts we can compare.

A.4.2 Cost functions

The difference of the costs for the simultaneous and sequential timing is given by

Cab −CA_B = [τ∗ − τ̃ ] (1− β(1− π)) + τ∗βπ(1− π)

+(1− β(1− π))βπCx

Simultaneous contract is cheaper when

[τ̃ − τ∗] < Cxβπ(2− π)
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Under full information, we have that sequential contract is the cost minimizing alternative.

With moral hazard, the optimal timing depends on the need to provide incentives to the

agent: when agent’s valuation of the projects is small, or when they are relatively costly

and probability of success is small, transfers need to be over the investment cost. The fact

that in a simultaneous contract expected returns to investment are higher, and that partly

compensates the agent for the risk he is undertaking, can make the simultaneous contract

the cost minimizing alternative.

B Appendix: Cost function properties

Lemma 6 The cost function when project x has already been completed, C∗x ,is increasing,
convex and differentiable.

Proof. (a) Increasing. Let (τ , V 0) be the optimal contract that provides V level of

utility. We want to show that C∗(V ) < C∗(Ṽ ) for all V < Ṽ .

To provide V = V̂ − ε, the optimal contract needs to satisfy the promise keeping con-

straint for the new utility to be provided.

(V̂ − V ) = ε = u0(τ −Ψ)∆τ + β(1− π)∆V 0

and for the incentive compatibility constraint to be satisfied we need that£
u0(τ)− u0(τ −Ψ)

¤
∆τ 6 −βπ∆V 0

Let’s set ∆V 0 = 0. To satisfy the two constraints, change in transfer has to satisfy£
u0(τ)− u0(τ −Ψ)

¤
∆τ 6 0

ε = u0(τ −Ψ)∆τ

The contract (τ −∆τ , V 0) is feasible and incentive compatible when the level of utility to
be provided is V , but it may not be optimal. This implies

C∗x(V ) 6 C∗x(V̂ )−
ε

u0(τ −Ψ) < C∗x(V̂ )

(b) Convexity. Let (τ1, V 01) and (τ2, V
0
2) be the optimal contracts for V1 and V2 respec-

tively.

From concavity of the utility function, we know that τ < λτ(V1)+(1−λ)τ(V2) is feasible
when the level of utility to be provided is (λV1+(1−λ)V2) keeping constant promised utilities



45

in case of failure. This transfer is also Incentive Compatible. Comparing the cost functions

we get

C∗x(λV1 + (1− λ)V2) 6 λC∗x(V1) + (1− λ)C∗x(V2)−

− [λτ(V1) + (1− λ)τ(V2)− τ ] <

< λC∗x(V1) + (1− λ)C∗x(V2)

(c) To show that C∗ is differentiable, we apply Benveniste-Scheinkman (1978). Define

C∗x(V0) = τ(V 0(V0), V0) + β(1− π)Cx(V
0(V0))

W (V ) = τ(V 0(V0), V ) + β(1− π)C(V 0(V0))

where τ(V 0(V0), V ) is the transfer that satisfies promise keeping and IC for a V level of

utility to be provided when promise in case of failure is fixed at V 0(V0). We have that

C∗x(V0) = W (V0)

C∗x(V ) 6 W (V ) for V in a neighborhood of V0

C∗ is a convex function, and W is a differentiable function. From Benveniste-Scheinkman

(1978), C∗(V ) is differentiable at V0 with derivative

dC∗x(V0)

dV0
=

dW (V0)

dV0
=

dτ(V 0(V0), V )

dV

Lemma 7 The cost function of the sequential contract that starts with project B, C∗B_A ,is
increasing, convex and differentiable.

Proof. The T operator is a contraction on the complete metric space of continuous,

increasing and convex functions, so it has a fixed point. This fixed point is an increasing

and convex function by the symmetric argument used in Lemma 1.

To show that C∗ is differentiable, we apply Benveniste-Scheinkman (1978). Define

C∗B_A(V0) = τ(V 0(V0), V
0
B(V0), V0) + β(1− π)C∗B_A(V

0(V0)) + βπC∗B(V
0
B(V0))

W (V ) = τ(V 0(V0), V
0
B(V0), V ) + β(1− π)C∗B_A(V

0(V0)) + βπC∗B(V
0
B(V0))

where τ(V 0(V0), V
0
B(V0), V ) is the transfer that satisfies promise keeping and IC for a V level

of utility to be provided when promise in case of failure is fixed at V 0(V0) and promise in

case of success is fixed at V
0
B(V0). We have

C∗B_A(V0) = W (V0)

C∗B_A(V ) 6 W (V ) for V in a neighborhood of V0
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W is a differentiable function. C∗B_A(V ) is differentiable at V0 with derivative

dC∗B_A(V0)

dV0
=

dW (V0)

dV0
=

dτ(V 0(V0), V
0
B(V0), V )

dV

Lemma 8 The cost function of the simultaneous contract. C∗ab ,is increasing, convex and
differentiable.

Proof. The T operator is a contraction on the complete metric space of continuous and

increasing functions, so it has a fixed point. The fixed point is an increasing and concave

function.

To show that C∗ab is differentiable, we apply Benveniste-Scheinkman (1978). Let

C∗ab(V0) = τ(V 0(V0), V
0
A(V0), V

0
B(V0), V ) + βπ(1− π)C∗A(V

0
A(V0)) +

+βπ(1− π)C∗B(V
0
B(V0)) + β(1− π)2C∗ab(V

0
(V0))

W (V ) = τ(V 0(V0), V
0
A(V0), V

0
B(V0), V ) + βπ(1− π)C∗A(V

0
A(V0)) +

+βπ(1− π)C∗B(V
0
B(V0)) + β(1− π)2C∗ab(V

0
(V0))

where τ(V 0(V0), V ) is the transfer that satisfies promise keeping and IC for a V level of

utility to be provided when promise in case of failure is fixed at V 0(V0) and promise in case

of success is fixed at V
0
B(V0), V

0
A(V0). We have

C∗ab(V0) = W (V0)

C∗ab(V ) 6 W (V ) for V in a neighborhood of V0

W is a differentiable function. C∗(V ) is differentiable at V0 with derivative

dC∗ab(V0)

dV0
=

dW (V0)

dV0
=

dτ(V 0(V0), V
0
A(V0), V

0
B(V0), V )

dV

C Appendix: Sequential contract characteristics

Proposition 10 At the cheapest stationary contract, a project bonus upon completion of
the first project may be provided to agents with Arrow-Pratt absolute risk aversion

r(τ) >
βπB

(1− β)ΨB
(23)
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Proof. From the First Order Conditions of the stationary sequential contract, we know

that constraint (8a) must bind whenever the optimal contract differs from (ΨB, V B). The

First Order Condition with respect to τ when (8a) is plugged into the objective function is

given by

1 + βπ

"
dC∗B(V

0
B)

dV
0
B

−
µ
1− β(1− πB)

βπB

¶
γB

#
dV 0B
dτ

= 0

and from (8a) we have that

dV 0B
dτ

= − [1− β(1− πB)]u
0(τ)− (1− β)u0(τ −ΨB)

−βπB(1− β)

We need to check how the optimal contract varies with the sign of this derivative. When

dV 0B
dτ

> 0

we need

0 <
dC∗B(V

0
B)

dV
0
B

<

µ
1− β(1− πB)

βπB

¶
γB

for the First Order Conditions to be satisfied, so γB > 0 and V
0
B = V B and no project

bonus is provided.

A necessary condition for γB = 0, V
0
B > V B and project bonus is feasible, is that

dV 0B
dτ

< 0

which implies

[1− β(1− πB)]u
0(τ)− (1− β)u0(τ −ΨB) < 0

−u
00(τ)

u0(τ)
= r(τ) >

βπB
(1− β)ΨB

(24)

The candidate agents to get project bonuses are the ones with more concave utility functions.

Claim 8 As the value interaction among projects increases, the optimal contract provides
non-increasing transfers.

Proof. We proceed in two steps: we first derive the effect of the value interaction,WAB,

on the cost of promised utility when B is completed, and second we derive how this affects

the transfer and promises at the optimal (stationary) sequential contract.

(1) Since effect of value interactions comes from the cost of the promise when the first

project is completed, we start with the effect of the value interactions on the cost of promised
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utility when project B is completed. The transfer when B has already been completed is

non-increasing in WAB. Suppose not. Let τ be the optimal transfer to be provided when

the value of both projects completed is WAB. For ŴAB > WAB, τ is feasible (incentive

compatibility and promise keeping are satisfied with this transfer) and there may be a

cheaper transfer τ̂ 6 τ . So transfer when B is already completed is non-increasing in WAB.

Cost of promised utility becomes smaller as value interaction increases.

Let (τ , V 0B) be the optimal contract for valuation of both projects completed WAB.

(2a) When ŴAB > WAB implies V B(ŴAB) > V B(WAB). We want to show that optimal

sequential transfer is non-increasing in WAB. Suppose not.

If V 0B = V B(WAB), for ŴAB the new contract must provide V̂ 0B > V B(ŴAB) >

V B(WAB). The contract (τ , V B(ŴAB)) satisfies the incentive compatibility and promise

keeping constraints when the value interaction is given by ŴAB, but we can propose an

alternative contract with smaller transfers that is feasible, which contradicts increasing

transfers in the valuation of both projects completed.

If V 0B > V B(WAB), we can either have V 0B > V B(ŴAB), where contract for WAB is

feasible for ŴAB but we can find a cheaper alternative contract with no greater transfers.

Or we can have V B(ŴAB) > V 0B > V B(WAB), and the argument would be symmetric to

the V 0B = V B(WAB) case.

(2b) When ŴAB >WAB implies V B(ŴAB) < V B(WAB). All contracts feasible forWAB

are also feasible for ŴAB, and we can propose alternative contracts with smaller transfers

and greater promises incentive compatible and promise keeping and cheaper, since cost of

promise in case of success became smaller, which contradicts increasing transfers with size

of the value interaction.

D Appendix: Simultaneous contract characteristics

Proposition 11 At the cheapest simultaneous contract for technically symmetric projects,
a project bonus is provided to agents with absolute risk aversion

r(τ) >
βπ(1− π)

[1− β(1− π)] (ΨAB −Ψ)
(25)

Proof. In the cheapest simultaneous contract, which we showed in Proposition 4 to be

stationary, two incentive compatibility constraints need to be taken into account. When

the promise keeping (12a) constraint is plugged into the incentive compatibility constraints
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(12c) and (12d) we get

u(τ −Ψ)(1− β(1− π)2)− u(τ −ΨAB)(1− β(1− π)) >

> βπ(1− β(1− π))
£
π(WAB − V 0B) + (1− π)V 0A

¤
u(τ −Ψ)(1− β(1− π)2)− u(τ −ΨAB)(1− β(1− π)) >

> βπ(1− β(1− π))
£
π(WAB − V 0A) + (1− π)V 0B

¤
and the problem the principal solves to get the cheaper contract is:

C(V ) = min
τ,V

0
A,V

0
B

τ + β(1− π)π
h
C∗B(V

0
B) +C∗A(V

0
A)
i

[1− β(1− π)2]

s.t. ICA(μ1), ICB(μ2) (26)

V 0B > V B (γB), V
0
A > V A (γA) (27)

where (27) comes from the optimal contract when only project A or B are completed

respectively, as do the cost functions C∗A(.) and C∗B(.) . The First Order Conditions give:

β(1− π)π
dC∗A(V

0
A)

dV
0
A

= (28)

= γA + μ1 [βπ(1− β(1− π))]− (μ2 + μ1)
£
βπ2(1− β(1− π))

¤
β(1− π)π

dC∗B(V
0
B)

dV
0
B

= (29)

= γB + μ2 [βπ(1− β(1− π))]− (μ2 + μ1)
£
βπ2(1− β(1− π))

¤
We check for all possible combinations of constraints binding.

(i) Suppose μ1 > 0 and μ2 > 0. Both incentive compatibility constraints bind and we

have V
0
A = V

0
B. The principal’s problem becomes:

C(V ) = min
τ,V 0

τ + β(1− π)π
h
C∗A(V

0
c ) + C∗B(V

0
c )
i

[1− β(1− π)2]

s.t. u(τ −Ψ)(1− β(1− π)2)− u(τ −ΨAB)(1− β(1− π)) = (30a)

= βπ(1− β(1− π))
£
πWAB + (1− 2π)V 0c

¤
V 0c > max(V A , V B) (γ) (30b)

where V 0c denotes promised utility when one of the projects has been completed. When we

plug in (30a) the First Order Conditions is

1 + β(1− π)π

∙
dC∗A(V

0
c )

dV 0c
+

dC∗B(V
0
c )

dV 0c
−
µ
1− β(1− π)2

β(1− π)π

¶
γ

¸
dV 0c
dτ

= 0
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From the Incentive Compatible-promise keeping constraint (30a) we have

dV 0c
dτ

= −u
0(τ −Ψ)(1− β(1− π)2)− u0(τ −ΨAB)(1− β(1− π))

−βπ(1− β(1− π))(1− 2π)

From these two equations we get that γ > 0 is only feasible if dV 0

dτ > 0. This means that

V 0 = max(V A , V B) and since projects are symmetric no project receives a project bonus.

We can have γ = 0 , so bonus in both projects is feasible, when dV 0

dτ < 0. This is the

case when

r(τ) >
βπ(1− π)

[1− β(1− π)] (ΨAB −Ψ)
and (1− 2π) < 0

Since when

r(τ) <
βπ(1− π)

[1− β(1− π)] (ΨAB −Ψ)
and (1− 2π) > 0

we can propose an alternative contract with smaller promises for more valued project and

greater promises for less valued projects that is cheaper, and where one of the projects does

not get a bonus that is cheaper, which contradicts optimally of bonus for both projects.

(ii) Take the case where μ1 = 0 and μ2 > 0 From (28) we get that γA > 0 which implies

V 0A = V A. Then, from (29) we get

1 + βπ

"
dC∗B(V

0
B)

dV
0
B

− γB

#
dV 0B
dτ

= 0

and we have that γB = 0 is only feasible when

dV 0B
dτ

< 0

that implies £
1− β(1− π)2

¤
u0(τ −Ψ)− [1− β(1− π)]u0(τ −ΨAB) < 0

−u
00(τ)

u0(τ)
= r(τ) >

βπ(1− π)

[1− β(1− π)] (ΨAB −Ψ)

and a symmetric argument applies for μ1 > 0 and μ2 = 0.

(iii) Suppose μ1 = μ2 = 0. Then for First Order Conditions to be satisfied we need

γA > 0, γB > 0, and no project gets a project bonus.

Proposition 12 In the simultaneous cheapest contract with technically symmetric projects,
either no project bonus is promised, or if there is a project bonus it is greater for the less
valued project.
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Proof. We need to consider four cases, for the four possible combinations of project

bonus in each of the two projects. These cases are given by the binding and not binding of

the feasibility constraints V
0
A > V A and V

0
B > V B. From the cost minimization problem,

λ0, λA and λB are the Lagrange multipliers for the incentive compatibility constraints (12b),

(12c) and (12d) , and μ is the multiplier for the promise keeping constraint (12a).

1. Both projects get project bonus, i.e. none of the constraints binds, V
0
A > V A and

V
0
B > V B. We showed that in the stationary contract this can only be the case when

both IC constraints are binding, so V
0
A = V

0
B. In this case, V

0
A = V

0
B > max(V B , V A).

So greater bonuses are given for the less valued project.

2. γ1 = 0, γ2 > 0. V
0
A = V A, project A does not get a project bonus.

We consider four cases:

(i) incentive compatibility constraint for project B binds, so λA = 0, λB > 0. This

implies V
0
A = V A 6 V

0
B.From the First Order Conditions we get

dC∗B(V
0
B)

dV 0B
<

dC∗A(V A)

dV A

If WA > WB, we have WB < WA < V A < V
0
B , so a positive bonus is given when the

less valued project is completed.

If WA < WB, V A < V B. From the First Order Conditions and convexity of the cost

function, we have that

dC∗B(V
0
B)

dV 0B
<

dC∗ab(V
0)

dV 0
<

dC∗A(V A)

dV A

<
dC∗B(V B)

dV B

what leads to a contradiction since it implies V
0
B < V B .

(ii) incentive compatibility for project A binds, λA > 0, λB = 0. This implies V
0
A =

V A > V
0
B.

From First Order Conditions we have that either

dC∗B(V
0
B)

dV 0B
>

dC∗A(V A)

dV A

or
dC∗B(V

0
B)

dV 0B
<

dC∗A(V A)

dV A

depending on the relation of the values of the multipliers
£
λA − γ2

π

¤
If WA > WB, we have a positive bonus for the less valued project.

If WA < WB, we have V 0B < V A < V B, which contradicts feasibility.
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(iii) λA = 0, λB = 0. incentive compatibility A and incentive compatibility B may or

may not be binding. We will go to points 1 or 2 depending on the situation.

(iv) Both incentive compatibility constraints bind, λA > 0, λB > 0 If both constraints

are binding, we need V
0
B = V

0
A. The relative magnitude of the multipliers brings us to

the previous cases.

3. γ1 > 0, γ2 = 0, no project bonus for project B. Symmetric to (2).

In that case we find λA > 0, λB = 0, V
0
A > V B when WA < WB . Or λA = 0, λB >

0, V 0A < V B when WA < WB

4. Neither project gets a bonus, γ1 > 0, γ2 > 0

Both constraints are binding, so no bonus promised utility is provided in any situation.

Proposition 13 In the simultaneous contract, when the two projects have different invest-
ment costs, we can have project bonus for the more valued project when this project is the
one with greater investment cost.

Proof. We consider the case ΨA > ΨB. We need to check the incentive compatibility

constraints in this new situation:

if βπV
0
A − u(τ −ΨB) = βπV

0
B − u(τ −ΨA) both constraints bind simultaneously

if V
0
A > V

0
B −

∙
u(τ −ΨB)− u(τ −ΨA)

βπ

¸
ICA binds and ICB does not bind

if V
0
A < V

0
B −

∙
u(τ −ΨB)− u(τ −ΨA)

βπ

¸
ICB binds and ICA does not bind

Let

γ = −
∙
u(τ −ΨB)− u(τ −ΨA)

βπ

¸
We need again to consider the four possible cases:

1. Both projects get project bonus, neither V
0
A > V A and V

0
B > V B bind. We can mimic

the argument of the symmetric costs case and find that one of them needs to bind at

V sim.

2. γ1 = 0, γ2 > 0, V
0
A = V A, project A does not get project bonus.

We need to consider four cases:
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(i) λA = 0, λB > 0. Incentive compatibility for project B binds. This implies

(V A − V
0
B) < γ

and from the First Order Conditions we get

dC∗B(V
0
B)

dV 0B
<

dC∗A(V A)

dV A

If WA > WB, we have WB < WA < V A < V
0
B to satisfy both incentive compatibility

and promise keeping constraints. Positive bonus when less valued project is completed.

IfWA < WB, V A < V B. From convexity of the cost function with respect to the value

of the project already completed and First Order Conditions, we have that

dC∗B(V
0
B)

dV 0B
<

dC∗ab(V
0)

dV 0
<

dC∗A(V A)

dV A

<
dC∗B(V B)

dV B

what leads to a contradiction since it implies V
0
B < V B and that is not feasible.

(ii) λA > 0, λB = 0.Incentive compatibility for project A binds. This implies

(V A − V
0
B) > γ

From First Order Conditions, either

dC∗B(V
0
B)

dV 0B
>

dC∗A(V A)

dV A

or
dC∗B(V

0
B)

dV 0B
<

dC∗A(V A)

dV A

If WA < WB, we have V
0
B < V A < V B what is not feasible.

If WA > WB, we have bonus when less valued project is completed.

(iii) λA = 0, λB = 0. incentive compatibility A and incentive compatibility B may or

may not be binding. We go to points 1 and 2 depending on the situation.

(iv) λA > 0, λB > 0 If both incentive compatibility constraints are binding, we need

(V A − V B) = γ.

3. γ1 > 0, γ2 = 0, V
0
B = V B. Project B does not get project bonus.

We need to consider four cases:

(i) λA = 0, λB > 0. Incentive compatibility constraint for project B binds. This

implies

(V 0A − V B) < γ
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From First Order Conditions, either

dC∗B(V B)

dV B

<
dC∗A(V

0
A)

dV 0A
or

dC∗B(V B)

dV B

>
dC∗A(V

0
A)

dV 0A

If WA > WB, we have or V 0A < V B < V A, that is a contradiction. Or we have positive

bonus when the project more valued that requires a greater cost of investment is

completed.

If WA < WB, we have positive bonus when less valued project is completed.

(ii) λA > 0, λB = 0. Incentive compatibility constraint for project A binds. This

implies

(V 0A − V B) > γ

We have from First Order Conditions

dC∗B(V B)

dV B

>
dC∗A(V

0
A)

dV 0A

If WA > WB we have

dC∗A(V
0
A)

dV 0A
<

dC∗B(V B)

dV B

<
dC∗B(V A)

dV A

what leads to a contradiction.

If WA < WB we have positive bonus when less valued project is completed.

(iii) λA = 0, λB = 0. incentive compatibility A and incentive compatibility B may or

may not be binding. We will go to points 1 and 2 depending on the situation.

(iv) λA > 0, λB > 0. Both incentive compatibility constraints are binding. Depending

on the relative magnitude of the multipliers, we are in situation (1) or (2).

4. γ1 > 0, γ2 > 0, no bonus for any project.

Both constraints are binding, so no bonus promised utility is provided in any situation.

Proposition 14 In the simultaneous contract, when the projects have different probabilities
of success, we can have that the more valued project gets project bonus if this project is the
one with smaller probability of success.
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Proof. The First Order Conditions of the simultaneous principal’s problem when πA >

πB are

πB(1− πA)β

"
dC∗B(V

0
B)

dV 0B
− dC∗ab(V

0)

dV 0

#
= (1− β)λA − βλB + γ1

πA(1− πB)β

"
dC∗A(V

0
A)

dV 0A
− dC∗ab(V

0)

dV 0

#
= (1− β)λB − βλA + γ2

And from the incentive compatibility constraints we get

if πA(V
0
B − V 0A) = −(πA − πB)(V

0
A − V 0) both constraints bind simultaneously

if πA(V
0
B − V 0A) < −(πA − πB)(V

0
A − V 0) ICA binds and ICB does not bind

if πA(V
0
B − V 0A) > −(πA − πB)(V

0
A − V 0) ICB binds and ICA does not bind

We need to consider four cases:

1. Both projects get project bonus, neither V
0
A > V A and V

0
B > V B bind. We mimic the

argument of the symmetric probabilities case and find that one of them needs to bind

at V sim.

2. No bonus for project A. γ1 = 0, γ2 > 0, V
0
A = V A

We need to consider four cases:

(i) Incentive compatibility constrain for project B binds, λA = 0, λB > 0. This implies

πA(V
0
B − V A) > −(πA − πB)(V A − V 0)

and from First Order Conditions

dC∗B(V
0
B)

dV 0B
<

dC∗A(V A)

dV A

If WA > WB, we have positive bonus when less valued project is completed.

If WA < WB, V A < V B. To be feasible we need V A < V
0
B, and we give bonus to the

more valued project when it is the one with smaller success probability.

(ii) Incentive compatibility for project A binds, λA > 0, λB = 0. This implies

πA(V
0
B − V A) < −(πA − πB)(V A − V 0)

V 0B < V A
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From First Order Conditions, either

dC∗B(V
0
B)

dV 0B
>

dC∗A(V A)

dV A

or
dC∗B(V

0
B)

dV 0B
<

dC∗A(V A)

dV A

If WA < WB, we have V
0
B < V A < V B what is a contradiction.

If WA > WB, we have bonus when less valued project is completed.

(iii) λA = 0, λB = 0. incentive compatibility A and incentive compatibility B may or

may not be binding. We go to points 1 and 2 depending on the situation.

(iv) λA > 0, λB > 0 If both constraints are binding, we need (V A − V B) = γ.

3. No bonus for project B, γ1 > 0, γ2 = 0, V
0
B = V B

We need to consider four cases:

(i) Incentive compatibility for project B binds, λA = 0, λB > 0. This implies

πA(V B − V 0A) > −(πA − πB)(V
0
A − V 0)

From First Order Conditions, either

dC∗B(V B)

dV B

<
dC∗A(V

0
A)

dV 0A
or

dC∗B(V B)

dV B

>
dC∗A(V

0
A)

dV 0A

If WA > WB, we have or V 0A < V B < V A, that is a contradiction. Or we have project

bonus for the more valued project that has a smaller probability of success.

If WA < WB, we have positive bonus when less valued project is completed.

(ii) Incentive compatibility constraint for project A binds, λA > 0, λB = 0. This

implies

πA(V B − V 0A) < −(πA − πB)(V
0
A − V 0)

V B < V 0A

We have from First Order Conditions

dC∗B(V B)

dV B

>
dC∗A(V

0
A)

dV 0A

If WA > WB we have

dC∗A(V
0
A)

dV 0A
<

dC∗B(V B)

dV B

<
dC∗B(V A)

dV A
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what leads to a contradiction.

If WA < WB we have positive bonus when less valued project is completed.

(iii) λA = 0, λB = 0. incentive compatibility A and incentive compatibility B may or

may not be binding. We will go to points 1 and 2 depending on the situation.

(iv) λA > 0, λB > 0. Both constraints are binding. Depending on the relative magni-

tude of the multipliers, we are in situation (1) or (2).

4. γ1 > 0, γ2 > 0

Both constraints are binding, so no bonus promised utility is provided in any situation.

E Appendix: Cost comparison

Proposition 15 For technically symmetric projects (i.e.πA = πB,ΨA = ΨB), when trans-
fers of the cheapest sequential contract are such that simultaneous investment is feasible,
i.e. τ seq > ΨAB, simultaneous contract is cheaper.

Proof. Without loss of generality suppose WA 6WB. By Lemma 3 optimal sequential

contract starts with project B. Let (τ , V 0, V
0
B) be the cheapest (and by Proposition 2 station-

ary) sequential contract that provides utility V seq to the agent and is such that τ > ΨAB.

We want to compare it with the cheapest simultaneous contract for same promised utility

level V seq.

We define a simultaneous contract (τ̃ , Ṽ 0, Ṽ 0B, Ṽ
0
A) with τ̃ = τ , Ṽ 0 = V 0 and ṼB = V 0B that

provides the agent a utility V̄ > V seq. We set Ṽ 0A so that the contract (τ , V
0, V 0B, Ṽ

0
A) satisfies

promise keeping and incentive compatibility constraints of the simultaneous contract. Since

τ > ΨAB, this transfer is feasible in a simultaneous contract. From the promise keeping

constraint, we get that Ṽ 0A should satisfy

u(τ −ΨAB) + β
h
π2WAB + (1− π)2V 0 + π(1− π)Ṽ 0A + π(1− π)V 0B

i
= u(τ −Ψ) + β

h
πṼ 0B + (1− π)Ṽ 0t

i
[u(τ −Ψ)− u(τ −ΨAB)] = β

h
π2(WAB − V 0B) + π(1− π)(Ṽ 0A − Ṽ 0)

i
Ṽ 0A =

u(τ −Ψ)− u(τ −ΨAB)

βπ(1− π)
− π2(WAB − V 0B)− π(1− π)V 0

π(1− π)
(31)
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From the incentive compatibility constraint of the sequential contract we have that

u(τ −ΨAB) + β
£
π2WAB + (1− π)2V 0 + π(1− π)V A + π(1− π)V 0B

¤
(32)

6 u(τ −Ψ) + β
£
πV 0B + (1− π)V 0

¤
since sequential transfer is greater than cost of investment in both projects simultaneously

and the sequential contract aims to provide incentives to the agent to invest only on project

B, the first project in the sequence. Together (31) and (32) imply Ṽ 0A > V A.

The incentive compatibility constraints to satisfy are given by:

u(τ −Ψ) + β
h
πṼ 0A + (1− π)V 0

i
6

6 u(τ −ΨAB) + β
h
π2WAB + (1− π)2V 0 + π(1− π)Ṽ 0A + π(1− π)V 0B

i
(33)

u(τ −Ψ) + β
£
πV 0B + (1− π)V 0

¤
6

6 u(τ −ΨAB) + β
h
π2WAB + (1− π)2V 0 + π(1− π)Ṽ 0A + π(1− π)V 0B

i
(34)

u(τ) + βV 0 6

6 u(τ −ΨAB) + β
h
π2WAB + (1− π)2V 0 + π(1− π)Ṽ 0A + π(1− π)V 0B

i
(35)

Incentive compatibility (35) is satisfied by construction of the contract (τ , V 0, V 0B, Ṽ
0
A). In-

centive compatibility (34) is binding by construction of Ṽ 0A. For (33) to be satisfied, we need

to ensure that Ṽ 0A 6 V 0B. For this to hold we need

Ṽ 0A − VB =
[u(τ −Ψ)− u(τ −ΨAB)]

βπ(1− π)
− πWAB

(1− π)
+ V 0 − V

0
B

(1− π)

=
[u(τ −Ψ)− u(τ −ΨAB)]− βπ2

³
WAB − V

0
B

´
− βπ(1− π) [V 0B − V 0]

βπ(1− π)

=
[u(τ −Ψ)− u(τ −ΨAB)]− βπ

h
π
³
WAB − V

0
B

´
+ (1− π) [V 0A − V 0]− (1− π)

h
Ṽ 0A − VB

ii
βπ(1− π)

and by (34)we have that h
Ṽ 0A − VB

i
(1 + βπ(1− π))

=
[u(τ −Ψ)− u(τ −ΨAB)]− βπ

h
π
³
WAB − V

0
B

´
+ (1− π) [V 0A − V 0]

i
βπ(1− π)

= 0

what implies Ṽ 0A = V 0B and (33) also binds.

Let C∗B_A(V
seq) and C∗ab(V

seq) be the minimum cost to provide the agent utility V seq

in a sequential and simultaneous contract respectively, and let Cab(V̄ ) be the cost of the
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simultaneous contract (τ , V 0, V 0B, Ṽ
0
A) that provides the agent a utility V̄ > V seq. By Propo-

sition 2 the optimal sequential contract is stationary, so V 0 = V seq. The difference in cost

of each timing structure is given by

C∗B_A(V
seq)− C∗ab(V

seq) > C∗B_A(V
seq)− Cab(V

seq)

> C∗B_A(V
seq)−Cab(V̄ ) = βπC∗B(V

0
B) + β(1− π)C∗B_A(V

0) (36)

−β
h
π(1− π)C∗B(V

0
B) + π(1− π)C∗A(Ṽ

0
A) + (1− π)2Cab(V

0)
i

= β(1− π)
h
C∗B_A(V

0)− Cab(V
0)
i
+ βπ2C∗B(V

0
B) + βπ(1− π)

h
C∗ab(V

0)− C∗A(Ṽ
0
A)
i

(37)

Rearranging terms, we obtain

(1− β(1− π))
h
C∗B_A(V

0)− C∗ab(V
0)
i
> β

h
π2C∗B(Ṽ

0t
B ) + π(1− π)

h
C∗ab(V

0s)− C∗A(Ṽ
0
A)
ii
(38)

Since WA 6 WB and Ṽ 0A = V 0B, by (??) and (??) we have that C
∗
B(Ṽ

0t
B ) 6 C∗A(V

0t
A ). Using

this, (38) becomes

πC∗B(V
0
B) + (1− π)

h
Cab(V

0)− C∗A(Ṽ
0
A)
i

>
τ + π(1− π)

h
C∗A(Ṽ

0
A) + C∗B(V

0
B)
i

1− β(1− π)
+ (2π − 1)C∗B(V 0B)

=
Φ(π)C∗B(V

0
B) + τ

1− β(1− π)
> 0

since

Φ(π) = −1 + 2π(2− π)− (2πβ − 1)(1− π)2 > 0 for all π ∈ [0, 1]

what implies

C∗B_A(V
seq) > C∗ab(V

seq)

hence a sequential contract is more expensive than the simultaneous one.


