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Abstract 

 

Expert opinion is an opinion given by an expert, and it can have significant value in 

forecasting key policy variables in economics and finance. Expert forecasts can either be 

expert opinions, or forecasts based on an econometric model.  An expert forecast that is 

based on an econometric model is replicable, and can be defined as a replicable expert 

forecast (REF), whereas an expert opinion that is not based on an econometric model can 

be defined as a non-replicable expert forecast (Non-REF). Both replicable and non-

replicable expert forecasts may be made available by an expert regarding a policy 

variable of interest. In this paper we develop a model to generate replicable expert 

forecasts, and compare REF with Non-REF. A method is presented to compare REF and 

Non-REF using efficient estimation methods, and a direct test of expertise on expert 

opinion is given. The latter serves the purpose of investigating whether expert adjustment 

improves the model-based forecasts. Illustrations for forecasting pharmaceutical SKUs, 

where the econometric model is of (variations of) the ARIMA type, show the relevance 

of the new methodology proposed in the paper. In particular, experts possess significant 

expertise, and expert forecasts are significant in explaining actual sales. 

 

Key words:  Direct test, efficient estimation, expert opinion, replicable expert forecasts, 

generated regressors, non-replicable expert forecasts.  
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“There are as many opinions as there are experts.” 

Franklin D. Roosevelt, 32nd U.S. President (1933-1945) 

 

 

 

1. Introduction 

 

Econometric models are useful for forecasting key policy variables in economics and 

business. Sometimes the outcomes of these models are adjusted by experts, and there are 

many reasons why an expert could do so (see, for example, Goodwin (2000) for a useful 

summary). Expert adjustments to model-based forecasts occur in economics (see, for 

example, Franses, Kranendonk and Lanser (2007) and Romer and Romer (2008)), and in 

business (see Bunn and Salo (1996), and Franses and Legerstee (2009) for an extensive 

empirical survey). Interestingly, the inclination of experts to adjust model-based forecasts 

is independent of the size of the econometric model (see Franses (2008)). Indeed, 

forecasts from both large scale macro-econometric models and from small scale ARIMA 

models might be adjusted by an expert.  

In this paper we examine to what extent we can capture expert adjustment in an 

econometric modelling framework, with the ultimate purpose of investigating whether 

expert adjustment improves the model-based forecasts. For this purpose, we need some 

definitions in order to be perfectly clear where we are heading. As is well known, a 

forecast is an inference about an event that was not observed at the time of the inference. 

Forecasts generated from econometric models are replicable, and this feature will become 

transparent below.  

 Expert opinions are opinions given by experts, and much has been made of the 

value of expert opinions, especially in regard to their potential value in forecasting key 

policy variables in economics and finance. However, expert forecasts that are replicable 

need to be distinguished from expert opinions that are not. Expert forecasts that are 

replicable are forecasts made by an expert, or by others using the same information that is 

available to the expert, using an appropriate econometric model. In contrast, expert 

opinions are non-replicable forecasts provided by experts relating to a policy variable of 



 4

interest. Although expert opinions may be expressed as quantitative measures, they 

inherently contain a qualitative (or latent) component, namely expertise, and hence also 

contain measurement error. 

 

The preceding discussion leads to the following three definitions: 

  

Definition 1: Expertise is latent. 

 

Definition 2: Expert forecasts from an econometric model are replicable expert forecasts 

(REF).  

 

Definition 3: Expert opinions are non-replicable expert forecasts (Non-REF) 

  

Although expertise is unobserved, it can be estimated using an appropriate econometric 

model. 

 The primary purpose of the paper is to develop an econometric model to generate 

replicable expert forecasts, and to compare REF with Non-REF. A method is presented to 

compare REF and Non-REF using efficient estimation methods, and a direct test of 

expert opinion is given. 

 The plan of the remainder of the paper is as follows. Section 2 presents the 

econometric model specification, compares replicable and non-replicable expert forecasts, 

considers optimal forecasts and efficient estimation methods, and presents a direct test of 

expertise on expert opinion. Some relevant empirical examples are presented in Section 3. 

Concluding comments are given in Section 4. 

 

 

2. Model Specification 

 

In this section, we develop an econometric model to generate replicable expert forecasts, 

and to enable a comparison to be made with non-replicable expert forecasts. 

 



 5

2.1 Econometric Model 

 

Let the econometric model be given as 

 

),0(~, 2
11111 IuuXy σβ += ,      (1) 

 

where y is a (T x 1) vector of the dependent variable, X1 is a (T x k1) matrix of 

explanatory variables, where the first column corresponds to the intercept term, and u1 is 

a (T x 1) vector of errors. The y vector and X1 matrix are observed, and MIX 11 −⊂ , where 
MI 1−  is the information set of the econometric modeller at time t-1 (t = 2,..,T).  

 It is assumed that the econometric model is appropriately specified, that is, the 

model passes relevant diagnostic checks, MI 1−  contains publicly known information and 

E( '1X u1) = 0.  Under these conditions, OLS in (1) is consistent and efficient, and hence is 

optimal in estimation. Moreover,  

 

yPyXXXXXy 11
1

111111 ')'(ˆˆ === −β ,     (2) 

 

where 1P  = ')'( 1
1

111 XXXX −  is the standard ‘hat’ matrix. 

 If the model is correctly specified, under the assumption of mean squared error 

(MSE) loss, the optimal forecast of y, given the information set MI 1− , is its conditional 

expectation (see Patton and Timmermann (2007a, 2007b)). 

 

2.2 Replicable and Non-replicable Expert Forecasts 

 

The fitted values (or in-sample model-based “forecasts”) of y from (2) are made available 

to an expert, who is expected to improve on the forecast of y through adding information 

to 1ŷ . The expertise possessed by the expert is latent as it is not publicly available, and 
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may not even be quantifiable to the expert. Expertise is, in effect, a trade secret3, which 

may be known only to the expert. If expertise can be estimated through an appropriate 

econometric model, the public would be able to replicate expertise if they were to have 

access to the expert’s information set.  

 Therefore, an important issue to be addressed is whether an expert forecast can be 

replicated. Let a (T x 1) vector X2 represent observable expert opinion, as announced by 

an expert. The connection between the observed expert opinion and latent expertise is 

given as 

 

),0(~, 2*
22 IXX ησηη+= ,      (3) 

 

where X2, *
2X  and η  are (T x 1) vectors, X2  denotes expert opinion, *

2X  represents latent 

expertise, η  is the measurement error, and *
2X  and η  are assumed to be uncorrelated.  

 Let the observed expert opinion be given as 

 

),0(~, 2
2 IWX ησηηδ += ,      (4) 

 

where the (T x k2) matrix W is in the information set available to the expert at time t-1, 

and the first column of W is the unit vector. It is assumed that E(W’η ) = 0, δ  is a (k2 x 1) 

vector of constant parameters, and that  

 

 EIWyW 111 },ˆ{ −⊂= , 

   

which is the information set of the expert at time t-1, W1 is (T x (k2-1)), and 1ŷ  is 

available to the expert in providing an expert opinion, X2.  

 

                                                 
3 A trade secret is defined under the Uniform Trade Secrets Act of 1985 as “information that derives 
independent economic value, actual or potential, from not being generally known, and not being readily 
ascertainable by proper means, by any other person, and is the subject of efforts that are reasonable under 
the circumstances to maintain its secrecy” (see Hoti, McAleer and Slottje (2006) for further details).  
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Even though the econometric model in (1) may be well specified, the expert may 

believe that an expert model is superior as it incorporates expertise. Hence, if the model 

in (4) is correctly specified, under the assumption of MSE loss, the optimal replicable 

expert forecast of y, given the information set EI 1− , is its conditional expectation, so that 

the expert forecast is still optimal. OLS is consistent and efficient, and hence is optimal in 

estimation. 

 However, if the expert does not have an appropriate econometric model in 

forming expert opinion, the resulting non-replicable expert forecast will not be optimal 

assuming a MSE loss function. 

 It follows from (4) and EI 1−  that  

 

δWXIX E =≡Ε −
*
212 )|( ,       (5) 

 

so that W  also denotes expertise as *
2X  is a linear combination of the columns of W . The 

rational expectations estimate of )|( 12
EIX −Ε , which is a replicable expert forecast, is 

given as  

 

22
1

2
*
2 ')'(ˆˆˆ XPXWWWWWXX W==== −δ ,      (6) 

 

so that the estimate of the latent expertise, *
2X , is equivalent to the estimate of the 

observable expert opinion, X2.  

 

Remark 1: The information set of the expert, W, includes 1ŷ  but does not necessarily 

include 1X . 

 

Remark 2: A replicable expert forecast can be consistently estimated as  

 

 22
*
2

ˆˆ XXPX W == . 
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Remark 3: Expertise differs from expert opinion as η=− *
22 XX , and the difference can 

be estimated as *
22 X̂X −  = 22 X̂X − , namely the difference between Non-REF and REF, 

or the sample measurement error. 

 

The expert’s econometric model for forecasting y is given by 

 

),0(~,ˆ 2
222

*
2210 IuuXyy σβδ ++= ,     (7) 

  

where β2 is a scalar parameter. As *
2X  is latent and hence unobservable, an observable, 

and thereby estimable, version of (7) is given as 

 

 ,ˆˆ 2210 εβδ ++= Xyy        (8) 

 

where 

 

 

.
))((

)(
)(

22

22

222

2
*
222

ηβ
ηδδβ

δβ
βε

W

W

W

Pu
WPWu
XPWu

XXu

−=
+−+=

−+=
−+=
)

      (9) 

   

Remark 4: Under the null hypothesis that β2 = 0 in (7), it follows that ε = u2 in (9).  

 

Remark 5: Although 1ŷ  is not correlated with ε in (9), the correlation between 2X̂  and ε 

is given by )( 2
2

2 kT −− ησβ . However, OLS estimation of the parameters in (8) is 

consistent as 2X̂  is asymptotically uncorrelated with ε. 

 

Remark 6: The null hypothesis δ0 = 0 in (8) is a test of whether the expert should use the 

model forecasts, 1ŷ , as a complement to replicable expert forecasts, as given in 2X̂ . 
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Definition 4: The expert’s forecast of y  from (8) is given by 

 

 2210
ˆˆˆˆˆ XyyE βδ += .        (10) 

 

Under a MSE loss function, the forecast given in (10) is optimal relative to the 

expert’s information set EI 1− . 

 

If 1u  in (1), u2 in (7), and η  in (3) are mutually and serially uncorrelated, then 

 
2
222 )'()'()'( βηηεε WW PPuu Ε+Ε=Ε , 

 

and hence 

 

 WPI 22
2

2
2 ηε σβσ +=Σ .        (11) 

 

Remark 7: Serial correlation and heteroskedasticity are generated in (11) through the 

measurement error, η , in 2X   in (3). 

 

Remark 8: If the null hypothesis in (8) is β2 = 0, then I2
2σε =Σ  in (11). 

 

Remark 9: Equations (7) and (8) can be interpreted as comprehensive approaches to 

testing non-nested hypotheses, namely the model-based forecast, 1ŷ , versus expertise, as 

captured in the latent variable, *
2X , and observable variable, 2X̂ , respectively (for further 

details see, for example, McAleer (1995)). 

 

2.3 Efficient Estimation  

 

In order to derive the conditions under which OLS estimation of the parameters in (8) is 

efficient, we appeal to Kruskal’s Theorem, which is necessary and sufficient for OLS to 
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be efficient (see Fiebig et al. (1992) and McAleer (1992) for further details). Kruskal’s 

Theorem states that OLS is efficient for ),( 20 βδ  if and only if: 

 

 ,ˆˆ)( 111 Ayyi =Σε  for some A1, 

 222
ˆˆ)( AXXii =Σε ,  for some A2.  

 

where A1 and A2 can be matrices or scalars. The Gauss-Markov Theorem is a special case 

of Kruskal’s Theorem, and hence is sufficient for OLS to be efficient. 

 In the context of OLS estimation of (8), the necessary and sufficient conditions 

for OLS to be efficient are given as follows: 

 

Proposition 1: OLS in (8) is efficient if and only if conditions (i) and (ii) hold 

simultaneously. 

 

Proof:  

 

.,)(

;,)(

)(ˆ)(

111
2
21

111
22

2
2
21

1
22

2
2
21

WXifyAPyP

WXifyAPyP

yPPIyi W

⊥==

⊂=+=

+=Σ

σ

σβσ

σβσ

η

ηε

  

 

.ˆ
)(

)(ˆ)(

22

22
2

2
22

2
22

2
2
22

AX

XP

XPPIXii

W

WW

=

+=

+=Σ

η

ηε

σβσ

σβσ

 

 

The necessary and sufficient conditions (i) and (ii) are satisfied either if 

WX ⊂1 or if WX ⊥1  (see Pagan (1984) for the case of generated regressors, and 

McAleer and McKenzie (1991) for a simple proof of efficiency of related two-step 

estimators). 
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Remark 10: It is likely that WX ⊂1  will hold as 111
ˆˆ βXy =  ,W⊂  whereas 

orthogonality between 1X  and W  (that is, WX ⊥1 ) is not possible by virtue of Wy ⊂1ˆ . 

 

Let X3 = [ 1ŷ : 2X
)

] in (8) be a (T x 2) matrix, and let β3 = ),( 20 βδ  be a (2 x 1) 

vector, so that (8) can be written as 

 

εβ += 33Xy .         (12) 

 

Regarding inference, the OLS covariance matrix for (12) is given by 

 
1

3333
1

33,3 )'(')'()ˆvar( −− Σ= XXXXXXOLS εβ .    (13) 

 

Substituting for εΣ from (11) in (13) gives 

 
1

3333
1

33
22

2
1

33
2
2,3 )'(')'()'()ˆvar( −−− += XXXPXXXXX WOLS ησβσβ .  (14) 

 

Remark 11: If the incorrect downward biased OLS standard errors are used, namely 

from 1
33

2
2 )'( −XXσ , then the t-ratios for OLS,3β̂  will be biased upward (a similar result was 

given in Pagan (1984) for generated regressors; see also Oxley and McAleer (1993)).  

 

Remark 12: The covariance matrix in (14) may be estimated consistently using the 

Newey-West HAC standard errors. In practice, the HAC standard errors may not be 

accurate in the context of generated regressors, so that (14) should be calculated for 

purposes of testing hypotheses and constructing confidence intervals (see Smith and 

McAleer (1994) for further details). 
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2.4 A Direct Test of Expertise on Expert Opinion 

 

The analysis presented above relates to generating a replicable expert forecast, and a test 

of the significance of the REF, in explaining y. Expert opinion, as manifested in X2, can 

be tested separately by substituting from (3) into (1) to give 

 

)(ˆ 222210 ηββδ −++= uXyy .      (15) 

 

OLS will be inconsistent in (15) as X2 is correlated with η  through (3). Therefore, IV 

should be used whenever expert opinion is used to forecast the variable of interest. In 

empirical practice, OLS rather than IV is typically used, incorrectly, to estimate the 

parameters in (15). Moreover, under a MSE loss function, the forecast of y  in (15) is not 

optimal relative to the information set ( 21 ,ˆ Xy ). 

 The effect of expertise on expert opinion can be tested directly by testing 

appropriate hypotheses in (4), which may be rewritten as  

 

 ),0(~,ˆ 2
11102 IWyWX ησηηδδηδ ++=+= .    (16) 

 

OLS is efficient for δ0 and δ1 in (16), and various null hypotheses, such as 
 
 

*
000 : δδ =H , 

 

can be tested directly. Interesting values of *
0δ  would be 0, 1 or ½. In conjunction with a 

scalar value of 1δ  = ½ when 1W  is a (T x 1) vector, =0δ  ½ in (16) yields the 50:50 

“model versus expert” decision rule (see Blattberg and Hoch (1990)). 

 

Under a MSE loss function, the forecast of 2X  in (16) is optimal relative to the 

expert’s information set EI 1− . 
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A direct test of expertise, namely whether the expert adds any additional information to 

1ŷ  in formulating expert opinion, X2, is given by 

 

 0: 10 =δH .         (17) 

  

If the null hypothesis in (17) is not rejected, expertise does not add significantly to 1ŷ  in 

determining expert opinion, regardless of the value of δ0. 

 

Remark 13: The auxiliary regression equation used in Blattberg and Hoch (1990), 

namely to correlate expert opinion and model-based econometric forecasts, can be written 

as4  

 

vyX ++= 102 ˆδδ .    .    (18) 

 

In comparison with (16), it is clear that OLS applied to (18) omits 1W , which 

denotes expertise in the information set of the expert. As it is highly likely that 1W  and 1ŷ  

are correlated, OLS will be inconsistent and inferences will be invalid. 

 

For (16) and (18) to be equivalent, it follows that: 

 

ηδν += 11W ,         (19) 

 

in which case expertise cannot be tested in (18) as it is not included in the specification. It 

is also quite likely that v  in (18) will be serially correlated, especially if the missing 1W  

contains lagged values of variables (see Franses and Legerstee (2009) for empirical 

evidence of such serial correlation). Therefore, inferences based on (18) will be biased 

                                                 
4 The appropriate regression in Blattberg and Hoch (1990) is given as vyyX ++=+ 1

*
012 ˆˆ δδ , which 

can be rewritten as (18), where .1*
00 −= δδ  
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and invalid. Moreover, under a MSE loss function, the forecasts from (18) will not be 

optimal. 

 

 

3. Empirical Example 

 

The estimation, testing and forecasting methods described above are illustrated in this 

section using data for three experts who provide their expert forecasts, 2X , after they 

have been given the model forecasts, 1ŷ . The three experts are employed by a 

Netherlands-based pharmaceutical company, and are based in The Netherlands, Germany 

and Sweden. They are responsible for the supply chain management in local offices, and 

hence need to have accurate forecasts for monthly sales of various products. The 

company offers products within seven distinct categories, and each expert is responsible 

for the products within a single category. Each month the Headquarters of the company 

deliver the one-step-ahead model forecasts, and the experts are permitted to provide 

different quotes. The company uses an automated program that creates model-based 

forecasts, where the forecasting scheme can be based on ARIMA models, exponential 

smoothing, Holt-Winters techniques, and several other standard forecasting methods. The 

input variables of the models are lagged sales only. Each month, the program estimates a 

range of models, and selects the model with the best in-sample forecasting performance. 

Hence, parameter estimates are updated each month. The experts are aware of how the 

company creates their forecasts, so that the model forecasts are contained in their 

respective information sets. 

The sample is from October 2004 to October 2006. The three experts in our 

sample are responsible for a different number of products, specifically, 9, 32 and 8 for 

The Netherlands, Germany and Sweden, respectively. The numbers of observations range 

from 210 for The Netherlands and Sweden, and 800 for Germany. We have data on 

actual sales, y , on the model forecast 1ŷ , and the expert forecast 2X . In expertise, 1W , 

we include 2−ty  (as this is known to the expert at the time when a forecast is made for 

time t), 22,2 −− − tt yX , 22,1ˆ −− − tt yy , and 1,11,2 ˆ −− − tt yX .  
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Table 1 provides a comparison of the model forecasts and expert forecasts in 

terms of median squared prediction error. It is clear that the three experts provide far 

superior forecasts than the model used by Headquarters. In this sense, the experts seem to 

know what they are doing. 

The results for regression equations (4) and (18), namely the separate effects of 

the model forecast and expertise on expert opinion, are reported in Table 2. The estimates 

for equation (18) are biased and inconsistent, and inferences are invalid, because of the 

omitted variables bias. For all three experts, it would appear that the effect of the model 

forecast is extremely close to unity in the absence of expertise (equation (18)), but 

decreases considerably when expertise is included (equation (4)). Moreover, the F test of 

excluding expertise rejects the null hypothesis for all three experts. In short, expertise 

matters. 

Estimates of the model forecast, 1ŷ , and replicable expert forecast, 2X̂ , in 

predicting the actual values of y are given in Table 3. OLS is efficient, according to the 

information sets, but the standard errors need to be corrected using the Newey-West HAC 

formula. The inferences are not qualitatively affected, whether the incorrect OLS or HAC 

standard errors are used. For Expert 1, the expert forecast dominates the model forecast, 

which is not significant, whereas for Experts 2 and 3, both the model and replicable 

expert forecasts are significant. However, in each of the latter two cases, the replicable 

expert forecast dominates the model forecast. 

Table 4 reports the estimates of the model forecast, 1ŷ , and expert opinion (or 

non-replicable expert forecast), 2X , in predicting the actual values of y . As the expert 

opinion is correlated with the equation error, OLS is inconsistent and GMM is used to 

provide consistent estimates. The instrument list uses two-period lagged sales, the model 

forecast error two periods lagged, expert forecast error two periods lagged, and expert 

adjustment of the model forecast one period lagged. The results are broadly consistent 

with the estimates presented in Table 3. For Experts 1 and 3, GMM has the effect of 

increasing the influence of the expert opinion in predicting actual sales, whereas for 

expert 2 it is the reverse. In summary, both model forecasts and expert opinions are 

important in predicting sales. 
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4. Conclusion 

 

Expert opinion is an opinion given by an expert, and hence can have significant value in 

forecasting key policy variables in economics and finance. Expert forecasts can either be 

expert opinions, or forecasts based on an econometric model.  An expert forecast that is 

based on an econometric model is replicable, and can be defined as a replicable expert 

forecast (REF), whereas an expert opinion that is not based on an econometric model can 

be defined as a non-replicable expert forecast (Non-REF). Both replicable and non-

replicable expert forecasts may be made available by an expert regarding a policy 

variable of interest.  

 In this paper we developed a model to generate replicable expert forecasts, and 

compared REF with Non-REF. A method was presented to compare REF and Non-REF 

using efficient estimation methods, and a direct test of expertise on expert opinion was 

given. Illustrations for forecasting pharmaceutical SKUs, where the econometric model is 

of the ARIMA type, highlighted the ease of implementation of the estimation and testing 

procedures developed in the paper, and showed the relevance of the new methodology. In 

particular, experts were found to possess significant expertise, and expert forecasts were 

significant in explaining actual sales.  

 We foresee two areas for further research. The first is to allow the contribution of 

the expert to change over time, making some of the parameters time-varying. A second 

issue concerns an investigation into which aspects of an expert make them a good 

forecaster. Is it experience, or is it moderate behaviour (meaning little adjustment, only 

when it matters)?     
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Table 1 
 

A Comparison of Model Forecasts and Expert Forecasts 
 
 
      Median Squared Prediction Errors 
 
 Country-Category   Model    Expert 
 
 
 
 Expert 1    203,855  28,731    
 
 Expert 2    197,136  166,464 
 

Expert 3    17,031   15,751 
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Table 2 
 

Testing the Effect of Expertise on Expert Opinion 
(Standard errors are in parentheses) 

 
 
    Expert 1  Expert 2  Expert 3 
    ________  ____________ __________ 
 
Included variables  (4) (18)  (4) (18)  (4) (18) 
 
 
Intercept   -22.34 95.56  -26.43 207.7  42.08 119.3* 

    (77.59) (128.5)  (59.46) (90.04)  (39.88) (49.47) 
 
Model Forecast (t)  0.09 0.97**  0.24** 1.01**  0.30** 0.96** 

    (0.05) (0.01)  (0.03) (0.00)  (0.10) (0.01) 
  
Sales (t-2)    0.91**

   0.78**   0.67** 

    (0.05)   (0.03)   (0.10) 
 
Model Forecast  0.19**   0.16**   0.47** 

-Sales (t-2)   (0.03)   (0.03)   0.06 
 
Expert forecast  0.59**   0.46**   0.26** 

-Sales (t-2)   (0.05)   (0.03)   (0.07) 
 
Expert Forecast  -0.07   0.17**   0.25** 

        -Model Forecast (t-1)  (0.04)   (0.03)   (0.06) 
   
  
R2    1.00 0.98  0.99 0.98  0.98 0.95 
 
F test    145.0**   292.5**   76.45**  

  
 
Notes: The regression model (18) correlates the expert opinion, X2 , and model forecast, 1ŷ , in 
 
 ,ˆ1002 vybaX ++=  
 
but omits the effect of expertise on expert opinion. Expertise in (4) is approximated by two-period 
lagged sales, the model forecast error two periods lagged, expert forecast error two periods lagged, 
and expert adjustment of the model forecast one period lagged. * and ** denote significance at the 
5% and 1% levels, respectively. The F test is a test of the omitted expertise variables. 
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Table 3 
 

Model and Replicable Expert Forecasts in Predicting Actual Values 
(Standard errors are in parentheses) 

 
 
Estimation method Intercept Model Forecast 1ŷ  Expert Forecast 2X    R2 
 
 

Expert 1 
 
OLS   159.92   -0.05   1.03**  0.98  
   (176.54)  (0.09)   (0.09) 
  
HAC   [138.05]  [0.19]   [0.21]    
 
 

Expert 2 
 
OLS   21.10   0.42**   0.51**  0.96  
   (111.7)   (0.06)   (0.05) 
 
HAC   [122.3]   [0.16]   [0.14] 
 
 

Expert 3 
 
OLS   -82.94**  0.30**    0.66**  0.99  
   (30.78)   (0.05)   (0.05) 
 
HAC   [24.18]   [0.07]   [0.07] 

 
 
 
Notes: The regression model is  
 
 eXcybay +++= 21

ˆˆ . 
  
*

 and ** denote significance at the 5% and 1% levels, respectively. The Newey-West HAC 
standard errors are given in brackets. 
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Table 4 
 

Model and Expert Forecasts in Predicting Actual Values 
(Standard errors are in parentheses) 

 
 
Estimation method Intercept Model Forecast 1ŷ  Expert Forecast 2X   R2 

 
 
 

Expert 1 
 
OLS   104.9   0.07   0.92**  0.97 
   (177.0)   (0.08)   (0.08) 
 
GMM   150.2   -0.18   1.15**  0.97 
   (102.0)   (0.28)   (0.30) 
 
 

Expert 2 
 
OLS   22.92   0.37**   0.56**  0.96 
   (101.1)   (0.04)   (0.04) 
 
GMM   21.41   0.68**   0.26  0.96 
   (95.08)   (0.18)   (0.17) 
 
 

Expert 3 
 
OLS   -9.28   0.52**   0.43**  0.97  
   (43.63)   (0.06)   (0.06) 
 
GMM   -95.20**  0.31**   0.65**  0.98 
   (31.28)   (0.08)   (0.08) 
 
 
Notes: The regression model is  
 
 eXyy +++= 2210 ˆ βδϕ . 
 
The instrument list uses two-period lagged sales, the model forecast error two periods 
lagged, expert forecast error two periods lagged, and expert adjustment of the model 
forecast one period lagged.  
*

 and ** denote significance at the 5% and 1% levels, respectively. 
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