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Abstract

It is now recognised that long memory and structural change can be
confused because the statistical properties of times series of lengths typical
of financial and econometric series are similar for both models. We pro-
pose a new set of methods aimed at distinguishing between long memory
and structural change. The approach, which utilises the computational
efficient methods based upon Atheoretical Regression Trees (ART), es-
tablishes through simulation the bivariate distribution of the fractional
integration parameter, d, with regime length for simulated fractionally in-
tegrated series. This bivariate distribution is then compared with the data
for the time series. We also combine ART with the established goodness
of fit test for long memory series due to Beran. We apply these methods
to the realized volatility series of 16 stocks in the Dow Jones Industrial
Average. We show that in these series the value of the fractional integra-
tion parameter is not constant with time. The mathematical consequence
of this is that the definition of H self-similarity is violated. We present
evidence that these series have structural breaks.
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1 Introduction

Long memory and fractionally integrated processes were introduced to the phys-
ical sciences by, amongst others, Hurst (1951, 1957), and into the econometrics
literature by Granger and Joyeux (1980). A major problem that arises, however,
is that long memory and structural change are easily confused. As Sibbertsen
(2004) states, it is often the case that structural break detection and location
techniques report breaks when only long memory is present; similarly, long
memory measurement techniques often report long memory when only struc-
tural breaks are present even when the series are Markovian.

Section 3.6 of Banerjee and Urga (2005) Overview to the Journal of Econo-
metrics, special issue on Structural breaks, long memory and stock market
volatility, notes the potential confusion of ‘stochastic regime switching and long
memory’ and cites a sample of the empirical literature in this area (Baum et al.
(1999), Bos et al. (1999), and Hyung and Franses (2001, 2002)). However,
the Diebold and Inoue (2001) conclusion that “. . . it would be näıve to jump
to the conclusion that structural change produces spurious inferences of long
memory - even if the ‘truth’ is structural change, long memory might be a ‘con-
venient shorthand and be very useful for prediction . . . ‘structural change’ and
‘long memory’ are effectively different labels for the same phenomenon, in which
case attempts to label one as ‘true’ and the other as ‘spurious’ may be of du-
bious value”, seems to have led most researchers to ignore the issue of ‘model
confusion’. In effect Diebold and Inoue (2001) seem to propose, ‘it doesn’t re-
ally matter what you call it.’ Unlike the literature on unit roots v. structural
change, where it has been shown that persistence tests are severely compro-
mised when the time series are characterized by breaks, to date, it has simply
been too difficult to distinguish between long memory and structural change.
There exist econometric examples which highlight long memory v. structural
breaks, for example Smith (2005) and Ohanissian et al. (2008), but the over-
whelming impression one gets from the literature is that ‘financial data exhibit
long memory with a d (around) 0.4’ and if this is ‘spurious’ it doesn’t much
matter.

The starting point of this paper is to argue that it does matter what you
call it, especially if you are trying to model the pricing of financial assets for
example, options and derivatives. The implications of assuming long range
dependency and persistence versus short memory will have significant effects on
the theoretical underpinnings of the markets where, empirically, long memory
‘appears’ to be most prevalent, financial markets. Secondly, we propose a fast
method to identify breaks and to ascertain whether they are spurious - the
practical problems of labeling the underlying process can now be ascertained.

The remainder of the paper is organized as follows. In Section (2) the
properties of two models commonly applied across long memory series; i) frac-
tional Gaussian noise and fractionally integrated series and ii) constrained non-
stationary series are presented. Section (3) outlines the empirical problem. In
Section (4) the issue of why it matters whether we have ‘structural change’ or
‘long memory’ is presented using both statistical and finance theory arguments.
Section (5) presents a method and related techniques that can i) quickly lo-
cate potential breaks in a series and ii) test whether breaks so identified are
spurious. The fast technique proposed here uses Atheoretical Regression Trees
(ART) developed by Cappelli et al. (2008). Section (6) describes the data. Sec-
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tion (7) presents some empirical examples using these methods by applying it to
a dataset of realized volatilities and returns of 16 Dow Jones Industrial Average
index stocks. Section (8) contains the discussion, and Section (9) gives final
concluding remarks. A concise discussion of ART is given in Appendix (A).

2 Models

A number of models have been proposed to account for the extraordinary per-
sistence of the correlations across time found in long memory series. Some
have enjoyed considerable success in specific fields such as the Granger (1980)
aggregation model in econometrics.

There are two common sets of models applied across long-memory series from
diverse fields. One set are true long memory models, in particular, the Frac-
tional Gaussian Noises (FGN) and Fractionally Integrated (FI(d)) processes.
The other set are models which are non-stationary, but mean reverting. For
simplicity the types of non-stationary models studied are ones in which the
time series can be broken in a series of “regimes” within which it is a reasonable
assumption that the mean is stationary. Two examples are structural break and
Markov switching models.

2.1 Fractional Gaussian Noises and Fractionally Integrated

Series

Fractional Gaussian Noises (FGNs) were introduced into applied statistics by
Mandelbrot and van Ness (1968) and are the stationary increments of an Gaus-
sian H-self-similar stochastic process.

Definition 1 A real-valued stochastic process {Z(t)}t∈R is self-similar with
index H > 0 if, for any a > 0,

{Z(at)}t∈R =d {aHZ(t)}t∈R

where R denotes the real numbers and =d denotes equality of the finite
dimensional distributions. H is also known as the Hurst parameter.

Definition 2 A real-valued process Z = {Z(t)}t∈R has stationary increments
if, for all h ∈ R

{Z(t + h) − Z(h)}t∈R =d {Z(t) − Z(0)}t∈R.

It follows from Definition 1 that H is constant for all subseries of an H-self-
similar process.

FGNs are a continuous time process. Independently Granger and Joyeux
(1980) and Hosking (1981) obtained the discrete time counter-parts to FGNs,
the Fractionally Integrated processes (FI(d)).

FI(d)s are also a generalization of the “integration” part of the Box-Jenkins
ARIMA (p,d,q) (AutoRegressive Integrated Moving Average) models to non-
integer values of the integration parameter, d. Denoting the backshift operator
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by B, the operator (1 − B)d can be expanded as a Maclaurin series into an
infinite order AR representation

(1 − B)dXt =

∞∑

k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Xt−k = ǫt (1)

where Γ(·) is the gamma function, and ǫt is an shock term drawn from an
N(0, σ2) distribution. The operator in Equation (1) can also be inverted and
written in an infinite order MA representation. The two parameters H and d
are related by the simple formula d = H − 1/2.

ARIMA models with non-integer d are known as AutoRegressive Fractionally
Integrated Moving Average (ARFIMA) models. The AR(p) and MA(q) param-
eters in ARFIMA models may be used to model any additional short-range
dependence present in the series. Both FGNs and FI(d)s have been extensively
studied. See the volumes by Beran (1994), Embrechts and Maejima (2002), and
Palma (2007) and the collections of Doukhan et al. (2003) and Robinson (2003)
and the references therein.

2.2 Constrained Non-Stationary Models

Klemes (1974) argued that long memory in hydrological time series was a sta-
tistical artifact caused by analysing non-stationarity time series with statistical
tools which assume stationarity. Often series which display the long memory
property are constrained for physical reasons to lie in a bounded range. But
beyond that we have no reason to believe that they are stationary. For example,
in the series we study in this paper (realized volatilities, see Section 6), as long
as the companies remain in the index their stock price volatilities cannot have
an unbounded increasing or decreasing trend.

Models of this type which have been proposed typically have stochastic shifts
in the mean, but overall are mean reverting about some long term average.

We define the break model as follows:

µyt
=

p∑

i=1

Iti−1≤t<ti
µi (2)

where µyt
is the mean of the time series, It∈S is an indicator variable which is

1 only if t ∈ S, t is the time, ti, i = 1, . . . , p, are the breakpoints and µi is the
mean of the regime i. In this case, a regime is defined as the period between
breakpoints.

It is important to note that Equation (2) is just a way to represent a sequence
of different models (i.e. models subjected to structural breaks). This model
only deals with breaks in mean. It can be generalized for any kind of break.
We are considering this class of model because it has been used by others when
studying long memory processes. However, given a true break each regime must
be modeled separately.

3 Model Confusion – The Empirical Problem

Despite the obvious theoretical differences between the FGNs or FI(d)s and
constrained non-stationary models, they are difficult, if not impossible, to tell
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apart in real data (Granger and Hyung (2004), Diebold and Inoue (2001)). As
indicated earlier the difficulty is enough that Diebold and Inoue (2001) suggest
‘. . . in the sorts of circumstances studied in this paper, “structural change” and
“long-memory” are effectively different labels for the same phenomenon . . . ’.

A number of authors have attempted to develop statistical tests to distin-
guish between true long memory and other types of processes displaying sta-
tistical long memory. Beran (1992) proposed a goodness-of-fit test for FGNs
and ARFIMA models by comparing the estimated spectrum for the data with
the theoretical spectrum of an FGN or ARFIMA with the specified parameters.
The null hypothesis is that the times series is an FGN or ARFIMA. Rejection of
the null does not lead to a clear alternative. Beran and Terrin (1996, 1999) de-
veloped a test for which the null hypothesis is that the H parameter is constant
in an FGN. As a constant H is fundamental to the definition of an FGN, the
Beran and Terrin (1996, 1999) test could be considered to distinguish between
a FGN and a multifractal as in multifractals the H (or d) parameter is allowed
to change over time. Teverovsky and Taqqu (1999) proposed a procedure based
on comparing the variance plots from the aggregated variance estimator with
the differenced variance estimator which allows the researcher to distinguish be-
tween long memory on the one hand and shifting means or deterministic trends
on the other. The null is that the process is an FGN with no level shifts or
deterministic trends. The alternative is that either level shifts or deterministic
trends or both are present in the data but, the test provides no further informa-
tion on their number or location. Smith (2005) modified the GPH estimator to
discriminate between infrequent level shifts and long memory. The robustified
estimator should return an estimate of d close to zero if there are only level
shifts in the data. Ohanissian et al. (2008) developed a test of self-similarity
based on different levels of aggregation of the series which cleverly avoids the
issue of having to estimate any breaks or additional short memory correlation.
The null hypothesis is that d is constant at all levels of aggregation as required
by the definition of an FI(d) process, hence the series is a true FI(d) series.
Rejection of the null does not lead to a clear alternative.

Our procedures, outlined in Section (5), add to this literature by approaching
the problem from the direction of explicitly modeling the breaks and is motivated
by the following considerations.

As mentioned above, the use of structural break detection and location meth-
ods are regarded as problematic because they tend to report breaks in FGNs
and FI(d) series even though the data generating process is uniform throughout.
For example, Wright (1998) proved that when the standard cumulative summa-
tion (CUSUM) test, formalized by Brown et al. (1975), for detecting structural
breaks was applied to long memory series the probability of finding a break
converged to one with increasing series length.

We note that if a series is generated by a true long memory process, di-
viding the series into a number of “regimes” of differing lengths through the
use of a structural break location method will only yield subsamples of a single
population. However, if, in fact, the series contains structural breaks, using a
structural break location method will instead divide the series into a number of
subpopulations. In the former case our a priori expectation is that the subsam-
ples will have the same statistical properties as the full series. In the latter case
the data generating process has one or more discontinuities. Consequently the
statistical properties of the regimes will need to be individually estimated.
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Despite this risk of model misspecification we could find no empirical study
of the statistical properties of the “regimes” in simulated FGNs or FI(d) series
of finite sample size when they were incorrectly analyzed by applying struc-
tural break location methods to them. The use of ART (see Cappelli and Reale
(2005), Rea et al. (2006), Cappelli et al. (2007), and Cappelli et al. (2008)), a
computationally very fast structural break method, has allowed large scale sim-
ulation studies to proceed which would have been computationally impractical
with established techniques such as that due to Bai and Perron (1998, 2003).

4 Why it matters

The economics of why highly efficient financial markets would exhibit long range
dependence is never addressed in the literature perhaps because it seems the
econometric evidence is ‘overwhelmingly in favor of such a phenomenon’ or fol-
lowing Diebold and Inoue (2001), the issue is purely semantic. Mikosch and
Starica (2000) conclude “we have tried hard to find in the literature any con-
vincing rational/economic argument in favor of long range dependent station-
ary log returns, but did not find any.” As Ohanissian et al. (2008) also state,
“the introduction of fractional components into volatility models is purely from
an empirical perspective without any theoretical justification.” There is, how-
ever, both a finance theory and regulator interest in long versus short memory
modeling implications. As Jambee and Los (2005) highlight, the US Financial
Accounting Standards Board (FASB), has an interest in how to value options
because the traditional Black-Scholes formula is (for some reason) ‘not doing its
job’.

Taylor (2000) analyses and simulates the consequences of a long memory
assumption about volatility by comparing the implied volatilities for option
prices based upon short and long memory volatility processes. In his analysis,
the assumption of long memory has a significant effect upon the term struc-
ture of implied volatilities and a relatively minor impact upon ‘smile effects’.
Taylor’s approach was to simulate both long and short memory GARCH spec-
ifications and derive the Black-Scholes implied volatilities from the resulting
option prices. In particular, long memory term structures of the implied volatil-
ity for an “at-the-money” option have much more variety in their shape than
those based upon short memory assumptions; they may also imply ‘kinks’ for
short maturity options and may not have a monotonic shape. In addition, long
memory assumptions can lead to implied term structures on different valuation
dates that sometimes intersect. Long memory term structures do not converge
rapidly to a limit as the lifetime of the option increases and it is difficult to
estimate the limit for the typical value of d=0.4. None of these outcomes occur
in a short memory specification of his models. In a related approach, Bollerslev
and Mikkelson (1996) simulate call option prices for the Standard & Poor’s 500
composite index and show that, as one might expect, the price of a call option
is much higher when long memory in the volatilities is assumed compared to
when it is not.

Ohanissian et al. (2008) is complementary to Taylor (2000), but in their
case they consider three affine models; a short memory; a switching mean for
volatility between high and low state which is the process to introduce ‘spurious’
long memory; and a fractional stochastic volatility model (true long memory).
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Using a simulation approach they examine the mis-pricings that occur from
using the ‘wrong’ model. The main finding of their paper is that: “ignoring or
mis-specifying the nature of observed long memory characteristics in volatility
leads to serious option mispricing. Specifically when the true DGP is spurious
long memory, using either a no long memory model or a true long memory model
leads to general underpricing of call options, by as much as two-thirds. On the
other hand when the DGP is true long memory, using either a no long memory
or a spurious long memory leads in general to overpricing of call options.” These
mispricings extend out to the entire horizon they consider which is two years.

Jambee and Los (2005) demonstrate that the standard Black-Scholes op-
tion pricing formula must assume the Hurst exponent is exactly equal to 0.5,
otherwise the expiration time-adjusted variance of the stock rate of return will
not be constant (as assumed elsewhere by Black and Scholes). As Jambee and
Los (2005) further argue, the fact that the S&P500 has an H=2/3 and a shape
(Zolatarev) exponent of 3/2 (implying that the variance of the distribution is
therefore non-existing or infinite) strongly suggests that “the Index is statisti-
cally unsuitable as an ‘underlying’ index for option valuation, despite the fact
it is traded on the Chicago Board of Trade”. Likewise options written in anti-
persistent markets, for example some foreign exchange markets (where H=0.25
and the Zolatarev shape exponent is 4), again, according to Jambee and Los
(2005), “don’t make sense, even though they are traded on the Philadelphia
Stock Exchange”. One must conclude, therefore, that the degree of persistence
does have a significant impact on option values via the time dependent volatility
and thus the risk-neutral probabilities used in their valuation.

Consider now some statistical/econometric issues around the pricing of op-
tions when volatility is stochastic and has short memory. Here the modeling
commences with separate diffusion specifications for the asset prices and its
volatility such that option prices then depend on several parameters including
a volatility risk premium and the correlation between the differentials of the
Wiener processes in the separate diffusions. Duan (1995) provides an explicit
option valuation framework for a GARCH (1,1) process with short memory.
Comte and Renault (1998) and Bollerslev and Mikkelson (1996, 1999) describe
methods to price options when volatility has a long memory. Here, they re-
place the Wiener process in the volatility equation with fractional Brownian
motion. However, their option pricing formula requires independence between
the Wiener process in the price equation and the volatility process which is
inconsistent with the empirical evidence on stock returns. Furthermore, ap-
plication of the theory of option pricing when volatility follows a discrete-time
ARCH process with fractional integration requires approximation because the
fundamental filter is an infinite order polynomial that must be truncated at
some power N. Option prices will therefore be sensitive to the truncation point
and large values and long price histories from an assumed stationary process
are required.

Sibbertsen (2004) reiterates that long memory appears important when con-
sidering the volatilities of stock returns and as a consequence, the valuation of
options and derivatives, etc. In this literature, the dominant empirical approach
is the ARCH-type class of models which assume that the conditional variance de-
pends on the currently known information and crucially do not allow long-range
dependence. Empirically, however, it would seem that shocks to the conditional
variance decay slower than ARCH-type modeling would posit. Assumptions
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about long-range dependence are crucial for optimal forecasts of the variance
and more generally for asset price valuation, as a consequence, it is important
to know whether long memory or short memory (with infrequent shifts) is the
‘true’ model. Sibbertsen (2004) concludes that apparent long memory in UK,
Canada, Japan and USA GNP, is mainly due to ‘structural breaks in the data’.

Martens et al. (2004) propose a nonlinear model for realized volatilities that
‘simultaneously captures long memory, leverage effects, volatility persistence
that depends on the size of the shocks, structural breaks and day of the week
effects’. They conclude that level shifts in the S&P 500 volatility do not ac-
count for the long memory feature - the fractional integration parameter does
decline when explicitly modeling the structural break, but remains significantly
different from zero. However, in their example they ‘find it difficult to pin-down
exactly when the level shift occurred and it is most adequately characterized as
a gradual increase in volatility during 1996-1997.’ They consider an alternative
of multiple breaks following Andreou and Ghysels (2002), but do not identify
them explicitly, instead they allow for gradual level shifts using a fifth-order
polynomial in t. They reject a logistic function that changes monotonically
from 0 to 1 as t increases as ‘too restrictive as it only allows for a single struc-
tural change in the level.’ As a consequence they do not provide a convincing
case that they have actually identified the ‘correct location(s)’ of the breaks and
hence their conclusion appears overly strong.

Mikosch and Starica (1999) find structural change in asset return dynamics
and argue it is responsible for evidence of long memory. Moreover, Mikosch and
Starica (2000) argue that the IGARCH model and LRD are incompatible, “if
the IGARCH model is the generating process of the log-returns, the LRD effect
has nothing to do with LRD; it is simply an artifact since the sample ACFs do
not measure anything.”

It therefore seems important, both for aspects of finance theory, econometric
modeling and empirical consistency that we try to identify whether the data are
generated by ’true’ long memory processes.

5 Method

A fast structural break location technique called Atheoretical Regression Trees
(ART) was recently introduced by Cappelli and Reale (2005). ART is based on
least squares regression trees (LSRT) which are widely used, see Breiman et al.
(1993) for a detailed description. An Atheoretical Regression Tree is a non-
parametric approach used to find breaks in the level of a stochastic process. This
method exploits, in the framework of LSRTs, the contiguity property introduced
by Fisher (1958) for grouping a single real variable into maximally homogeneous
groups. See the appendix for an discussion of ART.

In this paper we present two different procedures for distinguishing between
real and spurious breaks based on ART. The first is fast, the second is very slow
but has greater sensitivity than the first. In both procedures the null hypothesis
is that the series is an FI(d). The alternative is that the series has one or more
structural breaks.
i) Numerical – ART with Beran (1992) Test

1. Estimate d for the full series.
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2. Estimate goodness of fit of this d value with the Beran (1992) test.

3. Apply ART to the series to obtain the candidate break points.

4. Estimate d for each regime reported by ART.

5. Apply the Beran (1992) test to each regime twice. Once using d as esti-
mated for the full series and once using d as estimated for the regime.

6. Assess whether d is constant across series. Details of how the assessment
was made are given in Section (7).

ii) Graphical – Using ART to estimate the bivariate distribution of d with regime
length.

1. Estimate d for the full series.

2. Estimate goodness of fit of this d value with the Beran (1992) test.

3. Through simulation obtain the bivariate probability distribution of d with
regime length.

(a) Simulate a large number of FI(d) series with the same d and series
length as the series under test.

(b) Use ART to break the series into “regimes”.

(c) Estimate d within these regimes.

(d) Calculate the empirical median, 75%, 95%, and 99% confidence in-
tervals.

(e) Plot the bivariate distribution.

4. Apply ART to the full series to obtain the candidate break points.

5. Estimate d for each regime reported by ART.

6. For each regime overplot the d estimate and regime length on the previ-
ously determined empirical distribution.

7. Assess whether d is constant. Details of how the assessment was made are
given in Section (7).

In step 3a of the Graphical method we found that typically it was neces-
sary to simulate 10,000 to 25,000 FI(d) series to obtain a good estimate of the
bivariate distribution.

Unless otherwise stated all d estimates were obtained using the estimator of
Haslett and Raftery (1989) as implemented by in in the R software (R Develop-
ment Core Team (2005)) package fracdiff of Fraley et al. (2006). The Beran
test was evaluated using functions implemented in longmemo of Beran et al.
(2006). FI(d) series were simulated with the function farimaSim in fSeries of
Wuertz (2005). The implementation of the Whittle available to us sometimes
exited with an error when trying to estimate d in short regimes so was not used.

The graphical procedure can also be used to assess whether the mean, stan-
dard deviation, skewness, and kurtosis are constant.
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Figure 1: AIG realized volatility series plot with breaks identified by ART.

6 The Data Set

The data set comprised the realized volatility of 16 Dow Jones Industrial Av-
erage (DJIA) index stocks and were provided by Scharth and Medeiros (2007).
The 16 stocks are Alcoa (AA), American International Group (AIG), Boeing
(BA), Caterpillar (CAT), General Electric (GE), Hewlett Packard (HP), IBM,
Intel (INTC), Johnson and Johnson (JNJ), Coca-Cola (KO), Merck (MRK),
Pfizer (PFE), Wal-Mart (WMT), and Exxon (XON). The period of analysis
was from January 3, 1994 to December 31, 2003. Trading days with abnor-
mally small trading were excluded, leaving a total of 2539 daily observations.
The daily realized volatility was estimated using the two time scale estimator of
Zhang et al. (2005) with five-minute grids, which is a consistent estimator of the
daily volatility. A fuller explanation of the dataset and how the realized volatil-
ities were calculated can be found in Scharth and Medeiros (2007). It should be
noted that because all 16 are part of the DJIA they cannot be considered to be
independent series.

In this paper we will give detailed results for American International Group
(AIG) and, where practical, state the results for the other 15 stocks. Figure
(1) presents a plot of the data with the breakpoints reported by ART marked
as vertical dashed lines. Figure (2) presents the autocorrelation function and a
spectral estimate. The ACF and spectral estimate are typical of long memory
time series. A visual examination of these diagnostic plots for all 16 series
suggested they were all of the long memory type.
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Figure 2: (A) ACF of AIG realized volatility series. (B) Spectral estimate
obtained using modified Daniell smoothers.

7 Results

7.1 d Estimates

Both procedures begin with the estimation of d and a Beran (1992) goodness
of fit test of the full series. These two results are presented in Columns “d Est”
and “Beran” of Table (1) respectively. As reported by other authorities a d
estimate close to 0.4 is appropriate for most series. Realized volatilities usually
present a long memory behavior and a visual examination of the series, ACF
and periodogram suggests all 16 series are of the long memory type. However,
for 11 of the series (AA, BA, CAT, GE, HP, IBM, INTC, KO, MSFT, PFE and
WMT) the null hypothesis of an FI(d) with d estimated from the data was not
accepted at a level of 5%.

7.2 Numerical – ART with Beran Test

Next, we apply ART to the full series. Figure (1) presents the breakpoints in
graphical from superimposed on the plot of the data. Column “Period” of Table
(2) presents the range of trading days which form each regime. The first line is
the full series, the subsequent lines are the regimes.

We then estimate d and perform two Beran tests for each regime. For AIG
column “d Est” of Table (2) reports the d estimates, column “d=0.40” reports
the goodness of fit using the series d estimate, column “d=d(t)” reports the
goodness of fit using the within regime d estimates.

There are two ways to interpret the data in Table (2). The first is to examine
the regimes for which the Beran test fails to accept the null hypothesis when the
value of d is held at the series value (column “d Est” of Table 2). We then check

11



Stock d Est Beran Const d Imp p ORT Graphical
AA 0.42 2.65 × 10−6 0.006 0.03 2.68 1.54 × 10−5

AIG 0.40 0.14 0.009 0.04 4.02 0.068
BA 0.40 0.02 0.10 0.18 1.63 0.0001

CAT 0.41 0.002 0.0007 0.15 5.32 6.02 × 10−6

GE 0.44 0.04 0.008 0.11 4.98 3.32 × 10−5

GM 0.36 0.09 0.34 0.03 5.20 0.0004
HP 0.44 0.002 0.04 0.04 0.50 0.004

IBM 0.44 8.93 × 10−6 0.02 0.05 1.13 0.02
INTC 0.46 3.59 × 10−7 0.03 0.30 2.20 0.03

JNJ 0.40 0.16 0.46 0.04 3.62 0.02
KO 0.42 2.57 × 10−6 0.02 0.04 4.40 3.74 × 10−10

MRK 0.39 0.34 0.06 0.03 3.89 0.006
MSFT 0.46 0.008 0.43 0.007 11.24∗ 0.02

PFE 0.42 4.43 × 10−6 0.43 0.007 3.88 0.0001
WMT 0.42 2.95 × 10−12 0.02 0.007 4.15 0.001
XON 0.44 0.09 0.04 0.04 1.26 0.004

Table 1: For the 16 stocks in the sample column “d Est.” reports d as estimated
by the Haslett and Raftery (1989) estimator. Column “Beran” reports the p-
value returned by the goodness-of-fit test of Beran (1992) applied to the full
series. Column “Const d” reports the p-value obtained when the Beran (1992)
test was used to test if d within the regimes reported by ART were different
from d for the full series. Column “Imp p” reports the p-value obtained when
the number of times the Beran test showed an improved fit by using the regime
d estimate instead of the series d estimate was used. Column “ORT” is the test
statistic from the method of Ohanissian et al. (2008) a single asterisk (∗) marks
the result which was significant at the 0.05 level. Column “Graphical” reports
the p-value the graphical technique for testing for a constant d presented in this
paper was used.
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whether the null hypothesis is accepted if d is set to the value as estimated for
that regime.

In the case of AIG, the series could be adequately modeled by an FI(0.4)
process as the Beran test reported a p-value of 0.14, which indicated the null
should not be rejected. When we applied this method of evaluating if d is
constant to the data, the first regime reported by ART was clearly anomalous.
The Beran test reported a p-value of 0.003, indicating a clear non-acceptance of
the null, if the regime was tested against the series d estimate. However, when
the first regime was tested against the within regime d estimate (d = 0.25) the
Beran p-value was 0.54. This clearly indicated an FI(0.25) model provided a
better fit for the first regime.

Thus for AIG, ART had located a structural break in the data at the first
breakpoint.

If we count the number of regimes for which the null of the series being an
FI(d), with d as estimated for the full series, is not accepted at either the five
or one percent levels and use a simple binomial distribution, we can assign a
conservative p-value to the null hypothesis of true long memory. These p-values
are listed in column “Const d” of Table (1). As can be seen, for the constant d
approach, the null was not accepted for 11 of the 16 stocks.

Alternatively we could use the data from Table (3) and estimate the proba-
bility that the number of regimes showing an improved fit were due to chance.
Table (3) represents the empirically determined distribution of improvement in
fit as reported by the Beran test when using the within regime d estimate rather
than the full series d estimate for 1000 simulated FI(0.4) series. In the case of
AIG an improved fit was reported for all seven regimes.

A simple approach to assess whether the changes in p-values for AIG are
the result of a better fit or simply random events is to assume that changes
in p-value are distributed binomially. We can then calculate the probability of
seven improvements being a random event.

The p-values for this variation of the Numerical method are presented in
column “Imp p” of Table (1) for all 16 stocks. As can be seen, for the improved
p-value approach the null hypothesis was not accepted for 12 of the 16 stocks.

7.3 Graphical – Bivariate Distribution of d with Regime

Length

The Graphical method differs from the Numerical method in that it establishes
through simulation the empirical bivariate distribution of regime length and d
estimate for FI(d) series. As noted earlier structural break methodologies tend
to report breaks in FI(d) series where no breaks exist. Table (4) presents the
mean number of breaks reported by ART in 1000 replications of 2500 data point
FI(d) series with different d values. For financial data where d is typically about
0.4 ART reports, on average, about seven breaks in a simulated 2500 data point
series. All of these breaks are spurious as the data generating process is uniform
throughout the series.

A simple alternative model which has been well studied is the two-state
Markov switching model, see for example Smith (2005). We compared the
empirical bivariate distribution of estimated d against regime length for a two-
state Markov switching model with seven switches with FI(0.4) series.
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Period d Est d = 0.40 d = d(t)
1-2539 0.40 0.14 -
1-1168 0.25 0.003 0.54

1169-1854 0.36 0.35 0.46
1855-1944 0.30 0.62 0.73
1945-2146 0.37 0.76 0.79
2147-2250 0.35 0.38 0.39
2251-2414 0.33 0.43 0.62
2415-2539 0.27 0.81 0.85

Table 2: Column “Period” is the period under test in trading days from the
beginning of the sample. Column “d Est” reports the d estimates for the full
series and the regimes reported by ART. Column “d = 0.40” reports the p-
value returned by the Beran (1992) test for d as estimated for the series. Column
“d = d(t)” reports the p-value returned by the Beran (1992) test for the regimes
of AIG realized volatilities.

Result Percentage Mean Change
Improvement 63.8 0.068
Same or Worse 36.2 -0.079

Table 3: Percentages of “regimes” for which the Beran (1992) yielded an im-
provement in fit if the regime estimate of H was used instead of the series value
in simulated FGNs.

d-value Average Breaks
0.04 0.00
0.08 0.03
0.12 0.16
0.16 0.41
0.2 0.95

0.24 1.86
0.28 2.77
0.32 4.06
0.36 5.41
0.4 6.91

0.44 7.97
0.48 8.87

Table 4: Average number of breaks report by ART in a 2500 data point series
for simulated FI(d) series different values of d.
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Figure 3: (A) Bivariate distribution of d estimates with regime length for a
2500 data point Markov switching series with seven switches. (B) Bivariate
distribution of d estimates with regime length for FI(0.40) series.

Panel A of Figure (3) presents the empirically estimated bivariate distribu-
tion from 1000 replications of the two-state Markov switching series with eight
regimes (i.e. seven switches) and 2500 data points. Panel B presents the results
for the 1000 FI(0.4) series.

The bivariate distribution for the Markov switching series reflected the fact
that there was no long memory in these series despite the fact that the Haslett-
Raftery estimator reported a mean value of d = 0.29 for 1000 replications. In
general, ART correctly located the switchpoints and hence divided the series
into regimes consisting of nothing more than random numbers with the same
mean. The Haslett-Raftery estimator was then applied to these regimes and
it correctly reported a d value of zero or close to zero. For the FI(0.4) series,
splitting the series up into “regimes” with ART did not mask the fact that the
series had long memory.

The results for AIG are presented in Figure (4). As we are interested in
whether d has changed, the figure presents the empirical conditional bivariate
distribution of d given regime length when the null hypothesis of FI(0.4) was
known to be true. The solid and three sets of dashed lines present the empirically
determined median, 75%, 95% and 99% confidence intervals. The “A” symbols
represent the seven AIG data points. This method automatically took account
of the problem that the Haslett-Raftery estimator was biased in short series,
which is seen in Figure (4). Visual inspection of this graph shows the 1168
trading day regime (right most “A” in Figure 4) has a statistically significant
d value to the full series. Again, we can use a simple binomial distribution to
obtain a conservative p-value of whether the null is likely to be true.

Column “Graphical” of Table (1) presents the calculated p-values for this
method for all sixteen stocks. As can be seen, the null hypothesis is not accepted
for 15 of the 16 stocks. The null hypothesis was not rejected for AIG. The
calculation of the p value took no account of how far the points were outside the
empirical confidence intervals. A visual inspection of Figure (4) suggests the null
hypothesis would not be accepted for AIG if a more sophisticated calculation
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Figure 4: Conditional bivariate distribution of d given regime length. The AIG
regimes are represented with the symbol “A”.

was carried out.

7.4 Comparisons with Other Tests and Procedures

For comparison purposes we present two alternative views of the data; the new
test of Ohanissian et al. (2008) and rolling window estimates of d such as those
used by Cajueiro and Tabak (2005).

The results for the new test of Ohanissian et al. (2008) are presented in
column “ORT” of Table (1). The Ohanissian et al. (2008) test only rejects
the null of a FI(d) for the MSFT stock. We believe the reason for the lack of
rejections to be a consequence of their choice of the GPH estimator. Their test
appears soundly based in theory. In practice, for series of the length we are
dealing with either the Haslett-Raftery or Whittle estimators would be more
suitable.

It is not possible to obtain an estimate for d at a point. The best that can
be done is to estimate d in some data window about the point for which we
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Event Approximate Date No. of Series with Break
Asian Financial Crisis 1 Aug 1997 4
Russian Financial Crisis 20 Jul 1998 11
Brazilian Financial Crisis 13 Jan 1999 1
NASDAQ Peak 3 Mar 2000 9
Terrorist Attacks 11 Sep 2001 3
DJIA 4-year low 9 Oct 2002 11

Table 5: Six major events identified by Scharth and Medeiros (2007) as having
an effect on stock market volatility and how many series show a structural break
near these dates.

want to know the value of d. Panels A and B in Figure (5) present the results
of the rolling d estimates using two window sizes as reported by ART for the
AIG data. The 1168 trading day window reported in Panel A was the length
of the first regime. The evidence from this rolling window supports the results
of our two new procedures which reported that d is not constant. The lowest d
reported for any 1168 trading day period is the first regime reported by ART.

In panel (B) a 202 trading day window was used. This is the length of
the third regime reported by ART and has the highest estimated within-regime
d value. The locations of the ART breakpoints are marked and labeled one
through six. It is curious that breakpoints 1, 2, 4, and 6 are at sharp changes
in the d estimate. One should not over interpret this as there are other sharp
changes for which ART did not report a break and two breakpoints (3 and 5)
which do not correspond to a sharp change in d.

Panel C of Figure (5) presents the d estimates for the same two data window
sizes (202 and 1168 points) for a simulated multifractal with mean shifts which
has eight regimes (seven breaks) alternating between 312 data points at d=0.15
and 313 data points at d=0.3 and with mean shifts of one standard deviation in
terms of the input noise series. In for this particular series the 202 data point
window was shorter than the regimes and hence at most the window included
data from two regimes. The longer data window always covered parts of at
least four regimes and does not reflect the series’ multifractal structure. The
locations of the breaks are marked by dashed vertical lines and labeled 1 through
7. Panel D of Figure (5) presents the results for a simulated FI(d) series with
d=0.40 and the same two window sizes.

7.5 Higher Moments

In Section (5) we stated that the “Graphical” method could be applied to higher
moments. Figure (6) presents the results of the estimates of the standard de-
viations for AIG. Three of the AIG data points are below the 95% empirical
confidence interval, two of which are well below the 99% empirical confidence
interval. Thus for these three regimes the data is more homogeneous than ex-
pected for an FI(d) series.
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Figure 5: Panels (A) and (B) rolling d estimates for window lengths 1168 and 202
trading days. Horizontal lines in panel (A) are the median and 95% confidence
intervals for FI(0.4) series. The vertical dashed lines in panel (B) are locations
of the ART break points. Panel (C) rolling estimates of d for the same two
window lengths for a seven break multifractal (details in text) with breakpoints
marked by dashed vertical lines. (D) a pure FI(0.40) series with two window
lengths with median and 95% confidence intervals.
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7.6 Historical Events

Figure (1) shows the realized volatility series with each break identified. In their
study of these same 16 series Scharth and Medeiros (2007) identified six events
which appeared to have an impact on the volatility of the stocks. Some of these
were close to instantaneous and their effects were felt immediately. Others were
events which developed over time and whose effects were felt spread out over a
longer time period.

Table (5) presents a list of these events and the number of series for which
ART reported a break close to this time. The strongest event was the Russian
financial crisis in which 11 of the 16 stocks showed a structural break within
12 trading days of 20 July 1998. AIG showed structural breaks for the Russian
crisis, September 11 terrorist attacks and the DJIA low.

Individual stocks also had a number of other breaks. Some of these were
related to known events which one would expect would only affect that stock
and perhaps a very small number of related companies. For example the AIG
stock shows a break at 9 April 2001. At this time there were talks between AIG
and American General Corporation (AGC). In May 2001, AIG bought AGC for
$US23 billion.

8 Discussion

In Section (3) we noted that when breaks are reported by a structural break lo-
cation method in FI(d) series that they are fundamentally different from breaks
reported in, say, a Markov switching series. Most of this paper has concentrated
on analysing the long memory properties of the regimes, yet we recall that ART
finds candidate breakpoints by detecting shifts in the mean. A change in d and
a shift in mean are only related if ART has located a genuine structural break
in the series.

The results presented in Figure (3) showed that our intuition about the
differences between the two types of breaks was indeed correct when our proce-
dures are applied to simulated data. ART usually correctly located the switch
points in the two state Markov switching series and the d estimator then cor-
rectly returned an estimate of d of zero or close to zero for the regimes. The
breaks reported by ART for the FI(d) series are different. They were caused by
the long excursions away from the mean exhibited by FI(d) series. All of them
are spurious. Consequently the d estimates in panel B of Figure 3 reflect the
fractional integration of the whole series. These represent two extreme cases;
series with mean switches but no other serial correlation and pure FI(d) series.

The empirical evidence from Figures (1), (4), (5), and (6) and Table (2) all
point to the first breakpoint being a genuine structural break. Historically this
break was at the time of the Russian financial crisis.

As a parameter only has meaning in the context of a model, if d is allowed
to be a function of time, as demanded by the evidence, we are led to the so-
called multifractal models. However, this leads to three problems. First, a
time-varying d nullifies one of the great strengths of the FI(d) models (or FGNs),
namely that a single parameter can model the long-range dependence properties
of the whole series. On a more technical level, a time-varying d (or H) violates
the definition of self-similarity. Once a time-varying d is admitted, then any
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model for the data must of necessity be non-stationary.
Second, as far as we are aware, there are no estimators of d which can handle

a non-stationary d. All assume that d is stationary as required by the FI(d)
model.

Third, there is the issue of interpretability. It has been difficult to interpret
FI(d) series in terms of economic and financial processes generating the volatility
data. Consider the implication of an increasing d as observed in the AIG data.
An FI(d) model with constant d tells us that any given observation is correlated
with all past states of the system into the infinite past. If d is allowed to increase,
we have the strange situation where data points separated by longer periods of
time are more strongly correlated than those separated by shorter periods of
time.

Given the arguments of Klemes (1974) it seems reasonable to consider whether
estimates of parameters which which were obtained by estimators which assume
stationarity, such as those for d, have any meaning at all in these series.

The results presented in Figure (6) showed that in four cases the data within
the regimes were more homogeneous than expected at the five percent level. This
was further evidence that the mean shifts reported by ART were, in fact, real
and not an artifact of incorrectly analysed FI(d) series.

While past literature claims FI(d) series model the long memory properties
of financial data well, perhaps the most serious drawback to them is on a philo-
sophical level. The breaks in FI(d) series reported by ART are the result of
random fluctuations in the data generating process to which no further signifi-
cance can be assigned. For AIG four of the six reported breaks are correlated
with historical events for which a plausible cause and effect mechanism can be
proposed.

In previous studies the use of the test of Beran (1992) has often been over-
looked. It is a valuable tool in estimating the goodness of fit of real data to an
FGN or ARFIMA(p,d,q) series. The d estimates presented in the second col-
umn of Table (1) are comparable with estimates reported by other authorities
for similar series. But what has not been previously reported was that often the
fit to an FI(d) was poor with the null not being accepted for 11 of the 16 series
in our data set. The results from our procedures point to d not being constant
coupled with mean shifts as a probable cause of the poor fit. For AIG all seven
regimes can be adequately modeled by an FI(d) provided d is allowed to vary
with time.

For comparison purposes we have provided two alternative views of the data
used by other authorities.

First, we applied the new test of Ohanissian et al. (2008). These results are
presented in the column labeled “ORT” in Table (1). We chose four levels of
aggregation and the critical values for the χ2 distribution with three degrees of
freedom are 7.82 for p = 0.05 and 11.35 for p = 0.01. The results show only
MSFT is not a true long memory process on the basis of the Ohanissian et al.
(2008) test.

Second, we have used rolling estimates of d (see Figure 5). In previous
literature there has been no way to determine where one might expect the value
of d to change or what length data window should be used. On both questions
we have allowed the results of ART to guide us. The two different length data
windows showed a statistically significant increase in d with time. The 202
trading day data window showed a distinct break in d estimate at the end of
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the first regime as reported by ART and smaller changes at breakpoints 2, 4,
and 6. These results lend some support the results of our new methodology.
However, the use of rolling estimates of d appears less useful in determining
where d may change compared to either of our two procedures.

9 Conclusions and Future Research

It is now well established that long memory and structural change are easily
confused, however, most researchers, particularly in the financial econometrics
area, choose to ignore the problem, or simply find it too difficult, empirically,
to distinguish between them.

In this paper we firstly argued that ‘it does matter’ whether the data exhibit
‘true’ long memory using examples from the option pricing area. Taylor (2000),
Mikosch and Starica (2000), Ohanissian et al. (2008), Jambee and Los (2005)
and Bollerslev and Mikkelson (1996) all represent examples of ‘what can go
wrong in the pricing’ if short memory (with possible breaks) is ‘confused’ with
long memory. What you call it ‘does matter’. The second, and more important,
contribution of the paper was to propose a new approach and related techniques
that can quickly locate potential breaks in the series and test whether the breaks
identified are spurious. This is a fundamentally different way to approach the
problem of distinguishing between long memory and structural change and has
not previously been proposed and complements the recent approaches proposed
by for example, Ohanissian et al. (2008) and Smith (2005). The particular
structural break-test method used here, based upon Atheoretical Regression
Trees, is fast enough to be practical with the large sized datasets typical in
the financial econometrics area. The new approach was then applied to sixteen
financial data series to examine whether mean shifts and long memory were
linked in realized volatility series. The data were also examined using some
existing tests including that of Ohanissian et al. (2008).

This paper set out to examine whether mean shifts and long memory were
linked in realized volatility series. In all sixteen series we were able to establish
that link. However, as Martens et al. (2004) found, even after locating and
taking account of the mean shifts the d parameter remains significantly different
from zero. We also established that pure FI(d) series do not fit the observed
bivariate distributions, a time-varying d is required. However, a time-varying
d presents serious unresolved statistical issues as we estimated a time varying
parameter with tools which assume that parameter is constant.

The historical events associated with the ART break dates point to the fact
that we have real structural breaks in these data.

The graphical method presented here of determining if d is not constant
across the series was shown to be more sensitive to changes in d than using
ART in conjunction with the Haslett and Raftery (1989) estimator and the test
of Beran (1992). We believe the test could be improved through the use of the
Whittle estimator.

Ultimately, however, we must admit that the hypothesis of Klemes (1974)
that long memory was a statistical artifact caused by analyzing non-stationary
time series with statistical tools that assumed stationarity, has not been fully
established. We have established the existence of shifting means in the 16 time
series examined in the paper. However, the resulting model(s) of their data
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generating processes suggest a multifractal with mean shifts which embodies
the notion of a time varying d, and hence creates its own statistical problems,
both estimation and logical. As a consequence, given that FI(d) series are
both stationary and linear, they may well be the ‘best’ approximation currently
available for these type of data.
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A Appendix: Atheoretical Regression Trees

Time series data consists of a series of observations ordered by time. In the
context of regression trees (RTs) time assumes the role of the predictor variable
when, in fact, it is merely a counter. A common source of poor predictive perfor-
mance in RTs is that the distribution of the response variable is not orthogonal
to the predictor variables (see Fig 8.12 of Hastie et al. (2001) for an example).
This problem does not arise in univariate time series. This gives us reason to
suspect they will perform well in the location of structural breaks.

The model considered is:

yt = µg + ǫt, g = 1, . . . , G, t = Tg−1 + 1, . . . , Tg, (3)

where G is the number of regimes (and G − 1 the number of breakdates), yt

is the observed response variable and ǫt is the error term at time t (we adopt
the common convention that T0 = 0 and TG = T where T is the series length).
This is a pure structural breaks model because all the model coefficients are
subject to change and it has been employed by Bai and Perron (1998, 2003) to
detect abrupt structural changes in the mean occurring at unknown dates. The
problem is to estimate the set of breakdates (T1, . . . , Tg, . . . , TG−1) that define
a partition of the series

P (G) = {(1, . . . , T1), . . . , (Tg−1 + 1, . . . , Tg), . . . , (TG−1 + 1, . . . , T )},

into homogeneous intervals such that µg 6= µg+1. Bai and Perron (1998, 2003)
propose an estimation method based on the least squares principle: for each
G-partition, the corresponding least square estimates of the µg’s are obtained
by minimizing the within-group sum of squares

WSSy|P (G) =
G∑

g=1

Tg∑

t=Tg−1+1

(yt − µg)
2. (4)

The estimated breakdates (T̂1, . . . , T̂g, . . . , T̂G−1) are associated with the parti-
tion P ∗(G) such that P ∗(G) = argminP (G)WSSy|P (G). In this approach, the
breakdate estimators are global minimizers since the procedure considers all
possible partitions by using the dynamic programming approach proposed by
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Fisher’s (1958) to find the least squares partition of T contiguous objects into
G groups. His efficient algorithm exploits the additivity of the sum of squares
criterion using a dynamic programming approach Bellman and Dreyfus (1962)
that applied to ordered data points finds the global minimum. Despite the
computational saving, the method cannot deal with high values of T and G
and the same remark holds for the Bai & Perron’s procedure, even with today’s
computing power.

In the case of time series data Hartigan (1975) provides an excellent jus-
tification in favor of the (faster) binary division algorithm: suppose that the
observed time series consists of G segments within each of which the values are
constant, i.e. model (1) becomes a piecewise constant model with ǫt = 0. Then,
there is a partition into G segments for which the within-group sum of squares
is zero and it will be identified by a sequential splitting algorithm as the one in
ART.

In other words, if the data have a hierarchical structure then ART will find
the overall optimum, otherwise it provides a suboptimal solution for which,
because the partitions are contiguous, misplacements can occur only on the
boundaries. As discussed in Hansen (2001), although structural breaks are
treated as immediate, it is more reasonable to think that they take a period
of time to become effective, thus misplacements on the boundaries are not a
concern.
Given that the global search algorithm requires O(n2) steps, whereas ART, at
any tree node requires O(n(h)) steps to identify the best split, suboptimality
does not appear a high price to pay.
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